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Noise in a Molecular Amplifier*
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The quantum theory of noise in lossy electrical circuits is extended to systems which are not in thermal
equilibrium. The theory is applied to microwave molecular amplitmrs (masers) and predicts a correction
to the classically calculated noise figure which can be identified with spontaneous emission from the molecules
of the active medium. The correction is small at ordinary temperatures but becomes significant at very
low temperatures.

I. INTRODUCTION

~HE limiting sensitivity of high-frequency elec-
tronic amplifiers is determined primarily by the

thermal noise which arises from the uncontrollable
motion of charged particles in the dissipative elements
of the ampli6er, and by shot noise whose source is the
Gnite size of the elementary quantum of electric charge.
The invention of the NH3 "maser, '" an amplifier which
is based on the interaction of the electromagnetic Geld
with uncharged particles, and its proposed magnetic
analogs, provides a means of eliminating shot noise.
Moreover, the possibility (or necessity) of employing
materials cooled to very low temperatures to interact
with radiation in these devices has led to the hope that
ampliGers of exceedingly low noise factor might eventu-
ally result from this technique.

We propose to examine this idea in the light of the
following considerations:

(I). The material which interacts with the radiation
in a maser is not in thermal equilibrium' and thus
caution must be exercised in assigning to it a noise
temperature.

(2). Interaction can take place with vacuum fluctu-
ations of the electromagnetic field (spontaneous emis-

sion), producing noise which could not be predicted by
classical theory.

These considerations have been treated from a
phenomenological point of view by Shimoda, Takahasi,
and Townes. 4 The present study is based on a theory
of noise proposed by Callen and Welton' and developed
further by Weber' and by Kkstein and Rostoker. v

II. NOISE THEORY OF NONEQUILIBRIUM SYSTEMS

A circuit capable of supporting a normal mode of
frequency or can be represented by a harmonic oscillator
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whose Hamiltonian is

&= s (p'+~'q')

We consider the circuit coupled to two dissipative
media one of which is in thermal equilibrium; the
Hamiltonian of the system is'

~= s (p'+co'q')+~tt t+~tts+ (Qt+Q,), (2)
C

where Hgi, Hg2 are the Hamiltonians of the unper-
turbed media, Qr, Qs are functions of the coordinates
and momenta of the particles in the media, and C is
the capacity of the circuit.

The total transition probability for the exchange of
energy between the circuit and the dissipative media, if
initially the circuit is in a state of energy E&, and the
media in states of energies Egi and E~~, is
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where p(E) is the density-in-energy of the states of the
media.

Now the information about the energy state of
medium 1 is statistical in all cases, while the information
about medium 2 may be either statistical or exact.
The 6rst of these alternatives arises, for example, when
the medium is made active by inverting the state
populations from equilibrium, as in some of the pro-
posed paramagnetic masers; the second is characteristic
of a process such as is used in the ammonia maser, in
which the upper and lower state populations are con-
sidered to be known exactly. We will deal with both
alternatives here and show that they are substantially
equivalent.

The average transition probability due to medium 1
is obtained by averaging over an ensemble of similar
systems. This calculation has been carried out by
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Weber' but we reproduce it here because we will
utilize a similar procedure later.

2'
(w») =—(E~I p/gc(E. —»)' P(E»+h~)
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where a2' and b2' are proportional to the matrix element
between the levels, and to e and e&, respectively.

We can now calculate the time-dependent behavior
of the circuit by collecting the terms which induce
upward and downward transitions. For system 1 the
energy U stored in the circuit is governed by the
equation

dU (h )'t'S (v+1) expI-
Ct 2C (

t' ha& )
+Ss (v+1) exp( + (

—e, (11)
kT)

where we have put in the values of the harmonic
oscillator matrix elements. We de6ne the quantities

+(E Ip!v'CIE +h )'J P(E )
D
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x(Ezil Q~l E»+h~)'P(E~~+h~) We can solve Eq. (11) by using the fact that U
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Here f(E) is the statistical weighting factor, and

f(E»+h(u)/f(E») =exp( »/kT). —

If we introduce the quantity

2m' f
P(Ezi+»)(E»(Qi(Ezi+»)'

h~,
XP (ER1)f(Esr) dER1,

the transition probability becomes
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(6) This has the proper classical behavior, if we identify
the quantities G~ and G2 as the classical conductances.
Ke note that G2(0 as would be expected of the
conductance of an active element.

If G,+Gs)0, the system is stable and has a steady
(7) state energy (after subtracting the zero-point energy) of

Gs exp(h(o/kT)

1 exp (»/kT) . —
f(Ebs+A(a)/f(Eas) =exp(+Ace/kT),

Now consider the first alternative discussed above » G~ exp( —hco/kT)
for medium 2, i.e., that of an active material produced U(~) =
by state inversion (system 1). Then the calculation G,+G, . 1—e~(—h /kT)
used for medium 1 applies to medium 2, with the
modification

so that

(w„)=S,L(E, I p/gc( ,E—A )'
+(Ep(p/Qc(Ep+A(u)s exp(+Aa/kT) j. (9)

If the state populations are known exactly (system 2),
say e, and e& for the upper and lower state respectively,
then no averaging is necessary and

2C
(Wgs) = p(Ep( p/gc(E »)'b'—

+(Es (p/Qc(Ep+»)'as'j, (10)

With the approximation»«kT, Eq. (14) becomes

fGg Gs)—
U( )-=I

(Gi+Gs J

which indicates that at ordinarily encountered temper-
atures the noise contribution of a negative conductance
is given by the Nyquist noise' appropriate to its
absolute value.

' H. Nyquist, Phys. Rev. SS, 110 (1928).
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and which, in the stable case, has the steady-state
energy (less zero-point energy) of

htea, '+ (Gt/C) hto/(exp(hte/k T) 1$—
U'(co) = (18)

(G&/C)+ bs' —as'

The meaning of Eqs. (13) and (17) becomes more

apparent if we note that

Gs/C= to/Qs (19)

is the net probability per unit time of absorption (or
emission if Gq, Qs(0) due to the loss represented by
Qs and that b' and a' have the same meanings for the
exactly specified active medium of system 2. Thus we

can write

Gs/C= bs' tts'=— (2o)

where we use b~ for a net absorption probability and a~

for a net emission probability.
If we define an effective temperature" for the active

medium in system 2 by the relation

us'/bs' ——exp (hce/k T,), (21)

where it is understood that this definition does not
imply thermal equilibrium, then from Eqs. (20) and (21)

bs' as' as ex—p(hte/kT, )
(22)

exp( —hto/kT, ) —1 exp(hce/kT, ) —1

Q'ith this new notation we can rewrite, for example,
Eq. (14):

Ace bg as

exp�(hot/kT)
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and Eq. (18):
Ll
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The energy equation of system 2 is
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dt 2C
+htef(rt+ 1)as' rtb—s'), (16)

which is solved by
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Alternatively, by noting that for the medium in thermal
equilibrium

a, '/bt' e——xp( h—ot/kT),

we have, for both Eqs. (14) and (18),

(25)

(its +tts )v(~)=r
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Thus it is quite apparent that systems 1 and 2 are
fully equivalent and that there is no further need for
separate developments.

A result equivalent to Eq. (26) has been deduced by
Shimoda, Takahasi, and Townes4 on the basis of a
stochastic equation for the emission and absorption
processes. The present Eq. (26) and the theory leading
to it diGers from that result in that the noise energy
from the active and passive media are treated sepa-
rately. This feature makes the present theory suitable
for the direct calculation of the noise figure of an
amplifier, since the concept of noise figure is based on
the comparison of excess noise with thermal noise.

by= b,+b,+b„
where the subscripts i, o, c refer to the input coupling,
output coupling, and cavity walls, respectively.

In terms of this notation the gain and noise factor
of the amplifier as given by GZT appear as

(28)

Equation (29) does not take into account any noise
generated in the active medium. In order to jnc]ude
this eGect, we obtain from the theory of Sec. II the
amount of energy stored in the cavity in the steady

t Note added t'I proof Eq (29) does not c.—onform. to age con-
ventional definition of noise figure, because it is based on the
signal-to-noise ratio in the wave traveling away from the output
which contains some (but not all) of the noise generated in the
load. The conventional noise figure is F=a2jb;; if all the noise
from the load is assessed against the amplifier, the noise figure is
P'=P&jb;. This last equation is based on the signal-to-noise ratio
which would be measured immediately following the amplifier
and thus is most meaningful in practice. All these equations are
equivalent when p))i. I am indebted to the referee and to Pro-
fessor E. T. Jaynes for this point.

III. APPLICATION TO THE REGENERATIVE
MASER AMPLIFIER

A simple kind of molecular amplifier is shown in
Fig. 1. This regenerative amplifier was discussed
originally by GZT on a classical basis. VVe deal first
with the stable amplifier for which b~&a~.

For the system of Fig. 1,
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state due to this source: ACTJYE MEDIUll4

U2=
bg —a2

(30)

INPUT OUTPUT

Equation (30) is an expression for the total energy
integrated over all frequencies. In order to obtain a
noise 6gure we need the spectral density of this energy.
The spectral density can be obtained readily by an
extension of the theory of Sec. II which has been carried
out for media in thermal equilibrium by Weber' and
Ekstein and Rostoker. ~ Their procedure can be carried
out with no essential modi6cation for nonequilibrium
systems and leads to the following expression of the
spectral density of a noise current generator equivalent
to the medium:

Fro. j.. A cavity maser.

It might be noted that Eq. (34) which for reasons
of convenience we have deduced from classical circuit
theory, also follows from Eqs. (23) of (24), Eq. (31),
and the discussion of band width.

By the same argument the energy stored in the
cavity due to thermal noise from the walls is

2iG, i

(Gr(~)) = —+,
2 u2' —b2'

2iG2i hpp h(g—+
2 exp(h~/kT, )—1

(31)

hco l (Devi
U, ((u)h(u=

i
I exp(Puu/kT) —1) E22r j

xi i, (»)
( (bg —a2) +4(cv —(o ) j

In Eq. (31) the quantities G2, a2', b2' are of course
functions of frequency; their variation is given essenti-
ally by the line shape of the transition and thus depends
on the details of the ampli6er design. It has been shown,
however, that if the gain of the amplifier is large, its
band width is small compared with the line width, so
that over the band width of the ampli6er we may
consider (Gr (pp)) to be constant.

We can now compute the noise figure of the amplifier
by extending the method of GZT:

The amount of thermal noise power incident on the
maser cavity in a frequency interval dao due to the
input signal generator impedance is

Pg(N)Aced =
h~

exp(her/kT) —1 & 22r j
The net thermal noise power transmitted into the
cavity is given by

hpp

I'„(pp)h~=
i

(exp(h~/kT) —1j (2n. j

)~ U2(pp)&= U2. (37)

From Eqs. (34), (35), and (36) we And, for the noise
power in the output from sources other than the load
impedance,

h&o
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i

&exp(h~/kT) —ij 022. j
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+h(0 (38)
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and the energy stored due to noise from the active
medium is

lA(v (
U2(~)~~=h (36)

22r ((by —a2)'+4((g —M ) j
so that

4b, (bi —b,—a2) The total noise power in the output wave guide,
X i ji (33) including noise power generated in the load and reflected

E (by —a2)2+4 (co—o),)2

at the output coupling, is

where ~, is the resonant frequency of the cavity in the
NM

presence of the active medium. The energy stored in p (~)g~
the cavity due to the generator's thermal noise is (exp (Aced/kT) —1j & 2m j
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so that the noise figure becomes

C2 1 82
F= + + [exp(hM/kT) —1].

b; p, b;

Thus the noise from the active medium has a negli-

gible eGect on the sensitivity of a maser amplifier, if
the absolute value of effective temperature ~T,

~

is
small compared with the ambient and input tempera-
ture T. However it has been proposed that maser
ampli6ers employing materials at liquid helium temper-
atures be used, say for radio-astronomical applications.
In such applications the noise 6gure would be based
on the temperature of the sky, which is of the order of
1.'K. Under these circumstances the correction em-
bodied in Eq. (40) might amount to several decibels at
the higher microwave frequencies. When T, T, which
will be true under these conditions, and perhaps at
ordinary temperatures for system 1, discussed above,
the last term on the right-hand side of Eq. (40) will

not be negligible. From Eq. (28).

bg —ao ——(4b;bp/p) &,

and using Eqs. (20), (21), and (27), we obtain

ao' f 1 p ho+ b. (4bo
I

1+
b; &1—exp( —Aced/kT, )) b; E b;p)

If we substitute this expression in Eq. (40) and use

Eq. (22), we obtain

bo+b, (4boq &

F- 1+
b, (bt)

( 1—exp( —ha)/kT) )
1+exp(hot/kT)

~

&1—exp( —Lo/kT, ))

with the following special cases: If Puo«kT, duo«kT„
p))1,

bo+b, T,
F 1+ —1+—

b; T

If T,=T (system 1), p»1,

bo+b.
F= 1+ [1+exp(Puo/kT) j.

From these equations we can conclude that for a
regenerative maser it is preferable to obtain the active
medium by selective focusing or optical pumping rather
than by state inversion.

IV. SUPERREGENERATIVE AMPLIFIER

If in the system of Fig. 1 the quantity of active
material is increased until c2&b~, the ampli6er is no

longer stable and the energy in the cavity will increase
exponentially as predicted by Eq. (13) or (17). If
some appropriate means of quenching the oscillation is
provided, the system can be used as a super-regenerative
amplifier.

It is not possible to predict the noise figure or gain of
such an amplifier without knowing the details of its
design. It is possible, however, to calculate the excess
of noise above its classical value due to emission from
the active material. For this purpose we make the
following assumptions:

(1) At the start of the exponential rise the cavity is
in thermal equilibrium, so that

exp[—(b,—a,)tf»1. (42)

With these assumptions Eq. (17) becomes, after
subtracting the zero-point energy,

he ( 1 ) 2bg

2 (b&—ao) exp(hoo/kT) —1

+a,' exp[—(b&—ao)t). (43)
exp(Aced/k T) —1

The classical thermal noise is due to the term in square
brackets in Eq. (42); the excess noise is due to the
second term. The contribution arising from Uo is
negligible since b~))1, and thus the correction to the
classical noise figure is

F=F,g(1+ (ao'/b&) [exp (her/k T)—1]), (44)

where F,i is the noise figure that is obtained when the
noise generated by the active medium is neglected.

V. CONCLUSION

It has been shown, by an extension of the quantum
theory of noise to systems not in thermal equilibrium,
that the active material in a molecular amplifier makes
a finite contribution to the noisiness of the system.
The applications treated include the stable regenerative
maser and the superregenerative maser. The correction
due to this noise source is small at the usual microwave

frequencies and at ordinary temperatures, but becomes

signi6cant at frequencies and temperatures for which

kT, a condition which may be met in some pro-
posed devices.

The author is indebted to Dr W. I . Be.aver, Dr J. .
C. Helmer, and to Professor M. Chodorow for several

stimulating discussions.

Uo hc—o—/[exp (Aa)/k T) 1]—.

(2) The "gain" is large, that is to say, the signal is
allowed to build up long enough so that


