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The g Value in Conduction Electron Spin Resonance
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The departure of the g factor from the free-spin value due to spin-orbit interaction is calculated for
conduction electrons in a nondegenerate band. The Kohn-Luttinger representation is used and the result
is obtained to second order in the wave-vector of the electron at the Fermi surface. The result is expressed
in two forms, one of these being a sum of volume and surface integrals over the unit cell, The orders of
magnitude of these are discussed but no numerical calculations are made.

I. INTRODUCTION In this paper, by using the Luttinger-Kohn represen-
tation (henceforth abbreviated as the L.-K. representa-
tion), it is found that the g shift is given by the average
at the top of the Fermi distribution (or over the
Boltzmann distribution if the band is almost empty)
of the orbital magnetic moment induced by the spin-
orbit interaction (abbreviated as the s. o. interaction).
The expression for this is obtained as a trace which can
be developed in a power series in the even powers of
kp, the components of the wave-vector at the top of
the Fermi distribution. Only the first two terms, of
orders zero and two in kp, are evaluated. The result is
expressed in two diGerent forms, both being in terms of
operations performed ori the Bloch states of the band
under consideration and averaged over the Fermi
surface.

(a) In the first form, it is proportional to the sum
of the components along the field (taken in the Z
direction) of the periodic part of the magnetic moment
as de6ned by Adams' and of the vector product of the
periodic part' of the coordinate by the wave vector.

(b) In the second form, which is obtained by manip-
ulation from the preceding one, the result is the sum
of three terms: (1)a volume integral of the Z component
of the magnetic moment, (2) a product involving the
volume integral of the electron coordinate and the
departure of the effective mass from the free-electron
mass, and (3) a surface integral proportional to the
normal component of the velocity evaluated over the
wave function and certain combinations of its deriva-
tives with respect to k . In the limit of infinite lattice
constant, only the first of these terms survives and it
reduces to the correct expression for free atoms. The
motivation for expressing the result in the second form
was to make a comparison with the result of r|;ference 2

which is essentially given by the first term in (b).
That result was used by Brooks' who, using the method
of quantum defects, was able to obtain numerical
answers without calculations involving wave functions
and potentials. It is therefore interesting to see whether
the second and third terms of (b) can be neglected.
For the alkali metals with the exception of lithium, the
second term is negligible; the third term is not neces-

'HE purpose of this paper is to calculate the g
value (spectroscopic splitting factor) of a conduc-

tion electron, more speci6cally to calculate the shift,
due to spin-orbit interaction, from the free-spin value
of the g factor in a spin-resonance experiment on
electrons in a nondegenerate band. Only simple lattices
possessing a center of space inversion will be considered;
the alkali metals, which are the easiest to understand
theoretically, and for which experimental data exist'
belong to this class.

This problem had already been treated by the
author, ' but the result obtained there, although being
of the right order of magnitude, is not quite correct.
The source of the error lay in the improper treatment
of the interaction of the electrons with the applied
magnetic 6eld. The lack of lattice periodicity of this
interaction (due to the dependence of the vector
potential on the particle coordinate) is a source of
difhculty for problems involving the motion of electrons
under the simultaneous eGect of a periodic potential
and a magnetic field; namely that since an exact
solution for the energy levels is in general impossible,
and since the magnetic 6elds used are small on an
atomic scale, it is desirable to treat the eGect of the
6eld as a perturbation. ' However, if the stationary
states of the system (in the absence of the field) are
extended in space, as the Bloch states are, then the
eGect of the 6eld on these states cannot be viewed as a
perturbation as the interaction term can be made
arbitrarily large by going to large enough distances
from the origin of the vector potential. The manner in
which perturbation theory can be used in this case has
been given by Peierls' for the limiting cases of free
electrons and tightly bound electrons. Further progress
in removing these restrictions has been made recently,
in particular through the work of Adams4 on magnetic
susceptibilities, of Luttinger and Kohn' on the per-
turbed periodic lattice, and of Kjeldaas and Kohn' on
magnetic susceptibilities.

' G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).
2 Y. Yafet, Phys. Rev. 85, 478 (1952).' R. Peierls, Z. Physik 80, 763 (1933).
4 E. N. Adams, Phys. Rev. 89, 633 (1953).' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).' T. Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).

7 E. N. Adams, J. Chem. Phys. 21, 2013 (1953).
H. Brooks, Phys. Rev. 94, 1411(A) (1954) and unpublished

work.
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sarHy so for sodium (numerical calculations of terms
have not been made), but, as the atomic number
increases, it is expected that, because of the localization
of the s.o. interaction near the nucleus, the relative
contribution of the surface integral will become less
important. A rough estimate indicates that for sodium
the third term may be of the order of 50%%uq of the first
when the boundary of the domain of integration is the
sphere equivalent to the cellular polyhedron.

The details of the g-shift calculation are given in the
next two sections.

II. THE g VALUE BY THE TRACE METHOD

The conduction. electrons are treated in the one-
electron approximation and the periodic potential is
assumed, for simplicity, to contain no exchange term.
The complete Hamiltonian of an electron under the
inQuence of an external magnetic field B in the Z
direction can be split into two parts: BCp=K+5Cz.
The 6rst term X. is the sum of the kinetic and potential
energies, including the s.o. interaction given by:

( eAP
SXVV ( p+ i; (1)

2m'c' & c P

here S is the spin operator, V the periodic potential,
and A the vector potential of the applied field. The
second term GCz is the Zeeman energy of the spin,
Kz gePIISz, wher—e—P is the Bohr magnetron and
ga= 2[1+(n/27r) $= 2.0023.

Spi.n resonance is induced by a small alternating
magnetic field at a right angle to H. The g factor as
measured experimentally is given by the value of the
energy quantum at the maximum of power absorption.
The quantity calculated in this paper is the mean of
the energy in the absorption spectrum. The difference
between these two quantities should be negligible
since exchange interactions' between conduction elec-
trons and lattice scattering will tend to peak the line
at the average absorption energy. The g factor is given
therefore by the ratio of the erst moment to the
zeroth moment of the energy in the absorption spec-
trum. Since it is not practicable to obtain the eigenfunc-
tions of the electron in the presence of the magnetic
Geld, the moments will be expressed in the form of
traces which can be evaluated in some convenient
representation. The moments are given by":

mZ, =Tr{pyC, )[S.,ye, ,S.j]},
ORo= —Tr{p(BCr)sz};

where p is the Fermi distribution function. Upon
writing K~——K+Kz in the commutator of K~, the
contributions of the two terms can be separated into
[S,PCz,s,fj, which contributes gePII to the ratio

' P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954)."K. Kambe and T. Usui, Progr. Theoret. Phys. Japan 8,
302 (1952).

5Ki/DRo, and [S„PC,S j$, which gives the shift in
the g factor due to s.o, interaction:

Tr{p(SCp) [S„[5C,S,]]}
6g H= —Tr{p(BCp)S,}

(3)

Here in H=e ~We~, the notation H„+ is short for
(I+ ~H(k")

~ I+), and the subscript k~ on Tr indicates
that the summation over the two states of spin has
been performed and that the bands have been decoupled

This expression, wanted only to first order in the
s.o. interaction, will be computed in the L.-K. represen-
tation as developed in reference 6 (especially Sec. II)
to which the reader is referred for an account of method
and notation. That notation will be followed here
except for a minor change: it is shown in reference 6
that the matrix element (mk~ Bla nk') of an operator 8
depending on the vector potential only through the
combination P +eA /c is given by a sum of terms,

. each of these being the product of two matrix elements:
one of these involves only periodic operators and is to
be taken between the Bloch states m and n at k=0;
the other depends only on powers of p"+ed /c and is
to be taken between the plane waves k and k'. In this
paper, the matrix element with respect to the plane
waves will not be taken and p+eA"/c, left as a,n
operator, will be labeled k . (From here on, we shall
use atomic units for which h=m=e=1. ) Accordingly
the notation (nz~ 8(k ) in) will replace (mk~ Bjnk').

The commutation properties of the k are: [k, k~1
= —is8 ez, where the parameter s= H/c and the symbol
8 ez has the values: +1 for n=x, p=y; —1 for n=y,
P= x; 0 otherwise.

Let e refer hence forth to the nondegenerate band
under consideration. Then since the expectation value
of the s.o. interaction over L.-K. functions determined
with neglect of s.o. interaction vanishes it is possible
to take for the states

~
e,k) spinors having a large and

a small component. The spin will be quantized along
the applied field and the two spin states will be denoted
by ~e, +, k) or ~n, —,k) depending on whether the
spin is predominantly parallel or antiparallel to H.

To evaluate (3), the interband matrix elements of
p(Kz).will be eliminated to the desired order in k . As
will be seen below, to obtain bg to order kp'it is necessary
to have BC~ diagonal to order (k )'. Since it is sufhcient
to have p(BC~) to zero order in s.o. interaction and as
there are no interband matrix elements of Kg to this
order, it is sufEcient to diagonalize 3C to order (k )'.
Let T be the transformation which accomplishes this
and let S = e S,e~. It can be shown by explicit calcula-
tion that the only part of S which contributes to the
trace is S,. The expression for the g shift becomes:

sag Try,.{[p(H+X,) p(H+X,)~j(H~—H)}—
2 Try {p(H+K,) —p(H+K, )„+}
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H„= Q E„Pk kP+ Q E„»'k kek&k',
a,p a,p, y, 5

with the coefficients given by':

(6)

E '=24p+2
a7r nP in

E„npv~-
mQn j, l

nj& jm~ ml~ ln
a . p.

njnm+nl

1 1
+ Im .i~ j„m.&„pr („

.2 2~nj z~nl ~nt ~nj~

~np zn~yh 2~nz'r zn~py+~ np zn~zzp

(8)
.2ni

Here the &u„, are interband energies at k= 0, and in order
to avoid too many indices, the spin quantum number
has been included in I, m, etc. ~; the notation e+,
m —will also be used below but no confusion should
arise from the double usage of e.

The parts in the expressions that are odd in s.o.
interaction will give , (H„+ 8„).—This —is fo'und as
fo11ows:

By Kramers' theorem, "the Bloch states for each k in
a nondegenerate band are spin-degenerate. In the
expansion of the energy in powers of kn (at zero 6eld),
the coeScients are even under spin reversal and real.
In (8), the coefficient of a specific term k"kpk&k' is not
necessarily real; the sum of these coefficients over all

the permutations of the given n, P, 7, e must be real
and even under spin reversal, since in the absence of a
field the ka commute with one another. Therefore the
part of Il~ that is odd under s.o. interaction is due

entirely to the imaginary part of each coefficient, and
since 3C is Hermitian, this contributes only with the
anti-Hermitian part of k kPk~k'. From the commutation
relations, this is found to be:

Anti-Hermitian part of (k kek~k')

= (s/4i)({k,&)8,),+{k,k&)Spy.+(k",k')8p„
+(kP, k&)b g,+{ke,k')L, .+{k',k')8 p,), (9)

where
(k,kP) = k kP+EPk".

"R.J. Elliott, Phys. Rev. 96, 266 (1954).

to the desired order in k . It remains to calculate
H„(kn) and H~(k )—H (k ). The expression for the
erst of these has been given by Kjeldaas and Kohn
under neglect of s.o. interaction. To include this, it is
necessary' only to replace the matrix elements of the
momentum (p )„„by those of the velocity operator in
the presence of s.o. interaction, (m ) „,withe given by:

x =iI xo,x )=p"+(1/2c')(SXvV) . (5)

Here 3CO is the Hamiltonian 3'. for zero magnetic field.
The parts of H„of order 2 and 4 in k" are:

Similarly the anti-Hermitian part of knkp is —is/2
One obtains:

H-+ —&-= 2 LE-+- —(E~-P)*j(s/2i)

+ 2 I:E~'"—(E~'")*Ms/4i)
a,p, y, 5

&& ({k,kP)b, g,+ +{k&,k')8 p.)+ ~ . (10)

In accordance with the van Leeuwen theorem, which
states that a classical particle Hamiltonian can show
no orbital magnetic eGects, all of the contribution to
the g shift arises from the noncommutativity of the
k". After substituting (6) and (10) into (4), the trace
can be taken by the method of Peierls, since the
vector potential enters only through the k which have
the same properties as the corresponding components
of the velocity of free electrons. Because H+—H
is already of the first order in H, the trace of (4) is
obtained by replacing everywhere k with the numbers
k . It is seen from (10) that if 8g is needed to order k',
the energy must be known to order (k )'.

The physical interpretation of (4) is the following:
the statistical factor p~—p gives the average at the
top of the Fermi distribution; the quantity being
averaged, H„+—H, is not, because of the dependence
of k on H, twice the orbital magnetic moment inter-
action, 2H(BH„+/BH) jj=o. It is easily seen, however,
that the statistical averages of these two quantities
are the same so that the g shift is given by the orbital
magnetic moment. Finally it follows from reference 6
for instance, that the average of (BH~/BH)jr=0 in
the absence of s.o. interaction is zero. This fact is the
generalization for a nondegenerate band of the quench-
ing of orbital momentum occurring in isolated atoms
subjected to a crystalline field. (The fact that the
expectation value of I.z over a Bloch state can be made
zero by choosing the shape of the unit cell to have
inversion symmetry is not very useful since one cannot
do perturbation theory on the Bloch states when H &0.)

With k replaced by k, the summation over the
bands necessary for the evaluation of the coeQicients
E„n»' —(E„~»')*, and the summation over the three
components of k can be performed; let e (k, r) be the
periodic part of the Bloch function at k and. let K(p+k)
=e '~'Xe'"'. Then by considering u„(k, r) expanded
to order P," and after lengthy manipulation, it is
found that to order k', (10) is equal to the real part of
the following expression:

t' Ne(p+k) tl NC
isI ek

E. Bk& Bk

(p+k) tl
ek

+(&kI (~/»*)&"—(~/~&")&*I&k)
I (11)

"Actually it is sufhcient to know N„k to order k' but then the
result is not expressible in the simple form (11).
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Here the basis functions ~gk) are the periodic parts
N„(k,r) of the Bloch functions for band e, spin up, and
wave vector k; in the following, matrix elements with
subscripts e, ns, etc., are to be taken between the Bloch
states P„q(r) for spin'up. In the notation of Adams,
(11) can be rewritten as:

s[(X~ —F~*)„„+X„„k—F„„&.j, (12)

where w is the velocity operator de6ned above and the
matrix elements of X (and similarly for F) are given by:

X„= N„*(k,r)s(B/Bk )N„(k,r)dr,
~n

(13)

the integration being over the unit cell 0 with the
I ~ normalized over it.

In the derivation of (11), the k dependence of the
phases of the I ~ has been taken such that in the
expansion of N„~ in terms of the complete set I 0

the coeKcient of u„o is real. This same choice is implied
in (13) although it can be shown that an arbitrary
change in the phase which adds to the X„„and I'„„
the corresponding components of the gradient of a
function of k does not change the trace of (4).

The g shift is given by the average of (12) at the
Fermi surface so that (12) can be interpreted as the
product by 2H of the expectation value of the orbital
magnetic moment over the Bloch state f„s. Notice
that this is diGerent from the ee representative of the
magnetic moment which is given by only the first
two terms of (12). Notice also that the shift is due
entirely to the departure of the Bloch function, s.o.
interaction excluded, from a plane wave. This is because
in (6) the ~„n for nWnz are zero for plane waves.

III. ALTERNATIVE FORM FOR THE g SHIFT

Although numerical calculations can be made with
(12), this result will now be expressed in another form
by writing X =x +(X—a)„(here x is the co-
ordinate measured from the nucleus) and substituting
this into (12). The reason for making this transforma-
tion is that, among other terms, the average value
over f„i, in the unit cell of the magnetic moment
operator (e/2c)r&&v will appear in the answer. This
part is just the incorrect result of reference 2. Besides
providing a more physical presentation for the answer
obtained here, the new form makes possible a compar-
ison of the new result with the former one and a
comparison of the values that can be obtained from the
two results in specific cases by the quantum defect
method, '

Consider the first term of (12). By the use" of
Green's theorem on the e, m matrix element of the
commutator [X,xf and of the relation" s.„=soi„x„,

'3 See, for instance, E. %'igner and F. Seitz, Phys. Rev. 46, 509
(1934), Kq. (14).

'4This is a straightforward generalization for a Hamiltonian
including s.o. interaction of Eq. (2.81.5l in A. H. Wilson, Theory
of Metals (Cambridge University Press, London, 1953), second
edition.

@Am, one obtains:

(Xir")nn =Xnns'"nn+
m~n 4 0

f *+md& s'"mn

~I [+ *~"P +f (rr"eP„)*fdS F „. (15)
m« ~8

Use of Green's theorem on the ee matrix element of
[BC,xj gives:

[ep„*m "p„+p„(7r"+„)*jdS., f
(16)

Adding and subtracting the term m= e to the
right-hand side of (15), and using (16) gives:

(Xs ) nn Xnn'ir nn, +Fnnrr nn+ l Pn +7r Pnd&
&0

r~

—~"- ~ 4-*&-d~ sZ, [W—.*~V-
a ~ "s

+P (n "+ )~)dS F„„. (17)

Finally by using the completeness property for periodic
functions of the N„~, the last summation over m can
be performed and gives a single surface integral. The
first two terms on the right-hand side of (17) are
cancelled by identical terms with opposite signs
contributed by —(Fs.*)„„.Leaving them out, one has
(Xm")„„in the desired form:

(X~")nn=,

( Bgn'l

"8 — ( Bks)

A symmetrical expression with x and y interchanged
is obtained for (F~*)„„.In the spherical approximation

n+~d T
~n

i=X„+ [xi/„*m "f +P (rr"mP„)*gdS,
2+&~"s

e~m. (14)

Here to„„ is the energy difference at k between bands
e and m, the surface integral is taken over the cellular
polyhedron (or the equivalent sphere), and v is the
outward direction normal to it. lt follows that:
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the part of sr" depending on s.o. interaction, (1/2c')
)& (S)&VV)" is zero and ~"=—iB/Bv.

In order to transform the last two terms of (12),
we use the identity:

X„„= f„*+„dr+i f„*(B$/Bk')dr. (19)

(E a —E k)

Q „g*sr"it „g + (sr"|P„|,)*it „a.)dS. (20)
2i~ s

Expansion of both sides in bk to the second order gives:

~. "&Bk)
Z t' Blp~ Blp~

7r"-

4(BE„/Bk )"e Bk' Bk*

t'

+1 ~"
1

— dS. (21)
Bk* Bk

Upon substituting (21) and (18) into (12) and using
again ordinary units, the complete expression for bg

to order kp' is given by the average at the Fermi
surface of

(1 B i (1 B )
( i Bx) (i Bx)

2mc 4g

~BVq (BV~
I+~I

BS By

5$ f
P„*(sck" yk')P dr—

~B p ~Bu„y (Bu ~ pB)
gN~ — — — —XN~

1 Bv) EBkv) &Bk&) &Bv)

(Bug, i
+2ik"xu„*1

1

dS—
0 Bkv)

m*k" t B$ * B B$„

4mk ~ Bk Pv Bk

BP„( B B$ 't
+ 1 1

dS+terms obtained from
Bk* KiBv Bk*)

The second term on the right can be transformed to
a surface integral by considering the expression for
Jr' t,*X/„z dr, where k'= k+ Bk i. Integration by
parts of the differential operators in K and use of
Green's theorem gives:

A discussion of the relative contributions of these
terms in the alkali metals will now be given.

(a) Volume terms T.
—he erst of these is given by

the s component of orbital angular momentum and
coincides with the result of reference 2. It contributes
in orders k', k', etc., and to order k' is determined by
the p part in the wave function. Its order of magnitude'
is roughly the ratio of the lowest p doublet splitting
in the free atom to an interband energy in the metal.
The fact that the wave function is only partly of p
character is counteracted by the increased (over the
free atom) amplitude of the p part near the nucleus
resulting from the necessity for the p part to vanish
at the cell boundary. The value cited j,s thus reasonable.

The second term in (22) arises from the contribution
to the velocity operator of s.o. interaction. In the limit
of in6nite lattice constant only this term survives and
gives the correct, nonzero contribution for isolated
atoms in an s state. The singularity of rBV/Br (V is
assumed spherically symmetric) is only of order r '
as compared with the r 3 singularity of s.o. interaction
so that the contribution of this term is expected to be
much less than that of the preceding one. In fact one
can express it through quantities determined for the
metal under neglect of s.o. interaction. Thus, by partial
integration, the contribution with the s part of the
wave function Pe can be shown to be given by

pBVq
~r Per1 1gedr=go'(r, )r, 'PV(r, ) —Eel+2(T)e, (23)(Br)

where r, is the radius of the unit cell and Ee and (T)e
are the total and kinetic energies, respectively, at
k=0. The resulting shift is of order 10 ' and is com-
pletely negligible except possibly in lithium.

The third term is also negligible except in lithium
because of the closeness" of the effective mass nz* to
the free mass. Of the three volume integrals then only
the first need be retained.

(b) Surface terms No clea.—r-cut estimate can be
made of these without numerical calculation. A rough
argument depending on the rapidity with which s.o.
interaction falls oG away from the nucleus indicates
that for a sufKiciently steep rate of decrease the s.o.
admixture to the wave function at the cell boundary
may be small enough for these terms to be unimportant.
To see whether this is so, a numerical calculation of
one of the surface terms has been made for sodium using
wave functions kindly supplied by Professor W. Kohn.
The term ——,

'J'xu *(B/Bv) (Bu„/Bk„)dS contributes a
shift of zero order in k through the s part in n„*and the
p part in Bu„/Bk„. This has been found to be of the
order Bg —0.5)&10 ', or 50% of the experimentally
observed value. (No other term in the surface integral
gives a contribution of zero order in k.) It is seen that

'5H. Brooks, Phys. Rev. 91, 1Q27 (1953); also F. S. Ham,
Solid State Physics 1Academic Press, Inc. , New York, 195S), Vol.
1, p. 185.
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this is not small. Although s.o. interaction falls oG
faster in the heavier alkalis, neglect of the surface
terms cannot be justiGed for them without further
examination.

It is to be noticed that the shift just found arises
from the difference between the operators X, Y and
x, y. Thus an electron at k=O in an s band can exhibit
a g shift orders of magnitude larger than when in the
same atom in the isolated state.

The estimate just given of the various terms of (22)
summarizes the results of this calculation. In closing,
it is perhaps worth while to remind oneself that there is no
reason why the contributions of the higher orders in
k should be insigniGcant. It is also important not to

forget the limitations of the one-electron approximation.
In the present problem it is the interaction with the
core electrons (polarization, exchange) which is most
likely to aGect the result rather than the interaction
between conduction electrons.
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Luminescence and Symmetry Properties of Color Centers*

JOHN LAMBE AND W. DALE COMPTON

United States Nava/ Research Laboratory, 5"ashington, D. C.
{Received January 24, 1957)

A study has been made of the luminescent emission of F, M', and
R centers in NaCl, KCl, and LiF. When such centers are excited by
polarized light, the resulting emission can be analyzed for polariza-
tion. This yields information on the symmetry properties of the
emitting center. In the case of M centers and of F centers made at
77'K the results obtained are consistent with the models widely
used for these centers.

In the case of the R~ and R2 centers the situation is more
complex and it appears that as far as optical properties are con-
cerned some relationship exists between these centers. Excitation
in either band yields the same emission band with very similar
polarization properties. This has been interpreted in terms of an
energy transfer process between R& and R& centers.

When crystals containing F, lV, and R centers are investigated,
the behavior of the F-band emission is markedly changed from the
case where only F centers are present. The characteristic F-center
emission disappears and instead F-band excitation gives the
emissions characteristic of either the Rj or Sf centers. Under these
conditions the emission excited by polarized F-band light is
polarized. Experiments were conducted to test whether these
e8ects might be ascribable to the presence of "higher" excited
states of the M and R centers in the region of the F band. This
does not appear to be the case. It is therefore concluded that
energy transfer processes can occur between the F center and the
3f and R centers. The observed dichrosim of the F band is ascribed
to an interaction of F centers with nearby M' and R& centers.

INTRODUCTION

EVERAL experiments have been reported in recent
years that deal with the symmetry properties of

M centers in KCl. The work of Ueta' clearly demon-
strated the anisotropic nature of the M center. This
was done by bleaching in the 3f band with polarized
light. This had the eGect of removing 3f centers whose
major absorption was along the direction of polarization
while leaving behind 3E centers whose major absorption
was in a diAerent direction. Ueta was then able to ob-
serve a dichrosim in the M-band absorption. This
anisotropy of the 3I center was also demonstrated in the
work of van Doom and Haven. ' In their work a re-
orientation of M centers was induced by irradiation
with polarized F-band light. They then found that
both the M- and F-band absorptions were dichroic.

Another type of experiment which deals with the

~ This work was presented in part at the Color Center Sympo-
sium, Argonne National Laboratory (October, 1956).

' M. Ueta, J. Phys. Soc. Japan 7, 10'7 (1952).' C. Z. van Doom and Y. Haven, Phys. Rev. 100, /53 (1955).

symmetry properties of color centers has been reported
by Feofilov' on NaF and LiF. FeoGlov utilized the
emission of color centers to obtain information on their
symmetry properties. This method is based upon the
idea that an anisotropic absorber should be an aniso-
tropic emitter. Thus excitation of such centers with
polarized light leads to emission that is polarized.
By studying the relation between polarization of the
excitation and emission one can determine some of the
symmetry properties of the emitter.

In the present work we have essentially utilized the
technique of FeoGlov and extended it to study two
types of problems. The first part is a study of individual
centers in KC1 and NaCl; namely, the F, 3f, Rj, and
R2 centers. The second part is a study of interactions
between these various centers.

In order to carry out the above program it was Grst
necessary to study the 3f- and R-center luminescence,
since no information was available on this aspect of

' P. P. Feofilov, Doklady Akad. Nauk 92, 743 (1953).


