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Internal Friction and Defect Interaction in Gerraanium: Theoretical
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A model has been constructed in. which small vibrations of dislocation line segments cause displacements
in the point-imperfection distributions surrounding the dislocations. The energy lost through the motions of
the point imperfections is observed as mechanical damping. The motion of the dislocations is obtained
from the theory of Koehler. The Cottrell potential is taken as the interaction between dislocations and
point defects.

It is shown from the high-frequency expansion of the theoretical energy dissipation that the dependence
of the dissipation on strain, frequency, and temperature is essentially the same as that of the normal anelastic
relaxation effect, in agreement with the experimental observations. It is further shown that the magnitude of
the effect is such as to support the hypothesis that the lattice vacancy, present in a concentration of approxi-
mately 10M/cm', is the point defect which interacts with dislocations, giving rise to the observed vibrational
energy loss. In turn, using the numbers derived from the vacancy hypothesis, it is shown that the cutoff for
the purely elastic dislocation potential is several atom spacings from the dislocation line.

INTRODUCTION

N anelastic relaxation eGect has been observed in
measurements of the internal friction (logarithmic

decrement) of germanium single crystals subjected to
high-frequency stress in the temperature range from
250 to 750'C. The experimental results are reported in
a previous paper, ' together with a tentative interpreta-
tion in terms of the stress-induced migration of lattice
vacancies.

The interpretation in I is based on the observed
temperature dependence of the logarithmic decrement,
on the dependence of the decrement on the number of
dislocations in the specimens, and, implicitly, on the
assumption that the generally accepted mechanisms
for the diffusion of substitutional impurities is the cor-
rect one. It was brought out in I that, because of the
high degree of symmetry of the diamond lattice, and
because of the similarity of the experimental results for
both t 111jand L100$ directions of propagation of the
ultrasonic stress, stress-induced diffusion of point de-
fects could take place only in anisotropically strained
regions of the crystal. Such regions exist, for instance,
in the vicinity of dislocations. Beyond this, no par-
ticular mechanism was specified. In addition, the
phenomenological interpretation implied that 10" va-
cancies/cm' give rise to the effect at temperatures
below 500'C.

In the present paper a definite model is proposed for
the energy dissipation caused by the stress induced
change in the equilibrium distribution of relatively
mobile impurities around dislocations. This model is
used to derive numerical results corresponding to those
derived from the experiment. The dependence of the
dissipated vibrational energy on the frequency and
amplitude of the applied stress, on the temperature
on the concentration of dislocations and impurit
atoms (or vacancies), and on the diffusion coefficient o

' I. O. Kessler, Phys. Rev. I06, 646 (1957), preceding paper.
This paper will be referred to as I.

the impurity atoms is derived in the limit of high
frequencies.

&ER&VATH)N OF THE EQUATIONS

The de6nition of the logarithmic decrement, b, states
that

(vibrational energy dissipated/cycle)/cm'

2&&peak vibrational energy stored/cm'

=hW/2W.

For a bar in resonant longitudinal oscillation, one may
write

W= o'/2M,

where 3E is Young's modulus and 0- is the peak stress.
It is postulated that the energy dissipation, Q8',

arises from the simultaneous presence in the crystal of
p dislocation segments/cm', with an average free length
of X cm, and of C point imperfections/cm'. The con-
centration C is assumed to be suKciently small that the
pinning of the dislocations, leading to the free length ),
is solely due to the crossing of dislocation lines, and not
due to the interaction with the impurities. In addition,
any particular point defect is assumed to interact with
only the nearest dislocation segment. Then, if p ergs/sec
is the average power dissipated by one point defect in
the 6eld of one dislocation, the power dissipated, per
dislocation (J ), is

I' =, ~ ds p(x y)C(x y)dxdy.J J

The s axis is taken along the dislocation line, and the
double integral is extended essentially over the cross
section of inhuence of one dislocation segment. Since in
a box of volume one cm' there are approximately v/X
dislocation segments, one may write the energy dissipa-
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tion per cycle as
27r'o

t t
I pCdA. (4)

The equation for 8 then becomes

2n. t M
i

pCdA.
a)o'

U= —A sin8/i r~, (7)

where
~

r
i

is the magnitude of the radius vector from the
dislocation line to the defect, 8 is the angle between r
and the Burgers vector of the dislocation, and A is a
parameter depending on the elastic constants of the
crystal, the lattice constant, and the relative degree of
misfit of the defect. Equation (7) is valid only in the
region of purely elastic interaction of the dislocation and
impurity. The elastic force exerted by the dislocation on
the defect is —V'U. This force may be attractive or
repulsive, depending on the size of the defect and on its
location with respect to the dislocation.

If the concentration of the point defects far from the
dislocation is Cs/cm', then, for small Cs, the concentra-
tion near the dislocation is given by

To find 6, the above integral must be evaluated.
Furthermore, if the interpretation of the experimental
results described in I is correct, it should be possible to
express the resultant 5 in terms of the equation

8 = Aosr/$1+ (eor) s7. (6)

This is the equation for the logarithmic decrement
arising from an anelastic relaxation effect. In Eq. (6),
co is the applied angular frequency and 7. is the relaxation
time, which, in the present case, is of the order of atomic
jump times. The proportionality factor 6 is m times the
relaxation strength. The temperature variation of 5
must be small compared to the temperature variations
of rorL1+(eor) 7

It has been shown by Cottrel1' that in an elastic
continuum the interaction potential between a unit edge
dislocation and a point defect is given by

The total drift velocity of the defects is given by
v= vr+vs. The quantity v vanishes when equilibrium
is attained, resulting in Eq. (8).

It is proposed to account for the observed energy
dissipation by the perturbation of the atmosphere of
point defects normally surrounding dislocation lines
through small vibrations of the line segments caused by
the applied stress. It will be assumed that Koehler's
theory of small motions of edge-dislocation segments,
pinned at the ends, is applicable. In this theory, the
amplitude of vibration of the dislocation line is propor-
tional to the applied shear stress and to the square of the
free dislocation length.

Under these assumptions, then, it is to be expected
that the dislocation atmospheres will vibrate with the
same frequency as the dislocation, but that the phases
and amplitudes of the defect vibrations, relative to those
of the dislocations, will depend strongly on the relation
between the frequency of the externally applied stress
(dislocation vibration frequency) and the jump time
for diffusion of the defects, which may be varied,
experimentally, by changing the temperature.

Consider now an edge dislocation, having (x,y) as its
slip plane, and x as the slip direction. The dislocation is
assumed to undergo small oscillations in its slip plane,
under the inhuence of an externally applied shear stress.
The oscillatory amplitude, averaged over the length of
the dislocation line, is assumed to be R(t) =Eoi exp(scot),
where i is the unit vector in the x direction. The point
defects located within a small volume, a distance r from
the dislocation, have concentration C(r, t) and drift
velocity v. From Eqs. (9) and (10), one may write

D
v= — V)U(r, t)+kT lnC(r, t)7.

kT

This equation gives a first relation between C and v.
The second relation is given by the conservation of
defects:

(12)

(8) ~hen

Iran&&[

R(t) [,

This equation may be derived' by considering the drift
ve1ocities of defects due to their concentration gradient
and due to the interaction force. If D is the diQ'usion

constant of the defects, then the concentration gradient
induced drift velocity is

vi= —DVC/C,

while the drift velocity due to the interaction force
field is

vs ———(D//ItT) V U. (10)
' A. H. Cottrell, RePort on the Strength of Sobds (The Physical

Society, London, 1948), p. 30.
e A. H. Cottrell and M. A. Jaswon, Proc. Roy. Soc. (London)

$199, 104 (1949).

U(r, t) U(r) —R(t) VU(r), (13)

where U(r) is given by Eq. (7).Under static equilibrium
conditions, i.e., when v= 0 and 80=0, the concentration
is Ci(r), as given in Eq. (8). For small perturbations,
one may write

C(r, t) =C,(r)(i+.(r, t)7,

Inserting Eqs. (13) and (14) into Eqs. (11)and (12),
one obtains

V'L" (r t)Ci(r)7= Ci(r)—e(r t)
Bt
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and
D

v(r, t) = — VrtkTe(r, t) —R(f) VU(r) j.
kT

(16)

By iterating this equation, e(1t,rf) can be obtained as a
series expansion in powers of 1/ce. The first two terms of
the expansion, which approximate the solution in the
limit of smalj D/or, are given by

F= —V/kT. (r,f) —R(f) VU(r) j. (17)

The eGective time-average power put into the particle
motion is

p=-', $-', v*.F+-', v. F*j

The zeroth-order terms have been canceled, in virtue
of the assumption that equilibrium conditions were
established before the dislocation was made to vibrate.

By using Eqs. (10) and (16), an effective force acting
on a particle at r may be defined,

DpA q'
e(4,~) =2~s—

I 14 (4'+n')'
re &kT)

4D
X i+ (its+rP)

I
6+ rf I+ . (22)

re 0 kT )
With the aid of Eq. (22), the real and imaginary parts
of V(e—R VU//kT) may be constructed. The time-
average power dissipated in the cylindrical volume
element )dxdy is given by

RVUq '
=-,'DkT V) .—

kT )
(18) ) DkTdrfdf

pkdxdy= (LReV( )]'+LImV( )$') . (23)
2Q'+")

where v(r, f) and s(r, f) have been assumed to vary
sinusoidaOy with the time, due to the harmonic driving
force, R= its exp(iret). The power dissipated per dis-
location is then given by Eqs. (3) and (18). In order to
perform the necessary integration it will first be neces-
sary to obtain an expression for s(r, t) from Eqs. (15)
and (16).

To eliminate v(r, f), Eq. (16) is multiplied by Ci(r)
and the result is substituted in Eq. (15), the continuity
equation. Then

D -VU(r) —V'—e(r, f)+
Bt kT kT

~rVLkTe(r, f) —R(f) VU(r) j=0, (19)

where VCi/C, has been replaced by —VU/kT, again
making use of the equilibrium condition. Equation (19)
may be simplified by setting e(r, t) = s(r) exp(ioif), and
noting that V'U(r) =0,

D
DVse (VU) (Vs) ——stes

kT

D
(VU V)(R VU). (20)

(kT)'

+—+ —s(4 ~) (21)
BP Brj kT Brf

An approximate solution of this equation may be
obtained by rewriting it in a coordinate system based on
the equipotentials of U(r). If 1t =r ' cos8andrf=r ' sing,
then dA= (dxdy) = (tPs+rP) 'diPdrf and U= —Arl. With
the indicated substitutions, Eq. (20) is transformed into

D fdic'
e(4)n) = (4'+n')—' —2&of

(

i~ (kT)

Retaining terms to order (D/ce)', this equation becomes

I 4'+"+
diPdrf 2 ( kT ) kT Loi)

(17ps 52 serfs 16—2' 4rf4 —1—0Qprfs —7rfs)
kT

48 (13prf+—27$'rf'+15prf'+rf ) . (24)

It is now possible to evaluate the integral appearing in
Eq. (5) if a lower limit of integration can be found. For
this it is necessary to assume that there exists a cut-oG
distance I such that the potential U(r) =dr —' sin8
becomes invalid for

~
rt &~1.. This is reasonable if it is

remembered that U(r) is derived from the strain
interaction of a dislocation and an impurity in an
elastic continuum. The continuum approximation
clearly does not hold when ~r~ is of the order of only a
few atomic spacings. 4 One may think of L as the distance
from the dislocation line at which the potential becomes
strongly repulsive. For the case when the impurity is a
lattice vacancy, a further argument for the existence of
such a cuto8 distance may be made. Since a jog is
formed when a vacancy condenses on a straight segment
of edge dislocation, and since such a jog increases the
strain energy of the dislocation, it is expected that the
effective force between vacancy and dislocation be-
comes repulsive at small

~
r ~, regardless of the value of

e. In terms of the variables (p,rf), then, the hmits of
integration become &1/L.

The further assumption, that the radius of the
impurity atmosphere is large compared to the cut-oG
distance, or that kTI./A«1, may be made in evaluating
the integral. This assumption is neither strictly correct,

4A. H. Cottrell, Dislocations and I'lastic Floe in Crystals
(Oxford University Press, Oxford, 1953), Chap. II.
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nor is it essential to this development. It is introduced
only in order to make the 6nal expression for 8 more
manageable.

The integral to be evaluated, then, is

of deRection of an edge dislocation
due to resolved shear stress 0-. This
used for the average defiection, Eo,
in the equations. For the case of
obtains

of free length X,
amplitude will be
which is required
germanium, one

(2ARp) '
I'g= X)

— PCdA = ,'DkT-I
I

Cp'A

EkT j
pl./L

dr), (25)

where { ) is the expression appearing in brackets in

Eq. (24). The result is

16ARp'Cp ( D)
p =

I
—Ie'+~1~ ~

3L t L')

Eo= 5X10—9'0- cm. (31)

Combining Eqs. (30) and (31), it is seen that the
decrement is independent of the applied stress, as
required for an anelastic relaxation effect. The average
free length of a dislocation, X, is estimated to be 1
micron. ' Then E0=5X10 ' cm, or much less than one
lattice distance, for a typical strain of 10 .The density,
v, of dislocations which lie in slip planes and hence are
able to take part in the postulated mechanism, is put
at 5X 104/cm"

The formula for the impurity-dislocation interaction
constant is4

24 656 ) Dy ' t' A q
' 1

x 1—
I
—II I

—+".
420 EL') t kTL)

(26)
4 f 1+eq

3 &1—~J
(32)

24 656 p Dy '
p A q

' 1x1—
I~
—II I

—+ ". (»)
420 I L') &kTLi to'

The assumed expression for the decrement may be
similarly expanded for the high-frequency case:

M7
1—

.1+ (po7) ooT
+

(cor)p
(28)

Taking the corresponding terms of (30) and (29), one
obtains

and

( 42o l l (kTLI L'

&24656) (IAI) D

32m' ( 420 ) 'Rp vMCpkT
! e[A i/kTL

3 (24 656) o'

(29)

(3o)

NUMERICAL RESULTS AND DISCUSSION

In order to correlate Eqs. (29) and (30) with the
experimentally obtained values for d, and 7, it is
necessary to make some reasonable choice of the con-
stants appearing in these equations. Although the
values of several of the constants are in some doubt, due
to insufficient experimental evidence, it is believed that
at least an order of magnitude may be calculated for
the e6'ect.

Koehler' has given an expression for the amplitude

5 J. S. Koehler, ImPerfectiorls irl, Nearly Perfect Crystals (John
%iley and Sons, Inc. , New York, 1952).

To this approximation, according to Eq. (5), the
logarithmic decrement is given by

2m. (16ARo Co&~') ( D't
5=

I I I le
3Los & i.Ls)

where b is the Burgers vector, 3f is Young's modulus,
e is Poisson's ratio, p is the normal radius of an atomic
site, and (1+r))p is the radius of a site with an impurity
atom. The elastic constants of germanium are obtained
from the data of Fine' and from the experiments
described in I. It is further estimated that a vacancy
site has an effective radius differing by 10% from that
of a normal site. When one uses these values for the
subsidiary constants, the derived value of 3 is
10—"erg cm.

It is now possible to compare the expressions for 6
and v- which were derived in this development with the
values found in the experiments. This comparison, the
outcome of which bears on both the validity of the
mode1 used in the calculations and on the estimates of
the numerical constants, is accomplished in the form of
a calculation of I., the cut-off parameter, and D, the
diffusion coefficient. If the values of 2, of Eo, and of the
elastic moduli are inserted in Eq. (30), together with the
measured value of 6, which is 3X10 ', and the derived
value of Cp, which is approximately 10"/cm', a value
of 5.4X10 ' cm is found for I.. The cut-o6 distance for
the Cottrell potential is then approximately two lattice
spacings, which is certainly quite reasonable.

Equation (29) gives the relation between the diffusion
coefficient and the relaxation time, the value of which
was found to be 10—"+' sec.' Inserting I.and 3 into that
equation, one obtains the magnitude of Do. This rnag-
nitude turns out to be 10 4+' cm'/sec, which is smaller

by a factor of at least 1000 than the temperature-
independent part of the diffusion coefficient for va-

' S. G. Ellis ( rivate communication).
S. G. Ellis private communication) and S. G. Ellis, J. Appl.

Phys. 26, 1140 (1955). This density of short, mobile dislocation
segments is derived from the apparent density of composite
dislocations, most of which do not lie in slip planes.

' M. E. Fine, J. Appl. Phys. 24, 1331 (1953).
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cancies derived by I,etaw et ul. ' from experiments on
the self diffusion of germanium and from data on the
quenching-in of vacancies. "

The discrepancy between the value of Do derived in
this paper and in that of Letaw et a/. may be due
either to a somewhat faulty estimation of some of the
constants entering into Eqs. (29) and (30) or to the
u.ncertainity of the vacancy quenching-in experiments,
or to both of these. The latter possibility is of course the
most likely. If, for instance, the number of quenched-in
vacancies is ten times higher" than that reported by
Mayburg, and if, in addition, small errors have been
made in the estimates of g and P, leading to changes in
3 and I. by no more than factors of two, a reasonable
match in the two values of Do is obtained.

SUMMARY

A model has been proposed for the calculation of the
vibrational energy dissipated in a crystal subjected to
ultrasonic stress, which contains point defects and
dislocations. In this model an equilibrium situation is
visualized in which the point defects form dilute
Cottrell atmospheres around short mobile dislocation
segments having some edge component. Under the
inhuence of externally applied stress, these dislocation
segments are assumed to deflect in the manner de-
scribed by Koehler. The impurity atom distribution
within the potential of a given dislocation may thus, in
a statistical sense, be visualized as "dragged" along by
the interaction force, at a rate and to an extent which is
determined by the diRusion coefficient and by the
opposing force of the concentration gradient. The dis-
sipated power is calculated from the product of the net
force and the drift velocity due to the force.

' Letaw, Portnoy, and Slifkin, Phys. Rev. 102, 636 (1956).
'0 S. Maybnrg, Phys. Rev. 95, 38 (1954)."R.A. Logan, Phys. Rev. 101, 1455 (1956).

Several approximations are made, but only one of
these is of fundamental physical significance. The others
either reQect the present state of ignorance concerning
the internal state of crystals, or permit simplifications
in the mathematics. The fundamental assumption of a
cutoR for the dislocation-impurity interaction potential
is made in such a way that the numerical value of the
cutoff distance is obtained from the calculation and
from the experimental constants, rather than from a
priori reasoning. The validity ot the assumption has
been discussed by Cottrell, and in itself is not in doubt.

From the present calculations one may draw the
general conclusions that very small concentrationsof
point defects, through their interactions with mobile
portions of dislocation lines, may give rise to a measure-
able eRect, which, in the limit of high frequencies, is
equivalent to an anelastic relaxation whose relaxation
time depends on the diffusion coefFicient of the point
defects. It has also been shown that the magnitude of
the effect is such as to support the hypothesis that the
relaxation effect observed in pure germanium crystals
is due to lattice vacancies. Furthermore, if the vacancy
assumption is allowed, that is, if numerical values
corresponding to the vacancy concentration derived in
I are inserted into the equations, it is possible to esti-
mate that the cutoff of the purely elastic defect-disloca-
tion interaction potential occurs several atom spacings
away from a dislocation. This result is rather interesting,
since for covalent crystals a considerably larger cut-off
distance might have been expected.
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