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Absorption Coefficients for Exciton Absorption Lines*

G. DRESSELHAUSt
DePartmertt of Physics, UNioersity of Califorrtia, Berkeley, California

(Received November 26, 1956)

The absorption coeKcient for excitons is calculated in the effective-mass approximation. The coe%cient
is shown to be decreased over what one would expect for a collection of free atoms by the factor e '(ao/ae)',
where e is the dielectric constant and ao/ae is the ratio of the lattice constant to the exciton radius. This
result seems not inconsistent with the identi6cation of the observed absorption lines in Cu20, CdS, HgI2,
PbI2, and Cd' as exciton lines.

I. INTRODUCTION

HE optical spectra of a number of insulating
solids' have revealed sharp absorption lines

located near the absorption band edge. These lines have
been interpreted by observers as being associated with
exciton formation. Unfortunately, most crystals ex-
hibiting these spectra are rather impure, and hence it
is difficult to rule out the possibility that impurity
atoms or other crystalline defects may be the cause of
the absorption lines. An estimate of the absorption
coeKcients for exciton lines is given below. It is shown
that the experimental values are not incompatible with
the identiGcation of the observed lines as being due to
the optical formation of excitons.

Two formulations of the exciton problem exist in the
literature. The original Frenkel-Peierls treatment' con-
siders the electronic excitation as a superposition of
atomic excitations at the various lattice sites in the
crystal. The absorption coefficient associated with the
Frenkel-Peierls formulation of the exciton problem is
given by Seitz' and is identical with that which one
would obtain from a collection of free atoms. A treat-
ment of the exciton problem in terms of effective par-
ticles was Grst given by Wannier. The Wannier or
effective-mass approximation has recently been ex-
tended4 to include degenerate bands and the energy
band extrema located at general positions in the Bril-
louin zone. The present paper contains a calculation of
the absorption coeKcient for exciton formation in the
%annier approximation. The coeKcient is shown to be
reduced from that obtained for a collection of free
atoms by the ratio (ao/a&)', where ao is the lattice con-
stant and a~ is a measure of the radius of the exciton.
The reduction of the absorption coeKcient for weakly
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bound excitons was first discussed by Slater and
Shockley for an exciton in a one-dimensional lattice.

IL THEORY

An exciton at wave vector K is formed from a wave
packet in wave vector space of electron and hole states
with wave vector k, and k~ such that4$

k,+kg ——K. (1)
Hence for the optical formation of excitons at K=O
one has the selection rule

k,+ks ——0. (2)

This is also precisely the selection rule for optical
transitions from a filled valence state to a conduction
state in the crystal. This selection rule corresponds to
a vertical electronic transition, since a hole with wave
vector ks corresponds to a missing electron state at
—kz. One would expect the transition probability for
the optical excitation of excitons at K= 0 to be propor-
tional to the transition probability for interband
transitions at wave vector k weighted by the amount
of admixture of the electron and hole states of wave
vector k contained in the exciton wave packet; this
result will emerge from the calculation below.

A quantitative treatment of this simple model is now
presented. The two-particle Hamiltonian for the exciton
problem may be written

p 2
ph

&o= +V (r,)+ +V (rs)+V, s(r„rs), (3)
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where the electron and hole coordinates and momenta
are labeled with subscripts e and h respectively; V„(r)
is the periodic crystalline potential; and V,s(r„rs) is
the attractive potential between the electron and hole.
In the presence of a radiation Geld the gauge may be
chosen so that the scalar potential and the divergence
of the vector potential vanish. The Hamiltonian for
the system is then

e
@=a, [p. A(r,)+p. A(r.)j—

8
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s J. C. Sister and W. Shockley, Phys. Rev. 50, /18 (1936).
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Only Grst-order processes are to be considered; hence
the terms in the square of the vector potential can be
dropped. The calculation is also to be restricted to
electric dipole transitions, so that only the time de-
pendence of the vector potential need be considered.
The problem is tractable without these assumptions;
however, the calculation embraces a particularly simple
form under the above conditions. The Hamiltonian (4)
is thus written

+„„(k„kp)P„(k„r,)g „(kg„rp).
na, n, ke, kg

(6)

The expansion (6) represents a wave packet in k space
with an envelope function 0' „(k, kp). This treatment
corresponds to the introduction of the crystal momen-
tum representation discussed by Adams. ' Substitution
of (6) into the Schrodinger equation,

H=H —(e/rmc)e '"'Ap (y,+pp), (5)

where A=Ape'&"' "o=Ape '"' Eigenfunctions of (5)
can be expressed as a linear combination of products
of Bloch functions for the electron and hole, i.e.,

The term

P;;(k)=~ P;(k,r) pP;(k, r)dr. (10)

@'=—(e/mc)e-'"'A p [, (k,)+Qg, (kp)5 (11)

is to be treated by time-dependent perturbation theory.
The unperturbed problem,

@p%'p=E%'p,

gives the solutions of the exciton problem discussed in
reference 4.

The diagonal terms in @' induce intraband exciton
transitions, i.e., transitions for which the electron and
hole remain in the same band. The diagonal term,

@'„„,„„=—(eh/c) e-'"'Ap

)va&~ „(k,)+VnpE (kp) j, (13)

is identical with what one would obtain from the erst
term in a Taylor's series expansion of the energy
functions in the %annier equation:

HC =i 584/R, (7) E„] k,——A
/

—E„/ kp, ——A ]+V,y,
%' „

kc ) E kc )

+12
P 11 P21
Pg2 0

0 0 ~ ~

yields the matrix equation for + „(k„k&):

(@p—(e/mc) e '"'Ap. Lg, (k,)+@p(k p) $)%'
= ibad/a~, (8)

where

8
=zk—e„„. (14)
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The intraband transition probability per exciton for a
hydrogenic exciton (an exciton formed by a hole and
an electron on spherical energy surfaces) is given by

4m e2

1~~.-)I(r).-I',
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, Q, (k)=

0
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Pn

Pg) 0 Pp) 0
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0 P 0
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O' P„

'Eg (k,)—Eg (kp)
0

0 ~ ~ ~

E(k.)—Ep(4)+ &.p

~ ~ ~ ) where p is the dielectric constant, I(pp&„) is the intensity
of the electromagnetic Geld at the angular frequency
ppp = (Ep—E„)h ', and (r) p„ is the matrix element of
the radius vector between the exciton states k and e.
The usual f-sum rule applies for the intraband transition
probabilities. The matrix element (r) p is of the order
of magnitude of the exciton radius, a&,. hence a weakly
bound exciton with a large orbit has a large transition
probability due to the large dipole moment. It seems
unlikely however that intraband transitions could be
of experimental importance because of the large exciton
density which would be required for their observation.

On the other hand, the interband transitions, i.e.,
transitions for which the electrons or the hole change
bands, have presumably been observed experimentally.
The calculation of the interband transition probability
involves perturbation theory using the oG-diagonal
terms in @'.Consider a transition in which an electron
changes band while the hole remains in the same band.
The perturbation matrix element connecting these
states is

K. N. Adams, J. Chem. Phys. 21, 2013 (1953). = —(e/mc)e-'"'Ap P „(k,). (16)
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where E is the matrix element of the component, of
the momentum along the vector potential and co

=k 'i E (0)—E (0)]. The dielectric constant enters
into the denominator of (17) because in a solid the
intensity of the electromagnetic radiation is related to
the vector potential by~

2&C
1(~)~~.

CO

An approximate evaluation of (17) can be made for
transitions from a 61led valance band to a simple

hydrogenic exciton state. The results should be indi-

cative of what is to be expected in the case of a more
involved exciton spectrum.

For a 6lled band,

4'p„„(p o)(k„ky,)=()(k,+kg)8 „,

and for a 1s state

(K,s) dr gg&
—ik~ r&&—ik& r

(2nr)'"
yel'x ( + a)y (& r„)

where p(, is the wave function of an atomic 1s state;

2'~ 1+EG~
C "(E)=-

(2nr) ' (1+Enon) n
(20)

and c~ is the radius of the 1s orbit. The transition
probability (17) is given approximately by

1V4nr'en'((p„„) (ap ) '
(oo)(oo)-

i i i@ (0) in

penn'k'(ps' pic (Ge )
n M. Lax, J. Chem. Phys. 20, 1752 (1952).

(21)

The solutions of the unperturbed problem in the crystal
momentum representation are denoted 0'p (*')(k„ks)
where n)n and nn label the electron and hole bands, K
the exciton wave vector; and s is the quantum number
or set of numbers used to denote the state within the
"center of mass" of the exciton. The transition proba-
bility from a state %0 „&K') to a state +0 „(K"-'' is
given by

4nrne'I (o)„„)
(K', s') (K,s)~

m +lm+
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dk, dks@p„„(x' ")P„„(k,)@p „(x', (17)

where ao is the lattice constant and E=uo ' is the
number of atoms per unit volume. In deriving (21)
the dependence of the momentum matrix element on
wave vector and factors of the order of magnitude of
unity have been neglected. It can be shown that the
order of magnitude of the result is unaGected by the
inclusion of the wave vector dependence of the momen-
tum matrix element unless the transition is forbidden
at the center of the zone. The integration reduces to an
integral over the exciton wave packet. Hence the result
expected qualitatively is obtained by the somewhat
more quantitative treatment. If the exciton is tightly
bound, having a radius of the order of magnitude of
the lattice constant, the absorption coefficient is the
same as that for a collection of free atoms. Hence, when
the binding is such that the atomic orbital approxima-
tion given in reference 3 is the more correct treatment
of the problem, the eGective-mass calculation of the
transition probability has the correct limiting value.

err. DISCUSSiom

In the observations of exciton lines cited in reference
1, accurate determinations of the absorption coeScients
have not been made. However, one wouM expect
theoretically to have the absorption coeQicient for
excitons (bound with about 0.01 ev) decreased by
about 6ve orders of magnitude over the absorption
coeS.cient for a collection of free atoms. This value is
not inconsistent with the experimental results. The
possibility of using careful absorption coeKcient meas-
urements to identify the source of the absorption lines
should be emphasized.

The exciton lifetime should also be about 6ve orders
of magnitude longer than the lifetime of an excited
atomic state, 10 ' sec.

A way of viewing this decrease in absorption coefB-
cient is that a large exciton wave function in space
implies a sharply defined exciton in wave vector space,
and hence the excitation of only a very few Bloch
functions will be effective in exciton formation.

The creation of excitons in excited states has a
smaller transition probability owing to the increased
wave packet size associated with such an exciton state.
For a hydrogenic exciton the transition probability falls
oG as e &, where e is the principal quantum number of
the exciton. One has the further selection rule that
only J= 1 states may be excited by photon absorption.
The possible spin states for a simple hydrogenic exciton
are S=O, 1; hence only I.=O, 1 orbital states can be
observed by optical transitions.
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