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New Collision Theory of Cathode Sputtering of Metals at Low Ion Energies
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Cathode sputtering is conceived as being produced by purely mechanical collisions between the impinging
ions and surface atoms of the target. Energy is lost during the collisions by excitation of Debye waves in
the lattice. The collisions are assumed to occur as between perfectly elastic spheres with radii determined
by the largest closed electronic shells of the ion and the target atom. Only upper surface atoms of the target
can be sputtered; the ejection requires that the momentum transferred to an upper surface atom have
a component in normal outward direction and the transferred energy be larger than its binding energy
to the lattice, which is assumed to equal the heat of vaporization. With the introduction of a dissipation
coeKcient, which determines the energy loss during the collision, formulas for the threshold energies at
oblique and normal ion incidence and a sputtering rate formula for normal ion incidence at low ion energy
have been derived. Experimental data on sputtering are in agreement with the derived formulas. From the
derivation of the sputtering rate formula it can be concluded that the threshold energies must be roughly
proportional to the squares of the collision radii of the target atoms. This implies a periodicity of the thresh-
old energies within the periods of the periodic system, which has been evidenced by plotting experimental
data on threshold energies for 26 metals versls atomic number.

1. INTRODUCTION equal, are much too high and do not agree with the
experimental results.

Sputtering rate formulas, derived from a purely
mechanical collision concept, do not exist in the
literature.

HE newer experimental results on cathode sput-
tering such as phenomena at oblique ion inci-

dence, data on threshold energies, and deposit patterns
from sputtering single-crystal planes, as obtained by
Wehner, ' 4 are generally strongly in favor of the impulse
transfer concept, as initiated by Stark' and developed
by Kingdon and Langmuir. ' However, a detailed theory
treating all the phenomena observed at low ion energy
with the same basic principle has not yet been devel-
oped. Kingdon and Langmuir' assumed that "two
successive impacts on the same thorium atom of a
thoriated tungsten filament are necessary for sputtering;
the first impact depresses the atom from the surface,
while at the second impact the ion is reQected from this
depressed atom and knocks oG one of the surrounding
thorium atoms, " provided the energy transferred in
this last collision "is greater than the atomic heat of
vaporization. " For a first approximation the collisions
are treated by these authors as perfectly elastic head-on
collisions between a free ion with mass m and a free
atom with mass M at rest before the collision. The
momentum and energy equations for the two consecu-
tive collisions led to the formula

2. BASIC FEATURES OF THE NEW COLLISION
THEORY

(m+M)' (no+ M)'
~min ~8298X X

m3II (m —3II)'

where AH298 is the heat of vaporization at 298' K in ev
and E; the threshold energy in ev. The values of
E; from this formula, if m and M are approximately
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Stark, Z. Electrochem. 15, 509 (1909).
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In single-crystal or polycrystalline metal surfaces,
regardless of the lattice orientation of the crystal plane
or of the individual grains, there are always "upper"
surface atoms in an outermost plane, designated by MU
in Fig. 1, and "lower" surface atoms in a parallel 6rst
or even second lower plane, designated by ML, in Fig. 1.
These surface atoms are equally accessible to the
perpendicularly impinging ions of mass m, if the
assumption is made that the effective collision spheres
are the largest closed electronic shells of ion and target
atom, thus being considerably smaller than their atomic
or even ionic radii. With this assumption in mind, the
final step in each sputtering process at any angle of
incidence of the ion can be generally described as a
collision of the ion with an upper surface atom, in
which this atom is hit on its inside hemisphere, so as to
obtain an impulse with a component in the direction of
the outward normal to the surface. If the energy
transferred in this direction to this target atom by the
impact of the ion is equal to or greater than the heat
of vaporization, with which the atom is assumed to be
bound to the crystal lattice plane, then this atom is
ejected in the collision.

Sputtering by a direct single collision of the ion with
the inside hemisphere of an upper atom is possible only
when the ion hits the surface at an oblique angle of
incidence LFig. 1(a)]. For normal ion incidence, sput-
tering is produced mostly by a double collision of the
ion LFig. 1(b)]; the ion collides first with a lower
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FIG. 1. Diff'erent kinds of collision mechanisms in sputtering phenomena.

surface atom and then rebounds and hits an upper
surface atom in a second collision on its inside hemi-
sphere. However, from experiments on sputtering of
certain single-crystal planes, triple-collision sputtering
must also be assumed to occur at normal ion incidence
[Fig. 1(c)].In this case the incident ion is deflected in
a first collision with a target atom before it hits a lower
surface atom lying perpendicularly under an upper
surface atom; in this second collision it rebounds in the
direction of the outward normal against the upper atom
which is ejected in this third collision.

The collision of the closed shells of ion and target
atom may be taken as purely elastic, since the ion
velocity is much slower than the velocity of the slowest
orbital electron. '

Energy losses are due to the fact that the target atom
is coupled rather strongly with the atoms of the lattice.
Before the moment of highest compression is reached,
the ion and the struck atom exchange energy with the
neighboring atoms of the lattice. Debye waves are thus
excited and dissipated irreversibly into the lattice. The
situation is thus similar to that which occurs in the
collisions of knocked-on atoms in the theory of radiation
damage. '

3. MATHEMATICAL TREATMENT OF
SPUTTERING COLLISIONS

It will be assumed that the collisions described can
be treated with the general principles of classical
mechanics, using impulsive forces, in a manner similar
to the well-known collisions with restitution. '

Two spheres colliding head-on may have the masses

VN. Bohr, Kgl. Danske Videnskab. Selskab, Biol. Medd. 18,
No. 8 (1948).

F. Seitz and J. S. Koehler, in SoHd State Physics edited by
F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1956),
pp. 305—448.

Reference books on collisions with restitution: E. H. Smart,
Advanced Dynamics (MacMillan and Company, London, 1951),
Vol. 1, p. 165; W. D. MacMillan, Dynamics of Rigid Bodies
(McGraw-Hill Book Company, Inc. , New York, 1946), p. 290;
E. F. Routh, A Treatese oe Dyeavsscs of a Partscle (G. E. Stechert
R Company, New York, 1898), p. 36.

the relation
mv p+M Vp mv, +M U„——

R=m(vp —vt) = —M(VII —Ut),

(3 1)

(3.2)

expressing the principle of action and reaction of equal
magnitude, defines a quantity E which is sometimes
called the whole "blow" (Smart') or whole "action"
(Routh') between the spheres. From the two Eqs. (3.2),
R can be determined as N

mM
R= P(vp —vt) —(Vp —Vt)$.

m+M
(3.3)

The impulse of compression Ep is de6ned as the impulse
acting from the instant of contact of the two spheres
to the instant at which the centers of the spheres are
closest to each other, which is the moment of greatest
compression, i.e., up to the instant when the relative
velocity of the spheres is zero, and thus v~= V~. The
impulse of compression Rp is therefore, from (3.3),

Ro= (vo—Uo).
m+M

(3.4)

For the sputtering collisions of ions and target
atoms as described above, the impulse Ep up to the
moment of highest compression of the closed shells,
consists of two parts, the impulse E~ used up for the
excited Debye waves and the compression impulse R,
for the closed shells.

If a coefficient 8 is introduced, so that

E,=SRp, 0&8& 1, (3.5)

the impulse used up in Debye waves would be

Rd ——RII(1—5). (3.6)

m and M, the velocities vp and Vp, respectively, before
the collision, and the velocities v& and V&, respectively,
after the collision.

From the equation of conservation of momentum,
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Ug —vg
———8(Uo —vo) (3.8)

is obtained from (3.3), (3.4), and (3.7), which together
with Eq. (3.1) is sufhcient to determine the velocities
e~ and V~ of the collision spheres after the collision.
The result for the head-on collisions considered above is

m —8M M (1+8)
V0+ Vp,

m+M m+M

m(1+8) M—8m
Vi —— Vo+ Uo.

m+M m+M

(3.9)

These equations are formally the same as the well-
known equations for collisions with restitution, with
the coeS.cient of restitution e replaced by the dissipation
coeKcient 8.

Since 5 is connected with the excitation of Debye
waves, it may be that 8 is diGerent for diGerent ions
and target atoms and for diGerent crystallographic
structures. It may also be that 8 is somewhat diferent
for sputtering with normal or with oblique ion incidence
to the surface. This will be discussed later.

Equation (3.9) considers only head-on collisions for
particles m and M which can move freely after the
collision. If an upper surface atom is hit by the ion with
a momentum component in the normal outward direc-
tion of the crystal, then this surface atom can move
freely and thus can be ejected from the surface, provided
the impulse is high enough to overcome the binding
forces. Thus, for sputtering with oblique ion incidence,
no other assumptions are necessary to derive the
formulas for the threshold energies.

However, if the ion hits a lower surface atom the
impulse is ahvays directed inward to the bulk of the
crystal. Thus a struck lower surface atom will immedi-
ately hit neighbors in the lattice lying in that direction,
especially if the direction of the impulse is near to a
close-packed direction. The struck atom is thereby
stopped in its further movement into the lattice. The
ion follows the path of the struck, atom according to
Eq. (3.9), if m —8M) 0, and will immediately collide
again with th.e struck atom. But the closed shell of
this atom is now in close contact with the closed shells

The coe%cient 8 is an indirect measure of the energy
dissipation in the form of Debye waves during the
collision and may be called the "dissipation" or "lattice
interaction" coeKcient. The larger 8 is, the smaller is
the energy lost in the form of Debye waves.

The whole blow R would therefore consist of the
impulse lost in Debye waves R&, the compression
impulse R„and the impulse of expansion R. of the
closed shells. Since these are perfectly elastic, R,=R„
so that R is now given by

R =Rg+R,+R,=Ro(1+8). (3.7)

Since (3.3) is also valid in this collision case, the
equation

of its neighbors so that the target atom together with
these neighbors acts like a solid wall. The result is that
the ion rebounds even if the masses m and 3f do not
obey the condition m —8M &0.

The interference of the lattice neighbors in the
collisions of the ion with lower surface atoms is taken
into account by the additional assumption that for
these collisions the mass of the struck lower atom is
much greater than the mass M of the target element.
tA'ith the introduction of this assumption, m«3f, the
threshold energies for sputtering at normal ion incidence
on the crystal surface can easily be derived.

4. CATHODE SPUTTERING AT OBLIQUE
ION INCIDENCE

Wehner' demonstrated the effect of obliquely incident
ions, first discovered by Fetz," by sputtering a thin
metal strip in a plasma of high density and low gas
pressure and by catching the deposits on a glass cylinder
surrounding the strip symmetrically. He proved, by
covering one side of the specimen along one edge with
Aquadag, that the four spots on the glass cylinder were
produced by a small seam along the edges of the thin
target strip. Here the ion sheath surrounding the target
follows the contours around the edges of the specimen
and causes oblique incidence of the ions on the target,
while the ions in the center part of the ion sheath hit
the target surface in the perpendicular direction. The
upper left spot disappeared after the right upper edge
was covered with Aquadag. The ejections of the surface
atoms by obliquely incident ions occur in directions
oblique to the surface LFig. 1(a)) but on the other side
of the normal to the incidence plane and at a consider-
ably lower ion energy than the threshold energy of the
target for normal ion incidence. It is further remarkable
that the angular areas of the spots become larger with
increasing ion energy.

4.1. Single Collision Sputtering at Oblique
Ion Incidence

These interesting phenomena connected with oblique
ion incidence can easily be explained in all details by
applying the concepts developed above to a single
collision between the impinging ion and an upper
surface atom.

The plane of the drawing in Fig. 2 is the plane of
incidence of the ion m impinging in an oblique direction
on the {'110) plane of a face-centered cubic single
crystal. The upper surface atoms M~, M2, and M3 lie
along the (100) direction, so that the separation s
between these atoms is equal to the lattice constant a.
Two atoms are indicated in the first lower plane, one
of these being labeled Ml, , in the second lower plane
three atoms are also shown in the drawing. The collision
radius c~ of the target atoms and the separations s
from each other are chosen proportional to an assumed

'0 H. Fetz, Z. Physik 119, 590 (1942).
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FIG. 2. Oblique ion incidence on an fcc {110}surface. The
surface row of atoms lies in the (100) direction. The upper
surface atom 3/II is sputtered in a direct oblique collision if the
ion m hits 2lf1 at certain contact points of its inside hemisphere
with sufhcient energy to overcome the binding forces of MI to
the lattice.

value of the collision radius for Cu of c~=0.68 A, as
justi6ed in Sec. 8, and the lattice constant a=3.608 A
for Cu. The collision radius c of the ion m is assumed
to be the same as c~.

Kith these assumed values it can be seen from Fig. 2
that the collision sphere of the ion m, when impinging
in the direction EI' as drawn, can hit the collision
sphere of the upper surface atom M» with the angle of
incidence i directly on its inside half without being
disturbed by the atom 353 or by the lower atoms 351,,
which do not lie in the plane of the drawing. Other
contact points between the two collision spheres and
other angles of incidence are possible and will be
discussed later.

The collision in Fig. 2 is treated as an oblique collision
between two perfectly elastic smooth spheres m and 3f
with energy loss during the collision in the form of
Debye waves as explained above, when introducing
the dissipation coeKcient 8. The sphere m has the
initial velocity vp and M is assumed to be at rest before
collision, thus Vp=0.

If i is the angle of incidence, i.e., the angle between
the direction of m before the collision and the center
line between m and M at the moment of contact, then
M is moving in the direction of this center line after
the collision, because the tangential components of the
velocities and m and 3f are not changed in the collision;
thus v»|, = op~ and U»~= Up~=0. Therefore momentum is
transferred only in the direction of the normal compo-
nent of vp, which is vp„=up cosi and has the direction
of the center line. Thus the velocity V» of the target.
atom M is given from Eq. (3.9) by

m(1+ &)

rrs+M
vp cosz. (4 1)

4.2. Threshold Energy Formula for
Single-Collision Sputtering

If y is the angle of this center line with the normal
to the surface, then the' momentum component of M»
in the normal direction outward to the surface is

P=MV»cosp, from which the energy transferred in
this direction is P'/2M. If this energy is equal to or
greater than the heat of vaporization hH~~~ with which
the atom Mt in the crystal plane (hkl) is bound to the
lattice, and which acts perpendicularly inward, then
the atom 3f» will be sputtered. The heat of vaporization
DHss~ is different in different planes (hkl) and can be
estimated from the available values AB298 for the
different planes from the number of nearest neighbors
given by the system, as will be shown below under 5.4.2.

The minimum ion energy E;„=-',map' necessary to
produce sputtering and defined as the threshold energy,
is the energy for which the equation —', MV»'cos'p
=AHss~ holds with the value of Vt from Eq. (4.1).
The threshold energy at oblique ion incidence is there-
fore given by the equation

Emin
(m+M)'

X~&sstX . (4.2)
mM (1+5)' cos'y c os is

Only a single collision of the impinging ion with an
upper surface atom is involved in this formula. The
angle y determines the contact point of the ion on the
lower half of the atom 3f», and may be called "contact
angle" for brevity. Different contact angles can lead to
sputtering. For each of these angles y, the threshold
energy E;„depends also on the incidence angle i, the
lowest value of E; occurring for the smallest angle i,
as seen from Eq. (4.2). The minimum value of the angle
i is determined by the position of the atom to be
sputtered in relation to the lattice neighbors in the
incidence direction of the ion. Assuming, for instance,
that the surface of the grain at which oblique ion
incidence occurs is a (110) crystal plane, then the
incident plane of the ion, which is perpendicular to the
surface, can cut the (110) area of an elementary cube
in diGerent directions according to the orientation of
the grain. Considering the main directions in the
elementary area only, the rows of upper surface atoms
have the separation s=-,'a&2 for the (110),s=a for the
(100), s=-', a+6 for the (211), and s= w3 for the (111)
direction. In Fig. 2 the {110)plane of a face-centered
cubic crystal is drawn with the incidence plane of the
ion m in the (110) direction, the separation of the
upper surface atoms M», M2, and M3 thus being s=a.
The drawing is also representative for multiples of u
for s, which show up when atoms of this upper row
have been sputtered. For the smallest separation
s=-,'aV2, occurring in the (110) direction of the {110)
surface, the situation is different. The ion m cannot
come in contact with the lower half of the collision
sphere c&& at any angle of incidence, because in this
case s&2c~.

As seen immediately from Fig. 2, the smallest angle
of incidence i for each contact angle on the collision
sphere c~ is the one at which the ion m can just freely
pass the neighbor (atom Ms) on the incidence side.



COLL I SION THEORY OF CATHODE SPUTTERI NG 741

cos (y+i) = —(c„/s) (1+sini) (4.3)

4.3. Plots of the Minimum Threshold Energies for
Different Contact Angles and, Surface

Atom Seyarations

In order to calculate the lowest possible threshold
energies for each angle y, the smallest angle i, as drawn
in Fig. 2, must be taken for each s. In this case the
relation

300

250

s = a'Its

Cp = 1.36

s =-'C
2

Cp= 136

! C~=1.36A

I

!-s-a
Cp = 1.224A

I

S

can easily be derived from the triangles OI'Q and QRS
in Fig. 2, where c„=c +c~. With the aid of Eqs. (4.2)
and (4.3) the minimum threshold energies can be
calculated and plotted as a function of y for diferent s,
if the value for the coeKcient of dissipation 8 and the
heat of vaporization Attn in the (110) plane for Cu
are known. It is shown under 5.4.2 that the heat of
vaporization can be assumed to be AH~~0=0. 6356II298,
and from the later-calculated threshold energies for
perpendicular ion incidence it can be seen that a value
of 8=0.54 would be in agreement with experimental
data on the threshold energy of Cu for normal ion
incidence.

Since the angle between the ejection direction of the
sputtered atom and the surface normal is the same as
the contact angle y, it is also possible to determine the
maximum and minimum direction angles in which
surface atoms can be expected to be ejected at oblique
ion incidence. These limiting angles y, and y;„can
be read from the triangles TOP and Tt/'S' in Fig.
2, and are determined by cosy, =c„/s (4.4) and
sin&; = (2'„/s) (4.5). Since p;„ is determined by
the tangent between the c„spheres of M3 and M~, or
as drawn between M~ and M~, this minimum cannot
really be reached, because of cosi= 0, thus making E;„
from Eq. (4.2) infinite. At 7, the sputtered atoms can
freely pass the nearest neighbor M2 on the ejection side.

In Fig. 3 some curves of the threshold energies E;„,
calculated with the data for Cu as mentioned above,
are plotted eersls the contact angle y for diferent
separations s of various atom rows in a (110} face-
centered cubic plane. The minimum threshold energies
are considerable lower for the larger separations than
for the sma, lier ones. The inQuence of the sum of the
collision radii c„of the ion and the target atom is also
shown in the two curves for s=a. This factor is im-
portant only for smaller s. The curve with the largest
value of s=50u is drawn to demonstrate that the
decrease of the lowest values of E;„for a stil'l larger s
is very small.

The results are similar for other crystal planes and
surface atom rows in other directions.

4.4. Comparison of the Results with
Experimental Data

The surprising observation of Wehner' that at oblique
ion incidence the atoms of the target are- ejected in a
direction away from the direction of the incident ions
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Fia. 3. Threshold energies at oblique ion incidence, plotted as
a function of the ejection angles y against the surface normal of a
(110l fcc plane for different separations s oi upper surface atoms
in the incidence plane of the ion. c„ is the sum of the collision
radii c and c~ of the ion m and the target atom M, respectively.

is self-explanatory from the assumed mechanism that
the surface atom to be ejected must be hit on its inside
half by the ion. Since the impulse transferred from the
ion to the upper surface atom in the collision has the
direction of the center line of the two particles at the
moment of contact, the direction of the sputtered atom
must be away from the incidence direction of the ion.

The explanation for the threshold energy being
considerably lower than for sputtering at normal inci-
dence, is given by the curves in Fig. 3, which are
calculated for a (110}plane of Cu. As soon as sputtering
has started and atoms have been ejected, the separation
of the atoms in the rows becomes greater —for instance,
2u, 3a, or even larger in the (100) direction or 2u/3
and 4aV3 in the (111) direction of the {110}plane.
As seen from the curves for these values in Fig. 3, the
threshold energy for Cu at certain angles can be as
low as 25 to 30 ev. This is considerably lower than the
threshold energy for Cu at normal ion incidence, which
is between 50 and 70 ev, as measured by Wehner. '

A third important experimental fact, reported by



ER I CH B. HENSCHKE

OFPOSITS'

QLASS CY TARGE'T STRIP

Fro. 4. Locations of the deposits on the cylindrical collector
around the target in experiments with 30 and 40 ev as taken from
the curves of Fig. 3.

Wehner, ' concerns the increase of the angular area of
the deposits towards the normal direction to the surface
(smaller contact angle y), when increasing the ion
energy and keeping the ion sheath thickness constant.
In this case the two separate spots on the glass cylinder,
originating from one side of the target sheet, are
brought closer and closer together. This fact can
immediately be derived from the curves in Fig. 3. For
a certain ion energy, for instance 100 ev, the contact
angles y belonging to the part of the curve below the
100-ev ordinate, are favorable for sputtering. If a
certain mean value of s is assumed, then the angular
area of y in the curve belonging to s is seen to increase
from a small area at the minimum threshold energy to
the largest area at the assumed 100-ev ordinate. This
means, since y is measured from the surface normal to
the spot, that the deposits lying symmetrically to the
normal are brought closer and closer together. This
explains satisfactorily the observations of Wehner. '

However, as seen from the curves, there is also a
smaller increase of the angular area of y towards larger
angles up to the limiting angle y,„=80 degrees,
approximately. On the other hand, the curve drawn
for the very large separation s=50u, shows that an
angular area close to the surface normal of about &10
degrees cannot be reached by sputtered atoms, even at
ion energies of 300 ev, if only oblique ion incidence is
considered.

The real reason that the deposits merge together at
higher ion energy to form only one extended spot on
each side of the metal strip, as observed by Wehner, '
is the fact that, at 50 to 70 ev for Cu, sputtering
already occurs from ions hitting the center parts of the
metal strip in the normal direction of incidence and
ejecting atoms in the direction normal to the surface.
This may be responsible for filling up the region around
the surface normal on the glass cylinder.

The angular areas of the contact angle y, for the ion
energies 30 ev and 40 ev, taken from the second largest
curve in Fig. 3, are drawn in Fig. 4 on the glass cylinder
on which deposits are collected from a metal strip

placed symmetrically in the center of the cylinder. A
comparison of Fig. 4 with the photographs of the spots
in Wehner's paper, ' in which the length of the photo-
graphs is very close to half the inner circumference of
the cylinder, reveals that the calculated area of the
deposits is in excellent agreement with the experimental
data.

S. CATHODE SPUTTERING AT PERPENDICULAR
ION INCIDENCE

Exclusively perpendicular ion incidence can be
assumed if the target is a cylinder with a sufficiently
large diameter. Wehner' used such cylindrical targets
in the measurements of the threshold energies of 26
metals with Hg-ions at normal ion incidence.

To explain the sputtering phenomena at perpendic-
ular ion incidence, it must be assumed that collisions
leading to sputtering are multiple collisions of the ion
with surface atoms, in which the direction of the ion is
reversed so that in the final collision an upper surface
atom can be hit on its inside half. The simplest assump-
tion is that the ion collides first with a lower surface
atom which, when hit at a certain contact point of its
collision sphere, causes the ion to rebound in such a
direction that an upper surface atom is hit on its inside
half in this second collision. A certain energy loss in the
form of excited Debye waves is involved in the first
collision as explained in Sec. 3. An atom will be ejected
in the second collision only if the remaining energy of
the ion is large enough to transfer a momentum compo-
nent to the upper atom in a normal outward direction
with an energy equal to or greater than the binding
energy of this atom to the crystal plane, which is
assumed to equal the heat of vaporization.

5.1. General Threshold Energy Formula
for Normal Ion incidence

The theory of sputtering collisions with energy dissi-
pation as developed in Sec. 3 oGers a simple way to
arrive at a formula for the threshold energy, when
applied, according to the concepts developed above, to
the two consecutive collisions of the ion (mass m): the
6rst collision with a lower target atom and after
rebound the second one with an upper target atom
(mass 3II). Both kinds of particles are considered as
perfectly elastic spheres while the energy loss is deter-
mined by the coefticient of dissipation 8. In Fig. 5(a) a
unit area of a face-centered cubic (110) plane is repre-
sented in a top view. Figure 5(b) shows the plane A —1

perpendicular to the (110) surface with the upper
surface atoms MU, Mp~ and the lower one Ml. . The
radii of the collision spheres of the ion and the target
atoms may be c and c~, respectively; the angle o,

between the surface normal and the center line of the
atoms MU and Ml, is equal to 60 degrees in this case.
Two possible collisions of the ions m and m' as indicated
in the drawing are produced by diferent angles of
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incidence i~ on the lower atom M~. The ion m rebounds
at. the reQection angle r~ and hits the atom Mp at a
contact point on its collision sphere determined by the
angle y, which is the angle between the surface normal
and the center line of the particles at the moment of
contact. The angle of incidence in this second collision
is 22. Since the angles of incidence for the ions are
chosen arbitrarily, the collisions involved are in general
oblique collisions; only the second collision of the ion
m' is a head-on collision with i2 ——0.

For an oblique collision between two smooth per-
fectly elastic spheres nz and M with an assumed coe%-
cient of dissipation 8 and with the velocities vp and Vp

before the collision, the velocities e & and V ~ of the
particles after the collision are determined by the
condition of smoothness which requires the fol lowing
equations for the tangential components of the veloci-
ties: ~1t =~p5 and V1g

= Vpg. For the normal components
tt, „and U&„ the equations for head-on collision (3.9)
apply; thus,

m —5M M(1jb)
&&n = tp + Vp

m+M m+M

m (1+5) M—5m
Vg„= &pe+ Vp

(5.1)

(5.2)

while the velocity V~, acquired by the atom M in this
collision, is

m(1+ S)
Uy = 'v p cosz.

m+M
(5 4)

Kith these formulas the problem of double collisions
at normal ion incidence can be solved immediately. In
the first collision of the ion m, the lower surface atom
Mr in Fig. 5(b) is hit at the incidence angle i~, the ion
then rebounds at the angle of reQection r ~ against the
atom 3f& which is hit in an oblique collision with the
incidence angle i2. Since the lower surface atom M ~ is
not freely movable as explained under 3, the condition
m((M must be applied to Eq. (5.3) for this collision.
This leads to the equation for the velocity e& of m after
the collision:

'DP= vp L1—(1—8 ) cos sy]. (5.5)

In the second collision the velocity V2 of the atom
Mg after the collision is of interest. Substituting v~, U2,
and is for 'vp Vy, and i, respectively, in Eq. (5.4), Vs

The target atom M is always assumed to be at rest
before the collision; thus Vp„=0. Since the components
of vp at the incidence angle i are vp„= ep cosi and
up~ = vp sini, the velocity v~ of the ion m after the collision
is given by
~1 ~1m +alt

2m M (1+6)+M' (1—5')
= Vp 1— cos'i, (5.3)

(m+M)'

becomes
m (1+&)

m+M
v 1 cos22 ~ (5.6)

Since the angle between the surface normal and the
center line of ns and M~ at the moment of contact is
the normal component of the momentum transferred
to M~ in this collision is E=M V2 cosy; thus the
energy acquired by Mrr is correspondingly (E'/2M)
= -,' (MVss) cos'r. The atom Mrr is subject to binding
forces, determined by the attractive forces of its
neighbors in the lattice, acting in the normal inwards
direction and generally assumed to be equal to the
heat of vaporization AB~~ ~ in this lattice plane. Thus,
only if the energy transferred .to 3fU in the collision is
equal to or greater than AB~~ ~, can the atom 3fg be
removed from the surface. If 8;„is the lowest primary
energy at which this happens and is thus equal to ~ mop',

this leads with the aid of Eqs. (5.5) and (5.6) to the
following formula

(m+ M) '
&min = X~IIaa i

rnM
1

X . (5.7)
(1+8)' cos'y cos'is(1 —(1—8') cos'it)

This is the general equation for the threshold energy
at normal ion incidence under the assumed double-
collision mechanism.

5.2. Discussion of the General Threshold Energy
Formula for Normal Ion Incidence

m'
o

Ill

Mu

FIG. 5. (a) Top view of the unit area of a (110) fcc single-crystal
plane. (b) Double collision sputtering in the plane A —A perpen-
dicular to the (110) fcc plane of Fig. 5(a). The ion m hits the
lower atom 3fI, rebounds against the upper atom 3EI~, and ejects
3fz if the energy of m is high enough to overcome the binding
forces of Mg to the lattice.

From Fig. 5 (b) it can be immediately seen that the
angles r, it, and is occurring in formula (5.7) are
dependent on the sizes of the collision radii c and c~,
the separation between the atoms M~ and M~, and the
angle n between the surface normal and the center line
of 3f~ and 3f~. The separation M~ —M~ and the angle
n are determined by the lattice constant a, the crystal
system, and the plane under investigation. Because of
the present lack of the required data for the coeScient
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35

55

value of 8 from the quadratic equation resulting from
(5.8) and (5.9), with the solution

1+6 (1+8)s
tanit= — +

2 tann 4 tan'n
(5.10)

20

E
~15

5
He Ne A Xe

Xe
Hg ~Hg

A5

E
-407'

35

since only the positive sign of the square root has
physical significance.

Since in this case Eq. (5.6) holds with is=0 and
y=n, the general threshold energy formula (5.7) is
reduced for the special "n-collision" to

I

25 50 75 100 125 150 175 200 225~M
(m+M)'

~min= X~HIII, k l

FIG. 6. Plot of the mass factor g(mal) = (m+M) /mM ss atomic
weight of the target atoms M for diferent ions m.

of dissipation and for the collision radii, a general
solution has not been carried out.

In order to check the approximation, as developed
in the next paragraph, some values have been calculated
with the data applying to Al; the collision radii were
taken equal to the ion size of Al for both the target
atom and the impinging ion; the separation between
the atom 3f~ and HEI, was taken according to the fcc
lattice with a=4.04 A, and the coefficient of dissipation
was chosen with 8=0.5. The result was that the lowest
threshold energy occurs between 35 and 42 degrees of
the incidence angle i2, and the minimum threshold
energy as calculated from Eq. (5.7) is only 12% lower
than the threshold energy calculated from the simplified
formula (5.11) under 5.3. Since the available data on
threshold energies as seen from the table of Wehner'
have considerably larger fluctuations, the simplified
formula for the threshoM energies as derived below is
well able to lead to values in agreement with the experi-
mental data.

5.4. Discussion of the Simplified ThreshoM Energy
Formula for Normal Ion Incidence

Equation (5.11) may be rewritten in the form

E; =g(rNM)Avast f(nest)ti),

with the mass factor

g(m, M) = (rrt+M)'/mM
and the factor

(5.12)

(5.13)

X (5.11)
(1+$)' cos'nL1 —(1.—P) cos'it j

where i1 is determined by Eq. (5.10) for each a and 8.
For any low-index crystal plane (hkt), the angle o. can
easily be calculated from the crystal system. The heat
of vaporization AH~~g in this plane can be determined
for the target material from the value AH298, as shown
below. Thus, if a reasonable assumption is made for
the coeS.cient of dissipation, for instance 8=0.5, the
calculations of the threshold energies for diBerent target
metals and ions can be carried out with Eq. (5.11).

tani& ——8 tanr~, (5.9)

so that i~ can be calculated for each angle a and each

5.3. Simyli6ed Threshold Energy Formula
at Normal Ion Incidence

To simplify the calculation, only one special collision
is taken into account, namely the one for which

(5.8)

where n is the angle between the surface normal and
the center line of the lower and the upper surface atom
involved in the collision, as indicated in Fig. 5(b). This
condition corresponds to the case in which the lower
atom Sf', is replaced by a plane at the center of the
lower atom with an angle of inclination i~ of its normal
from the surface normal and the ion m impinges on
this plane in a perpendicular direction to the surface. In
this case the angles i~ and r& are connected with each
other by the equation

f(o'as1, ~) = (5.14)
(1+8)' cossnst1L1 —(1—5') cos'i)

where the index (hhl) indicates that the angle cr is
diferent for diferent low-index crystal planes, and the
only angle of incidence involved in (5.11) is now labelled

5.4.1. Mass Factor g(m, M)

This factor has been plotted in Fig. 6 as a function
of the target mass 3f for diferent ions such as He, Ne,
A, Kr, Xe, and Hg. If the coeNcient of dissipation 5

were the same for diferent combinations of ions with
the same target element, then the threshold energy
values for other ions would only depend on this mass
factor g(m, M), since the factors f and ~ss1 are then
the same for each ion-target element combination.
Thus, the threshold energies could be immediately
predicted for other ions from the values for Hg ions
with the aid of plots of g(te, M) in Fig. 6. However, the
permissibility of such a procedure is questionable at
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the present time, since no measurements of threshold
energies with ions other than Hg, with the same
precautions, are known in the literature. On the other
hand, much mort: refined measurements of the threshold
energies are probably necessary to decide whether or
not the coefficient of dissipation is the same for each
ion-target combination.

5.4.Z. Heat of Vaporizatiort AHhkl

l00
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(( ~)» &"hkl n&igkl'"' "
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(IIO) I 72 49 45

(III)
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298 cfr 470432

Values of the heat of vaporization for special single
crystal planes (Itkt) are not known in the literature.
The only known are the average values AB»8 for
polycrystalline materials at 298'K (Quilii') giving the
heat in kilocalories to vaporize one mole of the material.

In a low-index single crystal plane (hkt) the binding
energy lt hkl of an upper atom to the bulk can be assumed
in a first approximation to be proportional to the
number of nearest neighbors. To obtain a rough esti-
mation of hH~~~ from AH298, the unit area of a poly-
crystalline surface is assumed to be composed exclu-
sively of equal areas of the {100},{110},and {111)
crystal planes. The total surface energy of a unit
area of this surface would then be given by the aver-
age (+hklvtvhkl)A 8 P 1004100++110vtv110++111$111)
&100, &»0, »d F111 are the numbers of upper surface
atoms per unit area in the corresponding low-index
planes.

The ratio AH~A, ~. AH298 is then equal to the ratio of
the product NhklrlAhkl to the average (1Vhklvtlhkl)A„.

This leads to the equation

»hk14hk 1

~HI W= ~H298X
(it hklg4kl)Av

(5.15)

which can be easily evaluated for the low-index planes
in different crystal systems. Considering only the
nearest neighbors, for instance, the resulting values are
as follows:

for bcc systems: for fcc systems:

~H100 0 81~H298p ~H100 1 03~H298y

~H110= 1.726H298, AH110= 0.6356H298,

~H111 0 47~H298y ~H111 1.33~~H298 ~

(5.16)

If nearest and second nearest neighbors are considered,
the numbers would be 0.93, 1.47, and 0.60, respectively,
for bcc systems and 1.13, 0.67, and 1.20, respectively,
for fcc systems. The assumption that the energy values
are proportional to the number of nearest neighbors
can be considered as a permissible approximation for
the metallic bond and is used in the calculations. As
could be expected, the values are higher in the most
densely populated planes such as {110)in bcc systems
and {111)in fcc systems.

"L.L. Quilj, The Chemgstry and Metallurgy of Miscellaneous
3faterials; Thermodynamics (McGraw-Hill Book Company, Inc. ,
New York, 1950), first edition, p. 26,
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5.5. Threshold Energies for Polycrystalline Target
Materials at Normal Ion Incidence

In the calculations of threshold energies for poly-
crystalline target materials without preferred orienta-
tions of the surface grains, an average value of the
function f(nhkl, b)tv Hhkl/DH298, taken over all the angles
occurring in the crystal system of the target, may be
chosen from Fig. 7 or Fig. 8 for the assumed value of
the coeKcient of dissipation b. If, however, preferred
orientations are present, for instance as in cold-rolled
fcc metal sheets where (110) orientation is prevailing,

.5 .6 .T .8 .9 I.O
J

Fio. 7. Plot of the function f(n,g) XthHhkl/thH299 for the lattice
angles 0. occurring in unit areas of low indices planes of bcc
crystals.

5.4.3. Factor f(nhki, b)

This factor, defined by Eq. (5.14), can be calculated
for the different angles 0,~1,~ occurring in the low-index
planes of different crystal systems. The results are
plotted in Fig. 7 and Fig. 8 for bcc and fcc systems,
respectively, multiplied for convenience by the factor
AHhkl/LLH298. Since the threshold energy in formula
(5.12) can be rewritten in the form

1 g(99tvtlf ) X ttH298+(&hkl)tl)+Hhkl/+H298 j& (5 17)

it can be readily calculated for each plane (hkl). The
value of g(rtg, M) can be taken from Fig. 6 for the ion-
target combination, the bracket value from Fig. 7 or
Fig. 8, and the heat of vaporization AH298 from the
tables and may be converted into ev. In this case the
threshold energy is obtained in ev, since the other two
factors are dimensionless.
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The widespread limits of the threshold energies in
Wehner's table' for some metals are due to the method
of evaluating the threshold energies from the sputtering
rate date. Refined methods of measuring the threshold
energies are probably necessary to determine to what
degree the coefficient of dissipation is different for
different targets sputtered with the same kind of ions,
or vice versa, for the same target atoms sputtered with
diGerent ions.

6. THRESHOLD ENERGY FORMULA FOR
TRIPLE-COLLISION SPUTTERING AT

NORMAL ION INCIDENCE

.8-.
6--

4- ~

(Ilo) 60o

(III)l9'28'

35ol6

IOO 45O

I I I I I

A .5 .6 .7 .8 .9 I.O

FIG. 8. Plot of the function f(n, S)

XEBEC&I/AHggg

for the lattice
angles a occurring in unit areas of low indices of fcc crystals.

then the value from Fig. 8 should be taken closer to the
angle n belonging to the (110) plane for which n=60'.

5.6. Agreement of the Simpli6ed Threshold Energy
Formula with Experimental Data

Wehner' determined experimentally the threshold
energies for 26 diGerent polycrystalline metals in Hg
gas discharge, using targets in the form of cylinders
with a suKciently large diameter to assure normal ion
incidence exclusively, and observing all the precautions
necessary to avoid back diGusion of the sputtered atoms
to the surface. If the threshold energy formula (5.12)
is applied to the seven bcc and ten fcc metals of his
table, and the values of g(gig, M) and average values of
f(nisi, fI)AHqsI/AHggs are taken from Figs. 6, 7, and 8,
respectively, for an assumed coeKcient of dissipation
8=0.5, then the resulting threshold energies for all
these metals are well in the ranges of the experi-
mental data.

This can be seen from Table I, in which the values
of the function f(nisi, fI)AHRI, I/AHggs are calculated for
the lower and upper limits of the threshold energies
determined by Wehner, ' and the corresponding values
for the coeKcient of dissipation 6 are read from Figs.
7 and 8, respectively. The values for bcc metals are
found to be between 8=0.5 and 8=0.63, while the
values for fcc metals are between 6=0.39 and 6=0.54,
indicating a higher energy loss by excitation of Debye
waves in fcc lattices compared with that in bcc lattjces,

TABLE I. CoefFicients of dissipation, calculated from threshold-
energy data on bcc and fcc metals sputtered with Hg-ions.

Sys- Ele- b Hg98
tern ment g (m, M) ev

+min
(Wehnera)

ev

j(a,b)

&Hfy~

AH298
Coef5cient of
dissipation 8

bcc V
Cr
Fe
Cb
Mo
Ta
W

6.18 5.2
6.11 3.68
5.84 4.2
4.70 7.6
4.56 6.75
4.08 8.7
4.01 8.75

120—130
60- 80
60- 70

120—130
80-100

120-140
80-100

3.75-4.06
2.68—3.56
2.44—2.84
3.39—3.68
2.6 —3.26
3.44-4.1
2.88—2.86

0.52 —0.50
0.57 -0.53
0.63 —0.57
0.55 -0.53
0.59 —0.54
0.54 -0.50
0.625—0.57

fcc Al 9.54
Ni 5.68
Cu 5.46
Rh 4.40
Pd 429
Ag 4.27
Pt 4.00
Au 4.00
Pb 4.00
Th 4.02

3.29 120—140
4.41 70—90
3.56 50- 70
6.0 70—80
4.05 50- 80
3.04 40- 50
5.86 70—90
3.94 40—50
2.02 20—40
6.5 120-140

3.8 -4.45
2.8 -3.6
2.5 -3.5
2.65—3.02
2.87—4.6
3.1 —3.86
3.0 —3.85
2.55—3.18
2.48—4.95
4.6 -4.35

0.45 —0.425
0.52 —0.48
0.53 -0.47
0.54 —0.50
0.51 —0.42
0.49 -0.46
0.50 —0.45
0.53 -0.49
0.54 —0.40
0.42 -0.39

a See reference 2.

'g E. B.Henschke, J. Appl. Phys. (to be published).

In studies of the spot patterns" of (110) fcc crystal
planes, it can be observed that already at relatively
low ion energies some of the upper surface atoms are
ejected in a direction normal to the crystal plane. These
produce a center spot in the spot patterns. An upper
atom, sputtered in the normal outward direction, must
have been hit by an ion at its lowest inside point-with a
suKciently large momentum component in the normal
outward direction. The fact that this center spot, at
somewhat higher ion energy than the threshold, is
more pronounced than the spots belonging to the
n directions in the unit areas, indicates that a special
mechanism is effective after some surface atoms have
been removed from the surface by the sputtering
process.

This mechanism may be described with the aid of
Fig. 9(a) and Fig. 9(b). The first drawing is a top view
of a {110}fcc single-crystal plane orientated in the
plane of the drawing so that one of the (111)directions
is vertical. The unit areas are rectangles, as seen in
this top view; sputtering occurs at low ion energy in
the directions of the diagonals of the unit areas, when
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one of the lower surface atoms MI, is hit by the perpen-
dicularly incident ion and rebounds against an upper
surface atom Mp, ejecting it from the surface in this
collision. If it is now assumed that the upper atoms
MU~, and M~2 have been sputtered by ions in collisions
with the lower atoms Ml. ~, and M1,2, respectively, then
a small furrow will have been generated in the surface
in the direction (211). It is now possible and equally
probably that an ion will hit a lower atom within this
furrow, for instance one of the atoms lying perpendic-
ularly under the atoms MU~, and MU2 in the second
lower plane, and rebound against the atom M1,2 to
eject it from the target. The angular conditions are the
same as in the unit area of the {110}surface, and the
energy required is only a little higher since, after MU&
and Mp2 have been sputtered, M1,2 has only nine nearest
neighbors and even only eight after M~4 has also been
ejected, while an upper atom in the unit area of a
{110}plane has seven nearest neighbors.

In Fig. 9(b) the perpendicular plane A —A in the
(211) direction of Fig. 9(a) is drawn. After the lower
surface atom M1,2 of this plane has been removed as
described, the intersection of the assumed electron
cloud of the surface atoms with the paper plane,
indicated by the curve co for the undisturbed surface,
is represented by the curve c&. If by the same mechanism
the atoms MU4, ML, 3, My, and M8 are also sputtered,
then the curve c~ indicates the intersection of the
electron cloud with the {111}plane of the drawing;
the cloud now follows the more extended side walls of
the furrow, which are built up of staggered {110}unit
areas, the planes of which intersect the surface plane
at an angle of 60', and their diagonals M6 —MI~ and
M~~ —M~0 lie in the plane of the drawing.

With the generation of these furrows in the surface,
which have been observed in a more developed state in
electron micrographs of sputtered {110}single crystal
planes of Ag at very low ion energy, a triple-collision
mechanism is involved which leads to the ejection of
upper atoms in the perpendicular direction to the
surface, if the ion energy is only a small amount higher
than the threshold energy for double-collision sputter-
ing. This is easily explainable, as follows, with the aid
of Fig. 9(b).

In the case of the smallest furrow (curve cr), an ion
m may hit the atom M« in the indicated direction, so
that it rebounds against the atom Ms and again re-
bounds against the upper surface atom M&3, ejecting
this atom in the direction of the arrow. If the curve c2
can be assumed to apply, then a second ion m' may hit
M] 0 and rebound against M9 and again against M6 in
the normal outward direction. The directions in which
the atoms Ms and M9 are hit by the ions m and re',
respectively, are perpendicular to the {110}unit areas,
which lie in the left side wall of the furrow; these two
atoms are lower surface atoms in these unit areas.

Thus formula (5.11) for a double collision at normal
ion incidence can be applied to the second and third

[zii] I!~~l

A

[a ii]
L5

12 I I]

(b)

Pro. 9. (a) Triple-collision sputtering: furrow generation in an
icc (110} single-crystal plane by consecutive sputtering of the
upper atoms MpI, 3fg2, and the lower surface atom ML, q. (b)
Triple-collision sputtering mechanism in the {111}plane A —A
perpendicular to Fig. 9(a). The ions m and m' eject the atoms
35&3 and M6, respectively, in the direction normal to the surface
after two preceding collisions with surface atoms of the furrow.

collisions of the ions mrs and m', impinging on a (110)
plane. If the erst collision of m with M«, and of m'

with M&0 is treated as a collision with an inclined plane
(incidence angle ir), then the velocity u, of the ion after
this 6rst collision is given by Eq. (5.5). In the appli-
cation of formula (5.11) to the second collision, us and
vI must now be replaced by ~~ and ~2 and the angle i j

by is with u& from Eq. (5.5). This gives the equation
for the threshold energy for the triple collision sputter-
1ng:

(m+3I)'
~min= X~II&,l )

X
(1jB) cos QL1 —(1 P) cos ssj$1 (1 —P) cos srj

(6 1)

Here n and AJIss~ have the same values (a=60' and
AHrrs ——0.6356Hsss) for the m' triple collision as used
in the double collision with the {110}plane, while
the value of 2H~A, ~ for the triple collision of m is lower
for the following reason. The upper atom MU3, involved
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in this collision, has lost the two nearest neighbors 3fU~

and Mz, s (see Fig. 9a), so that AH~i, i for this atom,
which lies on the edge of the furrow, is lower in the
ratio of 5:7.

The angle of incidence i~ for the 6rst collisions of m
and ec' is determined by Eq. (5.10) with the angle
0!=120 between the atoms 3fg4~3fs and M]O~Mg
and the surface normal. This gives the incidence angle
i~=51' 36' for an assumed value of 8=0.5. Kith these
values of i& and 8, the threshold energy for the triple
collision calculated with Eq. (6.1) turns out to be only
40% higher than the threshold energy for the double
collision in the (110}plane, if the path of the ion m'

in Fig. 9(b) is considered. Since the threshold energy,
required for the triple collision in the m case, is five-
sevenths of this amount, it is exactly the same as the
threshold energy for the double collision in the (110}
plane.

The average threshold energy necessary for triple
collisions may therefore be estimated to be approxi-
mately 25% higher than for double-collision sputtering
of an undisturbed (110} fcc plane; this is in good
agreement with experimental results.

0.1. Triple Collisions in Sputtering Phenomena

Besides explaining the appearance of the center spot
in the spot patterns of f 110}fcc single crystal planes, ' "
the triple-collision mechanism also explains some other
phenomena observed in sputtering experiments. In
sputtering carefully prepared single-crystal planes at
low ion energy, holes often appear in the otherwise
unattacked plane, which widen gut rapidly and have
extremely sharp contours, as seen in electron micro-
graphs. The primary reasons that these crater-like holes
appear at all are lattice defects where the threshold
energy can be assumed to be lower. However, the
enlargement of the craters and the very sharp contours
can be explained by the triple mechanism as described
with Fig. 9(b). The same is true for the preferential
attack of grain boundaries in polycrystalline targets
at low ion energy.

'7. SPUTTERING RATE FOR CATHODE SPUTTERING
AT LOW ION ENERGY

Besides the threshold energy the second important
magnitude in cathode sputtering phenomena is the
sputtering rate, de6ned as the number of sputtered
atoms per incident ion.

Reliable measurements of the sputtering rate at low
ion energies, as known from literature, are obtained by
the method of Kingdon and Langmuir, using the
decrease of the electron emission of thoriated tungsten,
and by the method of Kehner and Medicus, "using the
displacement of the Langmuir probe characteristics for
measuring the sputtering rate of Pt and Xe at very
low ion energies. The last method gave the result, that

's G. Wehner and G. Medicus, J. Appl. Phys. 25, 693 (1954).

the sputtering rate S of Pt with Xe ions in the energy
range 50&E&200 ev is roughly proportional to
(E—Ee)', with Eo=40 ev, where Ee is determined as
the intersection of the linear part of the gS versus E
curve with the E axis and considered as the threshold
energy. Two measured values of the sputtering rate at
35 ev and 30 ev, lying on the lower nonlinear part of
the curve, were disregarded.

7.1. Sputtering Rate and Threshold Energy

The knowledge of a law for the sputtering rate,
derived from a general theory of sputtering, is very
important, because the more re6ned measurements of
the threshold energies are based on measurements of
the yield at constant ion current density for diGerent
ion energies obtained in a certain time interval (e.g. ,
10 minutes for higher ion energies). Much greater time
intervals are necessary (30 minutes) near the threshold
energy where the sputtering rate is small. If the curve
of the sputtering rate S versus ion energy E is plotted,
the upper part of the curve is found to be linear and
the sputtering rate is proportional to (E—Ee) if an
energy value Eo is determined by the intersection of
the extended linear part with the abscissa. If the lower
nonlinear part of the same curve is replotted with the
square root of S versus E, then the upper part of this
second curve is again linear, and another value Eo' can
be obtained by the intersection of the extended linear
part, indicating that the sputtering rate S in this part
of the curve is proportional to (E—Ee')'. The energy
values Eo and Eo' are considered as the threshold
energies. There is no reason, in the opinion of the
author, to define the values Eo and Eo' as two diferent
threshold energy values, one, Eo, for the higher energy
level from the S vs E curve, which may be 90 ev, as for
Pt-Hg, and another Eo' for lower ion energies from the
QS vs E curve, which may be 45 ev, and finally to take
a range between these values. 4 Neither the S curve nor
the QS curve can be expected to cut the abscissa. This
is not because there is an indetermination, but because
the definition of the threshold energy, as the lowest ion
energy at which sputtering occurs, implies that the
sputtering rate is definitely not zero at the threshold
energy. It becomes zero only if the ion energy is below
the threshold energy. At lower ion energies than the
threshold, atoms cannot be ejected from the surface.
Thus, the lowest ion energy, at which a yield can be
measured in a reproducible manner, must be regarded
as the threshold energy. Threshold energies determined
by the intersection of the linear part of the curves with
the E axis, for which S=O, are therefore a little too
high. The spot pattern experiments with single-crystal
planes' prove that there is no indetermination near the
threshold energy due to lattice defects.

The main reason for the discrepancies in determining
the threshold energy is the lack of a theory from which
the curve of sputtering rate vs ion energy can be derived
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for the ranges from the threshold energy to a few
multiples of it, in order to extrapolate the threshold
energies in the right manner.

P(Aps)~ ' ~P{aflsel

Q$ @20 0 s

~ski Z paP(Asn) Assi (7.1)

7.2. De6nition of the Syuttering Rate
of Single-Crystal Planes

Since the sputtering rate is defined as the ratio of
the number of sputtered atoms to the number of
incident ions, it can also be determined by the ratio of
the sizes of the "favorable areas" on the crystal surface,
which must be hit by the perpendicularly incident ions
to produce sputtering, to the total area of the target
hit by the ions. If the target is an ideal low-index
single-crystal (hkl) plane, it is only necessary to consider
this ratio in the unit area of this plane, AI, I, ~, which is
the smallest area between upper surface atoms MU
containing only one lower surface atom Mr. in the (100)
and (110)planes and two lower atoms in different layers
in the (111}planes and covering the whole surface by
simple translations. The number of favorable areas
within the unit area is given by the number p of the
angles e, which are the angles between the surface
normal and the center lines between the lower and the
upper surface atoms of this area. For instance, it is

p =4 in bcc and fcc (100} planes and in (110) fcc
planes, p~r

——2 and p~s ——2 in (110) bcc planes, and
p~r= 3 and p s——3 in (111)bcc and fcc planes.

In Fig. 10 the two atoms 3f~ and ML, of a unit area,
lying in the n direction, are represented by the spheres
with the radius c~. Three ions m&, m2, and nz3, with
the radius of their collision spheres c, impinge on the
lower atom Ml. in the direction perpendicular to the
surface of the plane and rebound against the upper
atom 3fg, as indicated in Fig. 10.

The centers of all the ions, which can hit the atom
M~ after rebounding from the lower atom ML, in
favorable directions for the ejection of M~, lie within a
certain area A„on the sphere with radius c„=c +cM
concentric with Air, . The projection P(A„) of this
area onto the surface plane, as drawn in a perspective
representation, is then the favorable area on the surface
of the crystal belonging to the represented 0, direction
within the unit area. The size of this area depends on
the energy of the ions. At the threshold energy the
very small area AA„on the c„sphere must be hit by
the ion m, to produce one of the few collisions requiring
the least amount of energy for sputtering MU. The
projection of this area on the surface is P(M„).Since
there are p of such favorable collision areas within
each unit A~I, ~, possibly with different angles o,~, e2
and different values of P(Agar) P(Alas) ' ' ' tile
definition of the sputtering rate within a unit area of a
single-crystal plane (Iskl), introduced above, can be
described by the equation

FIG. 10. Sputtering rate calculations for single-crystal planes.
P(A„) is one of the areas on the surface plane favorable for
sputtering of the upper atoms MU within a unit area Ay, g,~. A~
is the corresponding area in the collision sphere of the lower
surface atom ML, .

with the condition

e1, aS ~ . ~

(~as&) ' = Z P P(~A ) Asst (7 2)

7.3. Sputtering Rate for Single-Crystal Planes
(hkt) at Low Ion Energies

To find a relation between the sizes of the favorable
areas P(A„) and the ion energy E, two assumptions
must be made, one about the shape of these areas and
the other about the dependence of the size upon the
ion energy E. If the area A„ is assumed to be circular
with radius a on the sphere with the radius c„=c +csr,
then the projection of this area P(A„) onto the surface
plane, as seen from Fig, 10, is given by the equation

P(As~) =7I'ab= scs sin e os(rl —z~),
with

(7.3)

a=c„sine, b=c„sine cos(m —i ). (7.4)

After the incidence angle i, which is always acute,
has been defined as the angle between the normal to
the surface and the center line of the colliding spheres
at the moment of contact, the angle between the center
line and the surface is (st—i ). Since the radius a,

A generalization of this definition for single crystal
planes, in which the angles e~, n2. e„and the numbers

P 1, P „vary in different units areas or for surfaces
of polycrystalline targets can easily be made and will
be discussed later.
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lying in the plane of the drawing, is perpendicular to
this center line, the projection angle of this radius
against the surface is (~—i ).

The smallest areas AA„of A„and thus ~A~ of
A~ on the c~ collision sphere of the target atom ML,

apply for the threshold energy E;„.For simplification,
it is assumed that the collision happens at the incidence
angle i belonging to E;„producing the collision as
explained in the simplified double-collision theory above,
where n is given by the lattice structure of the unit
area. With increasing energy E, the very small area

is enlarged to A~ since the ions hitting the
target atom in the neighborhood of M~ are also able
to produce sputtering at incidence angles deviating
only within certain small limits from the small circular
area dA~ . A relation between the ion energy E and
the favorable area P(A„), which is dependent on A~,
can be assumed from the concepts of the developed
sputtering collision theory as follows. It has been
assumed that for sputtering collisions at perpendicular
ion incidence, the condition m«M can be applied for
the first collision of the ion with a lower surface atom.
With this condition, the compression impulse R, from
Eqs. (3.5) and (3.4) with Vo ——0 is given for an oblique
collision by

R z
= 55MO cosz&&

so that the energy involved is

R '/2m= PE cos'i,

(7.5)

(7.6)

p A~~=EtP cos z~ (7.7)

which with the abbreviation

can be written as
q =8'cos'i /v'

A~ =q E.

(7.8)

(7.9)

The area A~ is the surface of a spherical segment
on the collision sphere c~ of the target atom ML„
therefore, as seen from Fig. 10,

=27lc~ (1—cosf )

and thus from Eqs. (7.8) and (7.9)

(7.10)

q ( qE')
s-c~' 4 %re~')

(7.11)

if E= ~moo' is the energy of the impinging ion.
This is also the energy regained during the phase of

expansion since R,=R,. If 8=0, the whole energy would
be dissipated in Debye waves and sputtering could not
occur at all. The larger b, the higher is the energy
regained.

Thus, as a reasonable assumption, the area A~ canbe
set proportional to PE cos'i with a factor u' of dimen-
sions /mt '7 by the equation

If this value is inserted into Eq. (7.3), then the
sputtering rate from Eq. (7.1) can be written in the form

where

aIld

(&'&a~t
&~at= &ant( (ac ' i'

Q1 Q2 ~ ~ ~

p~g~ cosz~
Ar'Alai

C}, Q2'''

(7.12)

(7.13)

4kl= P papa cosza p q cosi (7..14)

For the threshold energy E;„,p, i, and thus q,
s~~~, and t~~~ can be determined for each low plane of
any crystal system, if assumptions are made about 6,
c~, c, and s'. If there is only one n angle in the unit
area, tqq~ is equal to q

=P cos'i /v'. Different sputtering
rates at the threshold energy can be expected for differ-
ent single-crystal planes of the same as well as of
diGerent crystal systems. The calculation of s~g, ~ and
tj,g, ~ becomes more complicated for higher ion energies,
since sputtering can then also occur by collisions from
second or third lower atoms or by triple collisions. In
this case the single unit area is no longer representative
for the sputtering rate, but several unit areas together
must then be considered as a new unit area for the
calculation, similar to the case of polycrystalline targets
treated below.

Equation (7.12) gives the relation between the sput-
tering rate S~~~ and the ion energy E for an ideal low
index plane (hkl) of a single crystal at normal ion
incidence. Of course, after sputtering has started, upper
surface atoms have been removed and the formerly
lower surface atoms are now upper ones. If this happens
uniformly over the whole exposed surface, then the
factors influencing the sputtering rate such as the
angles n~, n2, , the number of favorable areas p„~,
p~, and the incidence angles i„~, i 2

. within the
unit areas A~~~ would nevertheless be the same so that
the Eq. (7.12) would remain applicable. That such a
behavior is very probable can be concluded from the
following experimental facts. If in spot pattern experi-
ments' "the small spot of a single-crystal plane is first
sputtered near the threshold energy, a distinct pattern
characteristic for the lowest ion energy is obtained at a
certain sputtering rate. If now the ion energy is in-
creased to a value three or four times the threshold
energy, the sputtering rate will be higher and the
resulting spot pattern changed considerably, due to the
fact that other directions O.„from second or third lower
atoms to upper surface atoms are now effective. The
surprising fact now is, as observed by Wehner, that
the threshold pattern is again obtained from this
surface, which is no longer ideal, if the target is again
submitted to sputtering at the lowest ion energy, and
the sputtering rate is the same as before.
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7.4. Sputtering Rate Equation for Polycrystalline
Targets at Lovr Ion Energies

In polycrystalline targets the total area exposed to
sputtering can be represented by phki eshkiAhi i, where
the summation has to be extended over all the low-index
planes (hkl) present in the surface plane of the target,
and ehkl are the numbers of the corresponding unit
areas Ahkl. Then the sputtering rate can be considered
as the average

550-

500

250-
5=+ vshkiAhkiShki/2 eshkiAhkh

hkl hkl
(7.15)

s '
Jl I

ENLARGED PiI

with Shki from Eqs. (7.12), (7.13), and (7.14). If the
abbreviations

200

S Q 'S khAihklShki/Q eshkiAhki)
hkl hkl

f=p vshkiAhkifhki/p ishkiAhki,
hkl hkl

(7.16)

(7.17)

svw~+-
5~55f 40 7 &5' =E(ev)

are used, then Eq. (7.15) for polycrystalline targets
can be written in the form

|' E'f
S=si —Z i.

L.47rchr' ) (7.18)

„F)

In this equation s and t, since dependent on shkl and
thkl, are not really constant, but, as explained above in
discussion of Eqs. (7.13) and (7.14), s and t may be in
a certain degree different for higher and lower ion
energies. 5 in Eq. (7.18) is submitted to the condition,
that the lowest value S; is obtained for the threshold
energy E;„,thus

(&min &

Smin= &~ &min
E 4vrchr'

(7.19)

For values of E&E; there is no sputtering; thus S=0.
If the differences of s and t for diferent energies are
disregarded, then the minimum condition (7.19) can
be combined with Eq. (7.18) by writing

Smin= s (E'—E, ;„')—(8 E,„;„) . (7.20—)
4n-c~'

E;„=2vrcir'/t, (7.21)

so that if this value is inserted into Eq. (7.20) and if p
is introduced by the equation

p= &min/&q

then the sputtering-rate equation (7.20) becomes

5—5;„=(E E;„)s/2p—
(7.22)

(7.23)

which holds for E~E,„;„,while 5=0 for EKE;„.

The minimum condition, dS/dE=O, d'5/dE')0 from
Eq. (7.18) yields the value

S MIN

"0 l0 20
Po

— EMlN

~
~~

~0 40 50 60 70 80 90 IOO
= E(ev)

I"ro. 11. The sputtering rate 5 verses ion energy E for Pt-Xe
replotted from Wehner and Medicus" (with S instead of S&) and
compared with four parabolas of diferent parameters p, demon-
strating the variation of the parameter p in the sputtering rate
law: S—S; =(E E; ) /2p for E&—E;;S=o for E&E

The curve of the sputtering rate S vs 8 from Kq.
(7.23) with these conditions can be recognized as one
branch of a parabola with the vertex at S=S;„and
E=E;, if p is considered as the parameter of the
parabola. But, as emphasized, s is dependent on the
energy E and has the smallest value for the threshold
energy; thus the parameter p also varies with the
energy and has the largest value near the threshold
energy.

V.S. Comparison with Experimental Data

The only reliable curves of the sputtering rate S vs E
at low ion energy, known from literature, are the curves
for Pt with Xe ions" and for Pt with Hg ions. ' The
Pt-Xe curve is replotted in Fig. 1f, on the right side,
with values of S instead of QS, while on the left side
of the same 6gure four parabolas with the same vertex
but with different parameters are drawn. The lower
part of the 5 curve between 34 ev, which is the threshold
energy, and 45 ev fits the parabolas I'0 and I'~ best
(except the first experimental point, which has been
disregarded). The upper part of the curve between 70
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FIG. 12. Periodicity of the
threshold energies E; of
26 diR'erent metals with Hg
ions, as determined by
Wehnerg in a plot vs atomic
number. The encircled valueE; =40 ev for Pt was
measured by Wehner and
Medicus" with Xe ions.
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and 100 ev (and as checked, but not represented up to
200 ev) perfectly 6ts the parabola with the smallest
parameter (focal point Fe).

'7.6. Extrapolation of the Thresho1d Energies
from Experimenta1 Curves 8 vs E

The practical value of the knowledge of the sputtering
rate law lies in the fact that time consuming measure-
ments of the sputtering rate at the lowest ion energies
near threshold can be avoided. As seen from Fig. $1
the curve S ns E can be approximated in its different
parts by parabolas having diBerent parameters, but the
same axis. For each part of the curve between energy
values E~ and E~ for which the slope of the curve is
noticeably diferent, the focus of the approximating
parabola can be determined by a simple well-known

geometrical construction. If two or more such energy
intervals of the curve are chosen, and the foci of the
approximating parabolas are geometrically determined,
then all the foci should have the same abscissa. In case
of small deviations a mean value of these abscissas can
be considered as threshold energy E;„.

8. PERIODICITY OF THRESHOLD ENERGIES

From the sputtering-rate formula derived above, an
interesting conclusion can be made about the relation
between the threshold energy and the assumed collision
radius of the target atom. Equation (7.21) resulted as
the ion energy for which the sputtering rate S has the
minimum value, where c~ is the collision radius for the
target atom, while t for polycrystalline targets is given

by Eq. (7.17) and the value of t for a distinct single

crystal plane with only one 0. angle reduces to

=P cos'i., /r ' (8.1)

as explained in detail under (7.8). Since i', as defined

by (7.5), is assumed to be a constant, and the coefticient
of dissipation 5 is approximately the same for diGerent

target atoms of the same crystal system sputtered with
the same ions, the value of 3 at threshold energies is
determined by the incidence angles i . However, these
angles are determined by the crystal planes and the
crystal system only, so that I, is the same for diGerent
target materials of the same crystal system, and of the
same order of magnitude for targets of other crystal
systems.

From these considerations, one can expect from

Eq. (7.21) that the threshold energies for diRerent
metals sputtered with the same kind of ions are roughly
proportional to the square of the collision radii c~ of
the target atoms.

Since the sizes of the effective radii of the largest
closed shells of the target are different for the elements
according to their atomic number, a relation between
the threshold energies and the collision radii c~ in the
derived form (7.21) should already be coarsely visible
in a plot of the threshold energies of the diferent
elements versls atomic number.

The threshold energies of 26 metals with Hg ions,
determined by Kehner, are plotted in Fig. 12 in this
manner, and one can immediately see from this plot
that the threshold energies of the elements between the
noble gases follow a certain law. This law requires,
within each period, higher threshold energies for the
elements with the lower atomic numbers.
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It now remains to be checked as to whether the de-
rived relation (7.21) with tentatively assumed collision
radii is able to cover this law in a satisfying manner.

An estimation of the collision radii c~ of the largest
closed electronic shells can be obtained from data on
the radii of electronic orbits, tabulated by Slater" for
the lighter elements, and from data on the radii E
associated with hard-sphere collisions of knocked-on
atoms in the theory of radiation damage. ' The radii of
electronic orbits represent the distance from the nucleus
at which the radial charge density (the charge contained
in a shell of unit thickness) is a maximum. These radii
are tabulated in Table II for the M shells of elements
of the fourth period, for which the threshold energies
have been determined by Wehner. ' A weighted average
value r of these orbits is determined by the relation

r = (2r~a, +6r~q~+dr~aq)/(8+d), (8.2)

where d is the number of electrons in the subshell M3d.
The effective collision radius c~ of the largest closed
shell is assumed to be a multiple of r, which can be
estimated from data on copper discussed in the theory
of radiation damage. In this theory the radius E
associated with hard-sphere collisions of knocked-on
atoms and the mean free path 1., of these atoms,
connected with E by the relation L,= 43r,'/R', where r,
is the atomic radius, are dependent on the energy of the
knocked-on atom. If this energy is 300 ev, then the
most probable value from the theory of radiation
damage is I.,=5r, . Since the energy of the impinging
ion, which is comparable to the energy acquired by the
knocked-on atom is considerably lower for the threshold
energies which are between 40 and 150 ev, a mean
value of I-,=2.7r, seems to be a reasonable assumption.

In this case the radius E would be 8=0.7r„. thus for
copper E=c~——0.89 A since r, = I.27 A, while the value
c~=0.68 A, as used above in Fig. 2 in Sec. 4.1 corre-
sponds to the value of L,=4.65r, to somewhat higher
energies. If c~ for copper is chosen as 0.89 A, then the
multiplying factor for r =0.33 A is 2.7. This value has
been used in Table II for all the elements. The square
of c~ multiplied with an arbitrary factor gives values

very close to the threshold energies, measured by
Wehner '

The calculated values of c~' multiplied by an arbi-
trary factor (which is chosen to be 64 in Table II) are
drawn in the plot of Fig. j.2 as circles, and are connected

by a curve. Similar curves are drawn in the other
periods between the lowest values of the threshold
energies which, as explained above, are considered to
be doser to the real threshold energies.

The values of some elements. deviate from these
curves; for instance, Cr deviates to the lower side and
Pt to the higher side. The low value fop Cr can probably

'4 J. C. Slater, Ietrodlction to Chemical I'hysics (McGraw-Hill
Book Company, Inc. , New York, 1936), p. 349.

Tax,z II. Proportionality of the threshold energies E~;n to
the squares of the tentatively calculated collision radii c~ of the
largest closed electronic shells of elements of the fourth period
of the periodic system. ~

Atomic Ele-
number ment

22 Tl
23 V
24 Cr
26 I e
27 Co
28 Ni
29 Cu
32 Ge

CM
rpy3„r~3d r~ +2.7r~AI 3@

(A) (A) (A) (A) (A)

0.48
0.46
0.43
0.39
0.37
0.35
0.34
0.30

0.50 0.55 0.50
0.47 0.49 0.47
0.44 0.45 0.44
0.39 0.39 0.39
0.37 0.36 0.37
0.36 0.34 0.35
0.34 0.32 0.33
0.30 0.27 0.28

1.35
1.27
1.19
1.05
1.00
0.94
0.89
0.76

)&64 (ev)

117 110-130
104 120-130
91 60- 80
70 60- 70
64 80-100
57 70- 90
51 50- 70
37 40- 50

r3f3g r~3p rmad =radii of electronic orbits in the M3s, M3p, and M3d
shell, representing the distance from the nucleus, at which the radial charge
density (the charge contained in a shell of unit thickness) is a maximum
(see reference 14). r~ = (2rm3&+6r~e&+dr~3d)/(8+d), where d =number of
electrons in M3d shell. Bmin=threshold energy at normal ion incidence
with Hg-ions (see reference 2).

be explained by the fact that because of the lack of Cr
sheet metal, the experiments were made with a chro-
mium surface produced by electrodeposition, which
very probably requires only a considerably lower energy
to start sputtering. The high value of the threshold
energy for Pt (7G to 9G ev) with Hg ions from the table
of Wehner' has already been discussed in connection
with the sputtering rate. The threshold energy for Pt
with Xe ions was found by Wehner and Medicus" to
be 40 ev and was calculated as 35 ev from the sputtering-
rate curve above. From the threshold formula (5.11)
and the plot of the function g(nz, M) in Fig. 6, one can
expect that the value of the threshold for Pt with Hg
ions is not much diGerent from the value of Pt with Xe
ions, provided that the inQuence of the coefficient of
dissipation 5 is negligible. With the threshold energy of
35 to 40 ev, as seen from Fig. 12, Pt fits the curve io
the sixth period from Pb to Hf very well.

It remains to be investigated whether other minor
discrepancies, for instance, the higher values for Co
and Ni in the iron triad FeCoXi and for Rh and Pd
in the triad RuRhPd, have a physical meaning or are
due to experimental indetermination. More re6ned
measurements of the threshold energies are certainly
necessary, before further conclusions can be drawn
from these deviations.
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