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quantitative comparison with the reduced-width ratios
of 0.36 and 0.12 calculated by Elliott for the J=O and
J= 2 excited states. Qualitatively the second value is in
agreement with the size of the differential cross section
which was observed, but the 6rst value wouM appear to
be too high, since there was no clear indication of an
excited state in this region of excitation at a laboratory
deuteron angle of zero degrees.
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Matrix elements of the two-body spin-orbit interaction between two-nucleon states in I.S coupling are
expressed in a convenient form which is particularly suitable for oscillator wave functions. The interaction
between an almost-closed shell and an external inequivalent nucleon is also considered.

1. INTRODUCTION

HE tensor operator methods of Racah' have been
used to evaluate the. matrix elements of two-body

noncentral nuclear forces between antisymmetric I.S-
coupling states arising from two inequivalent nucleons' '
and for conhgurations involving almost-closed shells. ~

The results obtained expressed the elements of the
energy matrix in terms of radial integrals and their
coefficients, the radial dependent terms of the operator
being 6rst separated from the remainder.

In this paper we obtain expressions for the elements
of the radial-orbit amplitude matrix of the spin-orbit
operator in which the radial terms are not entirely
separated from the orbital coefficients. It is shown that
this approach leads to a gain in simplicity of form, and

that the elements are not unduly dificult to evaluate.
The true two-nucleon case is considered first, and some

results for configurations involving almost-closed shells

are derived later.
In the course of this work we evaluate single-nucleon

amplitude elements for the tensor operators R' and P'
with oscillator wave functions.

*Much of this work was carried out at the University of
Southampton, Southampton, England, and forms part of the
writer's Ph.D. thesis.' G. Racah, Phys. Rev. 62, 438 (1942).

s I. P. Elliott, Proc. Roy. Soc. iLondon) A218, 345 (1953).' L. W. Longdon, Phys. Rev. 90, 1125 (1953).' J. Hope, Phys. Rev. 89, 884 (1953).
~ J. Hope and L. W. Longdon, Phys. Rev. 101, 710 (1956),

referred to as I.' J. Hope and L. W. Longdon, Phys. Rev. 102, 1124 (1956),
referred to as II.

~ The term "almost-closed shell" as used in this paper implies
a shell closed except for a single vacancy.

2. SPIN-ORBIT OPERATOR

%e begin by recalling some results in II.
Apart from the intrinsic spin' and isotopic spin'

dependences, the two-nucleon spin-orbit operator is of
the form J (rrs)L', in which J(rrs) is a distance function
and 1.' is a two-nucleon tensor operator.

It is convenient, following the methods used in
nuclear central force calculations, to expand the
distance function

J(r„)= P JI, (r, ,rs)(C(tl" C(sl")
k=o

in terms of the radius vectors of the individual nucleons
and scalar products of the single-nucleon tensor oper-
ators C~. In this the radial and orbital components of
the function are separated.

The operator I.1 can be expressed

2

L'= iV2 P —(&l,)'8'&(o'),

in which the single-nucleon tensor operators E' and I"
are constructed from the Cartesian components of the
individual nucleon position and momentum vectors.
Each of the operators E.' and I" contain both radial
and orbital components, so that the radial component
of the operator 1.' is not separate. The tensor product
Q ~ is defined in I.

An expression for the amplitude elements of the spin-orbit
intrinsic spin operator is quoted in II.

9 The elements of the isotopic spin operator for neutral, sym-
metric, and charged dependences are given in I.
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3. TWO-NUCLEON ENERGY

Hitherto the operator J(ri~)L' has been expressed in
a form in which its radial component has been sepa-
rated, as in II, Kq. (7). But it is suggested here that
advantage is to be gained by not taking this approach.

For the configurations involving two inequivalent
nucleons, and for any particular value of k, the elements
of the amplitude matrix are of the form

(ei/i, n2/2, L[fJa(ri, r2)(C&u" C&» )L'[[xi'/i', e2'/2', L'),

and can be expressed as

(~,/„~,/„LIIJ,(v„r,)(C&» C&» ) Ilvi) i,vs 2,L)
X (vial) V2X2)LI[L I[S1/1 qB2 l2 )L )q (3)

in which we have employed a dummy suKx notation
implying summation over all v, X.

The first element of this product is of the type
encountered in central-force expressions and, following
common practice, we separate its radial term and arrive
at

(ni/i, e2/2I Ji (vi, r2) I
»Zi vy. ,)(l,/, L IIC~o" C&»'Il~i~2L)

X (»7 i,»7 2,LIIL'I[a, '/, ',~,'/, ',L'), (4)

in which the element of the amplitude matrix is ex-
pressed as a linear combination of radial integrals of
the central-force type, or of the type I~ defined in II,
Eq. (16). The coefiicients of these radial integrals
consist of an orbital term of the central-force type,
which is dependent on k, together with the amplitude
elements of the operator L', which are independent of
k but contain a radial component.

The operator L' can be expanded as in Eq. (2), and
if s=t the tensor product reduces to the single-nucleon
angular momentum operator 2', whose elements are
quoted in II, Eq. (14). For this reason the expansion of
the element (vihi, v~), 2,LIIL'&,=offni'/i', e2'/2', L') contains
a term 8(vi, ei')5(v2, e~')8(Xi, /i')8(X~, /2') and the elements
of the amplitude matrix for the operator J(ri2)L' for
s= t in the expansion of L' lead to the coefFicient of the
radial integral I given in II, Eq. (16). Since the
single-nucleon elements of Z contain no explicit radial
dependence other than the Kronecker deltas quoted
above, the approach suggested here is identical with
that used in II, and we shall content ourselves with
giving the coefficient of I~ as it appears in II.
(e,/„e,/„LIIJ(r,~)L'(.=~) If~i'/i', ~2'/2', L') =~2 'I"

X 0~(/i/g/&'/2') LL; kk; k000){L(L+1)}&8(L,L'), (5)

in which the functions 6 and 0 are defined in I, Eq.
(1o).

The remaining "crossed" terms of the expansion of
L', for s/t, lead to two-nucleon tensor products, and
their amplitude elements can be expanded using I,
Kq. (3). The result is

(vihi, vs 2,LIJL'~, ~~& ffni li &rc2 lm, L )
=3—{+(PR)—+(RP)}g(X,X&/i'/2', LL'; 11;1), (6)

in which

{+(PR)—4(RP) }
i'{(v X IIP'Ile 'l ') (vP IIR'ill '/ ')

—(v 7 IIR'I[~ 'l ') (v ~ IIP'l[~ 'l ')},
and in the next section we shall derive explicit expres-
sions for the single-nucleon amplitude elements of the
operators R' and P'.

We can thus express the typical element of the
amplitude matrix for two-nucleon configurations, apart
from the coeScient of I~ quoted in Eq. (5), using the
well-known result for the amplitude elements of a
scalar product of tensor operators, " and Eqs. (4) and
(6) as follows:

(ei/i, e2/2, LI[J(ri2) L'(, g o II
ei'/i', n2'/2', L')

= (—1)"+"v ~ 3 &W(/i/2XiX2, Lk)

XxP.,X,/, '/, '; LL'; 11; 1)(/, [[C~f[~,) (/, [[C~I[~,)
X{%(PR) —4'(RP) }

X(ei/i, e2/2[ Ji, (ri, r2) [ vp i,vs&). (7)

4. FUNCTION %'

Before we can evaluate the function {%(PR)
%(RP)},—we must find expressions for the single-

nucleon amplitude elements of the operators R' and P'.
Now, using II, Kqs. (5) and (6), we may write

(e/f[R'If''/') = (/IJC'fJ/') (6/
I
r [e'/'), (8)

in which (/I[C'If/') can be found by using I, Eq. (8), and
in which the single-nucleon radial integral is equivalent
to

(e/fr[ '/N') =~~U„&(p)rU„& (p)p'dp,

where U„~(p) is a single-nucleon wave function,
p=r/ao, and ao is the well parameter.

For oscillator wave functions, we have

U„(p) = (—1)'+'+"{2F(e+-')I'(m —l)}&p'

Xexp( —-'p')T(+i" ' '(p')

in which T&+i" ' '(p') is a Sonine polynomial. It can
be shown" from this that, for l'=/+1,

(e/Ir[ ~'/')

I

I'(N'+-', )I'(e—l)= ao {b(e', v+1) 8(n', e)}—
1(e+-',)1(e'—/')

We then find, from Eq. (8), the result

u '(e/f[R'f[e'/')
= —{(/+1)(e+-')}&8(/', /+1)8(e', v+1)

+{(/+1) (e—l—1)}'*6(/', +/1)6(n', e)
—{l (e—l)}'8 (l', l—1)8 (e',0)

+{/(e——,')}-:S(/', l—1)S(e', e—1), (9)
"See reference j., Eq. (38).
"For an account of this derivation see J. Hope, Ph.D. thesis,

London University, j.952 (unpublished).
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together with a similar result for the operator P' which
can be derived from the above by use of the relation

a,z(nil]P)IIn i )= —(z)N'-~(nilIR)llnV), (10)

in which E=2e—l—1 is the total quantum number of
the single-nucleon state. Equation (10) can be demon-
strated by an argument similar to that used in the
matrix theory of the linear oscillator.

Using Eqs. (9) and (10), we list in Table I the
function (%(PR)—4'(gP)). We find that there are
only eight values of the parameters v, t for which the
function is nonzero. " This is not too cumbersome a
result.

5. OPERATOR IN SINGLE-NUCLEON FORM

The expansion of Eq. (7), together with Table I,
can conveniently be used for the evaluation of the
spin-orbit energies of two-nucleon configurations. If,
however, we are to consider the interaction between
an almost-closed shell and an external nucleon, we must
express the operator in terms of tensor products of
single-nucleon tensor operators. To do this, we may
rewrite Eq. (1) and expand the distance function in a
form in which the radial and orbital components are
not separate:

J(r») =Xi., ', )(z&(1)'2&&»') ~

in which i8ii) = f, (ri)Cii)", where we have made a
formal expansion of the function J),(ri,rz) of the type

JA(ri, r2) 2; j f'(rl)fj(rz)

We note that the operators e~ are radial-orbit tensor
operators, in that

(ntlle~llnv) =

(tllcAIIL')(nial

f(r) Inv),

where (nl
I f(r) In'l') is a single-nucleon radial integral.

We can now write the spin-orbit radial-orbit operator
in the form

J(r,2)I'= —z~g Q (—1)'+'

TABLE I. The function f%'(PR) %'—(RP) ).

nI+1
%1

xI+1

iI+1 l2+1 %2

N2+1
l2 —1 222 -1

l I —1 l2+1 ~I n2

nI —1 n 2+1
l2 —1 m2-1

N2

(e(PR) —e(RP) }

—j {iI+1)(l2+1)(I+ ))(+2 —l2 —1)}~

+{{iI+1)(12+1){ng -lI —1){n2+$)}&

-t(~+1)~.( +S)( -S)}~
2& &(+{(11+1)l2(mI-lI -1)(n2 —L2) }&

—(lI (l2+1) (ni —lI) (n2 —12 —1)}&

+)»(~2+1) (721 —k) (+2+4) }
—{tIt2(~I—t1) (n2 —)) }&

+ t11/2(nl —2) (R2 —lp) }~

C'"=2*,w(-1) +"+"f L13Lx)LH) '*

XX()J2$1'lz', I.L'; xy; 1)P'(xk11; 1y)

XW(k1lili', F1)W'(k1/24', F2).
The summation over v, P is to serve as a reminder that
we have made use of a dummy suffix notation, as we

did before.
The factor Q~ can be written

We can now expand Eq. (12) in single-nucleon form,
using II, Eq. (8), by writing

"(PR)=—v2Z', ;.. ( 1)"(L jL j)*
XW(xk11;.1y)(z6 &1) 8 j(R&2)&),

in which 26'*= (28"S~P') j(R)I= (j8'B)IR'). From this,
we evaluate the general element of the amplitude
matrix for this operator, which is

A" (PR) = (nil), nzlz, LIIA)2" (PR)ll nli)1n'lz,zL'),

by using first the relation I, Eq. (3) to write the
element in terms of single-nucleon amplitude elements
together with a y function, and then breaking down

the single-nucleon amplitude elements by means of II,
Eq. (13).We arrive at the result

A" (PR) =Q„,), +(PR)Q"I",

in which %'(PR) is as in Eq. (6),

II"=p;, , (n l llze, II)')i )(n I Ilje"II)' li ),

s, t=l

X Q (zt'-(1) ' J&i»') (Ri.)'O'Pi»'),
11 =(i,llc lll, )(tzllc IIl 2)(n,i„n24I JA(ritz) I»l 1,~2l 2),

J(r12)L'i, ~o ——A, 2"(PR) —A „"(RP). (13)

1~ For convenience we have here omitted the primes, writing
n', l' asn, l.

and we are interested in the evaluation of the amplitude
elements of this operator for s not equal to t.

For convenience of notation, we shall consider an
operator of the form

A12"(PR) = —zV2+;, , (z6&1)" qadi»")(Pi))'O'R&2)'), (12)

and note in passing that, for s not equa1 to I,, the
complete operator may be written

by using Eq. (11), and we can now replace Eq. (7) by
the equation

(n)li, nzlz, LIIJ(r)2)L'(, ~ g) Ilni'li', nz'l2', L')
=2;~(~ Ilc'IP )(~ IIc"Ill )c"(+(PR)—+(RP))

X (n)l),nzlz I Jy. (r„rz) I ) 1)11,) F2). (15)

In the next section we shall consider the application of
this result.

6. TWO-NUCLEON AND ALMOST-CLOSED
SHELL CONFIGURATIONS

The factor C" of Eq. (15), which is for a two-nucleon

configuration, can be reduced as fo11ows.
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It can be shown that"

P„(—1)"(r]W(eckd; rf)W(ecbg; ra)W(bgkd; rh)
= (—1)'+~ W(ahfk; eh)W(hade; fg), (16)

and the x function can be expanded in terms of 8"
functions"

x(~b«; ef; gh; k) ={LejLfjLgjl:h)}'Z.Lr)
XW(eekd; rf)W(ecbg; ra)W(gbkd; rh). (17)

If we expand the X function in Cs using Eq. (17), then
apply Eq. (16) to the summation over each of x and

y, and finally apply Eq. (17) again to the summation
over the remaining parameter, we obtain the result

C'"= (—1)"+"~3 'W(lrlsXrhs Lk)

XyP.rhslr'ls', LL'; 11; 1), (18)

which, in conjunction with Eq. (15), brings us back to
Eq. (7).

If, on the other hand, we are concerned with the
direct term for the interaction between an almost-closed
shell and an external nucleon, we must, following the
methods of Sec. 4 of I, insert a factor (—1)*+' under
the summation in the expansion of O'. After having
expanded the x function, we are faced with a sum over
six 5' functions which can be reduced as follows. We
note that lj is now equal to E&', and make use of Kq.
(16) in the summation over y to reduce the expression
to a sum over five W functions. We then use Eq. (17)
on the summation over x to write this as a sum over
two 8' functions and a x function. After some tedious
manipulation, the expression finally reduces to a simple
result containing a Wigner 12—j coefficient. "We find,
using a notation similar to that employed in I and II,
(D)C'"(;-r) = (—1)'"'""'+"'{L13LQLL'j}'*

I, L,'
&&~ Xt k lt 1 ~ (19)

/2'.

for the value of i~ appropriate to the direct "normal"
terms.

The exchange "normal" term can be evaluated by
the methods of Sec. 4 of I, and reduces to an explicit
expression. We here quote the result for the general
exchange "normal" amplitude element for the operator
J(rrs)L'~, ~~&. It is as in Eq. (15) except that the func-
tion {4'(PR)—%(RP)}is to be replaced by the function
(E){N(PR)—%(RP)}, which can be obtained from
{+(PR)—%(RP)} by interchanging nr'lt' with es'ls'

"This result was demonstrated to the writer by J. P. Elliott.
It is also given by L. C. Biedenharn, Oak Ridge National Labo-
ratory Report No. 1098, 1952 (unpublished).

"See, for example, H. A. Jahn and J. Hope, Phys. Rev. 93,
3&8 (&954).

"For the relevant relation see the addendum to reference |4.

and then putting e&'l&' equal to e&l&, and the function
C s is to be replaced by (E)Cst, t&, where"

(&)C'" - - = (—1)"+' '+'{L13LL)Ã'3}'
)&W(11LL'; 1k)W(k1/&ls', L'X,)W(k14lr, LXs). (20)

Corresponding expressions for the almost-closed shell
"null" terms, and for the closed shell configurations
considered in I and II, are easily derived, and are not
given here.

'?. COMMENTS ON THE RESULTS

The typical element of the two-nucleon amplitude
matrix is expressed in Eq. (7) in a more simple form
than in the corresponding result of II, Eq. (16). The
functions P(a, b,e) which involve a sum over two W
functions do not appear, and the coefficient of the
radial integral is, on the whole, less complex than the
function 0', defined in I. Also, in place of the radial
integrals J~, C~, and D~ we have only radial integrals
of the type I~ which are of the central-force kind.

On the other hand, in place of a summation over x
and y we have a summation extending over all of v

and A. , with a different radial integral for each set of
values of these parameters. However, as can be seen
from Table I, this can involve at the most eight terms,
and we note that if either mt'= lt'+1 or es' ——l, '+1, the
number of terms reduces to six and if both conditions
are complied with, this reduces to four. Also we would
remark that in any series of calculations extended over
a number of different configurations the same radial
integrals will occur many times, whereas with the
method of II different integrals are required for each
configuration.

The direct "normal" terms for the interaction of an
almost-closed shell with an external nucleon are not
hard to evaluate for lighter nuclei, and the exchange
"normal" terms are, as usual, relatively simple.

The elements of the operator C~ can be calculated by
using I, Eq. (8), and the W function has been tabulated
in convenient form. '7

The writer has carried out a series of calculations
involving the nuclear shells (1s), (2P), (2s), and (3d)
by a method similar to the above in order to check
values obtained using the results of II, and has found
this method to be the more tractable of the two.
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"This result includes the exchange phase factor (—1) 'I'+'&' ~ .
'7 The tables of Shin-ya Obi et u/. , Ann. Tokyo Astron. Observ.

Ser. II, 3, No. 3 (1933), for integral variables, are very useful.


