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it is possible, assuming such a distribution, to derive
expressions which fit the observed values for the
complex bulk modulus at various temperatures. The
compressional and shear viscosities are also found to
be equal within experimental error, suggesting that a
structural mechanism is responsible for the observed
properties. This does not necessarily contradict the
assumptions of the present paper, since we have

assumed here that the theoretical model to be used at
temperatures substantially below room temperature,
where large molecular aggregates may occur, as
suggested by Voshida, 4 is quite diGerent from that
applying at room temperature and above. It is only in
the latter region that a thermal mechanism shouM be
considered, since the vibrational relaxation time will
be very long at lower temperatures.
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The combination of SchiQ's energy-angle distribution for the
radiated photons and a Gaussian-like theory of multiple scattering
for the incident electrons is studied. The emphasis here is placed
on a detailed consideration of the inQuence of screening as ex-
pressed in the Schi6's theory.

An expression for the forward radiation is first developed, which
is valid for values of X«1 and for any value of p (X and p being
parameters which essentially measure the importance of multiple
scattering and screening, respectively). This result shows that the
deviations of the actual forward spectrum from the integrated
spectrum of the intrinsic distribution are appreciable even for
small values of ), the corrections being largest for complete
screening and negligible for no screening.

The case of complete screening is then studied exactly both for
the forward radiation and the angular distribution. The latter
results show that the integrated spectrum approximation is a good
one when tt&p/Eo and X«1. In a particular case, the theory pre-
dicts that the angular distribution (normalized to unity at 8=0)
is somewhat broader for complete screening than for no screening.

An exact treatment of the forward radiation is given for the
cases of complete screening and no screening. Finally, an expres-
sion is developed, which yields the same result as the exact treat-
ment for complete screening and no screening and provides a good
approximation for intermediate screening.

INTRODUCTION

' 'N a recent paper, the angular distribution of brems-
~ ~ strahlung from targets of moderate thickness (which
are frequently used in betatrons and synchrotrons)
was studied on the basis of Schi6's energy-angle dis-
tribution for the radiated photons and Moliere's com-
plete theory of multiple scattering for the incident
electrons. ' '

The necessity of using an expression based on the
complete theory of multiple scattering in order to ob-
tain accurate agreement with experiment at moderate
and relatively large angles (r7&1) was emphasized. On
the other hand, at suKciently small angles, it is reason-
able to expect that a very good approximation will be
provided by the contribution of the Gaussian-like term
of the scattering theory to the final expression for the

energy-angle distribution of the photons. The treat-
ment of this contribution which in I was called the

* Supported in part by the joint program of the Office of Naval
Research and the U. S. Atomic Energy Commission.

t A summary of some of the results of this paper were presented
before the 1956 Washington meeting of the American Physical
Society.

~ A. Sirlin, Phys. Rev. 101, 1219 (1956). Hereafter, this paper
will be referred to as I.

~ L. I. Schiff, Phys. Rev. SB, 252 (1951).
3 G. Moliere, Z. Naturforsch. Ba, 78 (1948); H. A. Bethe,

Phys. Rev. 89, 1256 (1953).

"zeroth-order term" of the photon distribution was
exact (in the frame work of the Schiff theory) in the
case in which the screening of the nucleus by the outer
electrons is neglected. On the other hand, the treatment
of the screening and, more specifically, the determina-
tion of the "screening angles" Xr and 7fs LEqs. (9) and
(9a) of If were only approximative.

Both theoretical and experimental arguments may be
advanced to show the necessity of a more detailed
study of the betatron spectrum at small angles. In the
case in which the characteristic width ts/Es of the
bremsstrahlung distribution is small in comparison with
the width of the multiple-scattering distribution Li.e.,
when X«1, see Eq. (2)j, it is a well-known theoretical
prediction that the shape of the spectrum is roughly
independent of angle and is given approximately by the
integrated spectrum of SchiG's intrinsic distribution. '
This argument is valid for angles 0 large in comparison
with tc/Eo (but not large in comparison with x,'8), and
it is based on the fact that, under those circumstances,
the electron angular distribution is a very slowly vary-
ing function of angle so that it may be taken out of the
convolution integrals. This, however, is not a very good
approximation when 0&tc/Es. As will be shown later,

'L. I. Schiff, Phys. Rev. 70, 87 (1946); J. D. Lawson, Nu-
cleonics 10, No. 11, 61 (1952). Of course, in that approximation
the whole spectrum is multiplied by an angle-dependent function.
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corrective terms arise because of the logarithmic peak
of the scattering distribution at 8=0, and these correc-
tive terms modify the shape of the spectrum even for
very small values of P and, especially, for the Iow-

energy quanta. ' When 8 increases well beyond IJ/Eo,
these corrective terms become negligible. For 8&ij/Eo
and P((1, the corrections are largest in the region of
complete screening and they are negligible in the region
of no screening. The eGect in the low-energy part of the
spectrum is to give a value lower than that corre-
sponding to the integrated spectrum of the intrinsic
distribution.

All this points to the result that, for X&(1, the angular
distribution (normalized'to unity at 8=0) of the spec-
tral components corresponding to complete screening is
somewhat broader than that of the components corre-
sponding to no screening. (The magnitude of these
predicted differences is not very large; see Fig. 3.)'

It is the aim of this paper to study the shape of the
spectrum at small angles, taking a more detailed ac-
count of the inQuence of the screening on the basis of
SchiFs distribution for the intrinsic. bremsstrahlung.
From the experimental standpoint, the interest of that
study is based on the fact that in some of the modern
accelerators, because of the large incident energies
available, a considerable part of the spectrum lies on
the region in which the screening is important. More-
over, there are already some indications of rather large
variations in the experimental angular distribution of
diferent components of betatron radiation. This, again,
indicates the necessity of a theory which may provide
a more detailed description of the whole spectrum at
small angles.

In order to maintain a reasonable mathematical
simplicity, we shall limit ourselves to the treatment of
the zeroth order term in the sense of I. We must'bear
in mind that this is justi6ed only in the case of rather
small angles (8'&x,sB).

In Sec. 8, a simple expression for the forward spec-
trum valid for any value of the screening parameter p

t see Eq. (4a)$ is developed in the case )&«1, keeping
terms of order ink and terms independent of ). Terms
of order )&(ln)&)' or higher are neglected. It will be
apparent that the approximation of the forward spec-
trum by the integrated spectrum of the intrinsic dis-

tribution corresponds to keeping only terms of order

ln(y)&), where Iny is Euler's constant.
In Sec. C, an expression for the angular distribution

~The rather large deviation of the actual forward spectrum
from the integrated spectrum was also found independently by
numerical methods by K. Hisdal /Phys. Rev. 105, 1821 (1957)g.' It is convenient to bear in mind that the region of complete
screening extends from the low-energy limit of the photon spec-
trum up to values of the photon energy consistent with the con-
dition p&)1, p being the screening parameter defined in Eq. (4a).
Similarly, the region of no screening extends from the high-energy
limit up to a value of the photon energy consistent with the
condition p((1.

7 R. M. Warner and E. F. Shrader, Rev. Sci. Instr. 25, 663
(1954).

dt) 2Z' t'e') s

P (t'))Id' =Ddt')ÃT
r) 137 E p, )

X{(2—2ti+rP)E &ol (tl )&) (2 tl)sI&ol (sl )&)

where

(ia)

(1b)

2
E"&(0)&)=F"'(8)g —(1+no'/)&) ' 1nM(tl&'/)&)

X
(1c)

Following the notation of I, the symbol f(8)gg(8)
means the convolution of f(8) and g(tl) in the plane of
4, p, is the rest energy of the electron, p is the ratio of
the photon energy k to the energy Ep of the incident
electron, T is the total target thickness, and

(1e)

is Moliere's reduced angle L8 is the geometrical angle
and the functions x, (T) and B(T) are given in the two
papers of reference 3j.

The parameter X, dined by

(2)

in the case of complete screening is exactly worked out,
the results being expressed in terms of one-dimensional
integrals which may be calculated numerically for any
value of X. In the case of the forward radiation, these
integrals reduce to series which may be readily evalu-
ated for )&&1 (Sec. D).

This, together with some of the results of I, provide
simple and exact expressions (within the validity of the
Schiff theory and the zeroth-order approximation) for
the dependence of the forward spectrum on the target
thickness T in the extreme cases of complete screening
and no screening.

Finally, in Sec. E an expression for the forward
spectrum is given for X&1, which yields the same re-
sults as the exact treatment of Sec. D in the cases of
complete screening and no screening and provides a
good approximation in the case of intermediate
screening.

A. GENERAL EXPRESSIONS

According to Eqs. (4), (2d), and (3) of I, the expres-
sion for the combined energy-angle distribution in the
zeroth-order approximation reads
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where Ei(—x) is the exponential integral as defined in
Jahnke-Ende. s The distribution Ff'&(8)ttdtt represents,
of course, the total number of electrons which have
been scattered through a reduced angle 8 about the
incident direction at any point of their path through the
target.

The inQuence of the screening is contained in the
function M(8'/)i), which is defined by the following
expression:

1 (Z') 1 1+-,
M(q) &111) (1+()'

(4)

Ep Z* f'1

tt 111 Eg )
(4a)

The parameter p measures the relative importance of
the screening in Schiff's theory: p«1 means no screen-
ing while p&&1 means complete screening.

Equations (1), (1a), and (1b) correspond to Eqs. (5),
(Sa), and (5b) of I. Useful and exact expressions for
It' &(tt,X) and Jt'&(8,)) have been given in Eqs. (12),
(13), (14), (14a), (B,S), and (B,9) of I. On the other
hand, the evaluation of the functions Ef"(et, )i) and
Lf"(8,)i) given in Eqs. (5), (9), and (9a) of I was only
exact in the case of no screening. The inAuence of screen-
ing was taken into account only approximately.

In order to simplify the notation, the superscript (0)
in the functions I&'&, J&'&, E{'&,and L&'& will be omitted
in the following sections. %e must remember, however,
that all the results of the present paper correspond to
the zeroth-order approximation.

' The fact that the value of the function x,'(t)B(t) is taken at
t= 7 has been mathematically justified in paper I Ldiscussion
after Eq. (8) of Ig. If the use of any other Gaussian-like theory of
multiple scattering is desired, it is sufhcient to replace in Eq. (2}
the quantity x,s(T)B(T) by the square of the width of such dis-
tribution law.

9 E. Jahnke and F. Emde, TubLes of Jilnctioes (Dover Publica-
tions, New York, 1945}.

measures the relative importance of the in6uence of
multiple scattering on the 6nal distribution of the
photons: X—+0 means that the final angular distribution
of the photons is essentially determined by the multiple
scattering distribution while X—+~ means that the
influence of multiple scattering is negligible. It should
be noticed that for Ep)&p, which is the case of interest
here, x,'8 varies with the energy as Ep ', so that X is
independent of Ep. In this case, then, ) is only a func-
tion of Z, the mass number A, and the total thickness
T of the target.

In the zeroth-order approximation, according to
Eqs. (2d) and (11) of I, the electron distribution
reduces to

~1
Ii ' (8)= 2 exp( t't'/r)—dr/r= —2 Ei(—8') (3)

Jp

I(0,)i)/2 = —e" Ei(—)i), (5)

7(O,X)/2= —e" Ei(—)t) (1—)i —)i')+)i. (Sa)

oo —te—Ei(—)t) —= dt—

In that case, it is easily seen that Eqs. (1c) and (1d)
reduce to

E(0,))=—2 Ei(—)if)(1+$) '1nM($)dg,
0p

(6)

1.(O,X) = —12 Ei(—)i))$(1+$) ' lnM(f)dj (6a.)

In principle, these integrals may be worked out nurneri-
cally. Unfortunately, they involve three parameters,
Z, X, and p, spreading over a very large range of values
of experimental interest, so that such a tabulation would
be very laborious.

In this section, expressions valid for A«1 will be
given keeping terms of order ink and terms independent
of )i. Terms of order )i, )i(ink)', X ln)i, or higher will be
neglected. In this case, I(0,)i) and J(0,)i) reduce to
—2 1n(y)i), where lny is Euler's constant. The neglect
of terms of order X, X Ink, and higher is equivalent to
the replacement of Ei(—X$) by ln(yap) in Eqs. (6) and
(6a), so that

E(0,)i) = —2 " 1n(yX$)(1+$) ' lnM($)d$
0p

+O()i,X 1n)i ), (6b)

I (0,)i) = —12
'p

»(v) $)5(1+8 '»M(k)dk

+OP, ,)i 1n)i ). (6c)

These integrals may be solved exactly by partial in-
tegrations or by contour methods, and the following
results are obtained:

Ã(0, )i) = —2 ln(p)i)DnM(0)+2 —2 tan 'p/p]

+Gi(p)+O()t, )t ln)i ), (7)
L,(0,)i) = —2 ln (y) )

4 3 4
X lnM(0)+ ———ln(1+p') ——tan 'p+5/3

p p p3

+Gs(p)+O()t, )i 1n)i ), (7a)

B. FORWARD SPECTRUM FOR X((1

In the case of the forward radiation (tt=0), the fol-
lowing exact expressions valid for all values of ) have
been derived in I:
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FIG. 1. Comparison between the integrated intensity spectrum
of the intrinsic distribution (multiplied by —21n(&X)j with the
forward intensity (as given in Sec. B) in the case Z= 79, X=0.01,
and 2EoZ&/(111@)=3. The latter is calculated on the basis of
Eq (1) (e.xpression between curly brackets), and Eqs. (7) et st. ,
in which terms of order X and higher are neglected.

where
2

Gi(p) =»(1+p') -,'ln(1+p')+- tan-'p

—2(tan 'p)' —F (p'), (7b)

4
G (p)=»(1+p') l »(1+p')~ —+1 ~+—tan p+-

p'-

( 3q 4—2(tan 'p)'I 1+—~+4——tail 'p —F(p'). (7c)
p') p

For complete screening (p-+~), Gt(~)= —sos and
Gs(oo)=4 —srrs .For finite p, the values of G;(p) lie
between zero and these two extremes.

In Fig. 1, the effect of the corrections G, (p) is illus-
trated for a particular case. The intensity spectrum
given/by~Eq. (1) (expression between curly brackets)
and Eqs. (7) ef seg. is compared with the integrated
intensity spectrum of the intrinsic distribution multi-
plied by —2 ln(&X). The latter is given by the expres-
sion between curly brackets in Eq. (3) of reference 2.
It is apparent that the deviations from the integrated
spectrum are appreciable for low- and intermediate-
energy quanta.

The main limitation of the results of this section is
the fact that the terms of order X, X ln), have been
neglected. Fortunately, these higher order terms in the
expression for the forward radiation may be worked out
exactly in the extreme cases of no screening and com-
plete screening. The results for these two limiting cases
will be shown in Sec. D.

C. COMPLETE SCREENING, ANGULAR
DISTRIBUTION

In this section, the problem of the angular distribu-
tion is studied in the extreme case of complete screen-
ing (p&)1). The importan. ce of this limiting case is
based, of course, on the fact that in some of the modern
accelerators, because of the high energies available for
the incident electrons, a considerable part of the photon
spectrum lies in the region p&)1.

In the limit p-+oo, when one remembers Eqs. (1a)
and (4), it is clear that Eq. (1c) reduces to

E(t),X) = 2 in(111/Z&)I(8, X)

+F(t'f) g (4/X) (1+tie/)i) ' In (1+i)is/X). (8)

Here F(y) is the Spence's function defined by

F(y) = in(1+f)dk/f. (7d)

In order to evaluate the integral of Eq. (8), use is made
of the folding theorem for the Bessel function Jo.
Remembering Eq. (3) and using the well-known expres-
sion for the Bessel (Fourier) transform of the Gaussian
function I see Eq. (B1) of Appendix Bj, we get

Useful expressions for the evaluation of F(y) are given
in Appendix A.'

If the contributions of Gi(p), Gs(p), and the terms of
order X, X ink, , are neglected in Eqs. (7) and (7a),
the forward spectrum given by Eq. (1) is proportional
to the integrated spectrum of the intrinsic distribution,
which is the approximation used in the literature. '
Thus, for X&(1, the functions Gi(p) and Gs(p) give the
main deviation from the integrated spectrum.

In the case of no screening (p—+0), G, (p)—+0 (i= 1,2)."

00 (1
g(y)= (W) () = p(—y"/) ' ( )

0

The Bessel transform of the second folding factor of
Eq. (8) admits the following integral representation
(see Appendix B):

4 r"
h(y) =- Jp(~) (1+t)'/X) —' ln(1+es'/X)8'

' Tables of F(y) as well as useful relations involving this func-
tion are given by K. Mitchell, Phil. Mag. 40, 351 (1949).

"The fact that G;(p) (i=1, 2) vanish for p=0 may be easily
understood mathematically as follows. It is clear that the G;(p)
come from the contribution of in) in Eqs. (6b) and (6c). Now, for
p—+0, in&(() is independent of g, so that in& contributes integrals
of the form JP(1+/) s"P" 'lnfdg, where I is a positive integer.
It is easy to see that these integrals vanish.

t'= —2 exp j
—n —

(
lllndn

4n&

( y9)
(1) ' exp~ —n — ~dn, (8b)

4 i
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where It (1) is the logarithmic derivative of the factorial
function as defined in Jahnke-Ende. By virtue of the
folding theorem, we get

F (8)g (4/)I. ) (1+8'/X) ' ln (1+8'/X)

Jp
~ (e)h(y)a(y)Fdic (Sc)

Observing Eqs. (Sa) and (Sb), we notice that in Eq.
(Sc) the integration over y is essentially the Bessel
transform of a Gaussian function, so that it may be
carried out immediately using Eq. (B1).By remember-
ing the integral representation of I(tI,X) given in Eq.
(10) of I and performing the integration over p., the
following result is finally obtained:

(111)
E(e,X) =2 lnI I+It (1) 1(tI,)I)

E ZI

( xn) f' xn—4 s»u EiI ——
I
—EiI —

I
d (9)

+)~)

where @=8'.An analogous method leads to

f'111
~

L(8,))=2»I, I+It(3) ~(+,))
&ZI)

f' xn) ( xn )—4( e
—nlnn EiI ——

I

—EiI—
n+)t]

X ( xu ) ( xu)
+ exp

I

—
I

—exp
I

——
I

dn. (9a,)
u+)I ( u+X)

The integrals involving Ei(—xu/X) and exp( —xn/)I, )
in Kqs. (9) and (9a) may be easily reduced to closed
form (see Appendix C). However, no simple closed
expressions for the integrals involving Ei(—xu/(n+X))
have been found. For a given value of x and P, the
expressions in Eqs. (9) and (9a) may be evaluated
simply by a combination of numerical and analytical
methods (see Appendix C).

In Fig. 2, the intensity spectra predicted by Eq. (1)
(expression between curly brackets) and Eqs. (9) and
(9a) for X=0.01 at various angles are compared with
the approximation in which the energy-angle distribu-
tion is represented by the integrated spectrum multliplied
by the angle dependent function —2 Ki(—x—X).
Strictly speaking, the approximation used in the litera-
ture, in which the electron distribution F(t'f) is regarded
as slowly varying in comparison with the intrinsic
photon distribution o.(tI) leads to an energy-angle dis-
tribution given by the integrated spectrum multiplied
by F(8). However, as F(8) diverges at tI= 0, in order to
compare that approximation with the exact results of
this section, the next best choice has been of replacing

2.=79,X~O.OI, Complete ScreenIng

ep & --- -2EIt-x-X) x
Integroted Spectrum

70

FIG. 2. Comparison of
the integrated spectrum ap-
proximation with the exact
results at various angles in
the case X=0.01, Z=79 and
complete screening. The
latter are calculated on the
basis of Eqs. (12) and (13)
of I and Eqs. (1), (9), (9a),
and (C,4) of this paper.

60

tso

QQ

50-

IO-

2~
~p

85E
Eo

I I I I

0.2 OA 0.6 0.8 I.O
k ~
Ep

F(8) by —2 Ei(—x—X), that gives the value quoted in
the literature for 8=0 and A«1 and is a good approxi-
mation of the functions I(t'f) and J(ei) for X«1 and
ti&1

t see Eqs. (12) and (13) of If. We see that the
difference between this approximation and the exact
results is largest for 8=0, is rather small for 8=2@/Ep,
and is negligible for 8= Sy/Fp.

This behavior is easily understood as follows. The
integrated spectrum approximation is based on the
fact that, for X«1, the electron distribution F(8) is a
very slowly varying function of angle in comparison
with the intrinsic distribution (which in the limit X~O
behaves like a 5 distribution), so that it may be taken
out of the convolution integrals. This argument is valid
for angles 8 larger than fj/Ep [but not large in compari-
son with x,(T)B'(T); see belowj. When 8&@/Ep, this
is not a good approximation because of the logarithmic
divergence of F(8) at tI=0.

In order to have a more physical picture, let us 6rst
limit ourselves to the case 8=0. Most of the radiation
at 8=0 comes from a cone of width p/Ep about that
direction. Now, as shown by the logarithmic peak of
F(t)) at 8=0, in that cone the electrons are predomi-
nantly scattered in the forward direction. This means
that the contribution to the total forward radiation of
the forward-emitted photons is more heavily weighted
than that of the photons emitted through a finite angle.
This explains the deviation of the forward spectrum
from the integrated spectrum. As we see from Figs. 1
and 2, the exact calculations in the region of complete
screening give at 8=0 a value lower than that corre-
sponding to the integrated spectrum. If we now consider
the final radiation at an angle 8 well beyond fl/Ep, the
forward-scattered electrons will not contribute. Then,
if )I,«1, F(t'f) will be nearly a constant in the interval
of width p/Ep about 8, so that the contribution of all
the photons will be equally weighted throughout that
cone. Thus, in this case, we may expect the exact
solution to coincide with the integrated spectrum ap-
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FIG. 3. Comparison of the
angular distribution (normal-
ized to 1 at 8=0) for complete
screening and no screening in
the case Z=79 and X=0.01.
The curve for complete screen-
ing is calculated for g=0 and
may be read partially from
Fig. 2. The curve for no screen-
ing is calculated for g=1, in
which case it is given exactly
by f(e)/f(0) LEq. (12) of Ij.

and

X()t)= e inn ln(1+n/)t)du, (10b)

I'(&) = t e a inn ln(1+n/)%, )dn. (10c)

For )«1, these integrals may be readily computed
from the following exact expressions, whose derivation
is sketched in Appendix D:

proximation, as is shown in Fig, 2 for the case of
complete screening.

For 0&X,B, this intuitive discussion is complicated
by the fact that the zeroth-order approximation [Eq.
(3)] is not correct and the terms of order 8 ' must be
taken into account [see Eq. (2d) of If. In that case the
anal distribution is influenced by the relative values of
the parameters X and 8 '. We shall not enter however,
into a discussion of this region.

On the other hand, in the case of no screening and
X«1, the integrated spectrum approximation is very
good even for the forward radiation. This is connected
with the rather fortuitous cancellation of the functions
G;(p) for p—4 (see footnote 11).

As a consequence of the discussion given above, we
should expect the angular distribution (normalized to
unity at zero angle) to be somewhat broader for the
spectral components corresponding to complete screen-
ing than for the components corresponding to no
screening (see reference 6). This is illustrated in Fig. 3
for A=0.01. The curve for complete screening has been
calculated for the spectral component q=0 from Kqs.
(1), (9), and (9a) and may be also partially obtained
from Fig. 2. The curve for no screening has been calcu-
lated for rf = 1 and is then given by the function I(tl,)t)

[Eq. (12) of I). It is seen that, for )%.=0.01, the differ-

ence between these two extreme cases is not very large,
being at most of the order of ten percent. For the case of
intermediate screening, the angular distribution for
P =0.01 is expected to lie between the two curves of
Fig. 3.

D. COMPLETE SCREENING, FORWARD SPECTRUM

In the cases of the forward radiation (el=0), Eqs. (9)
and (9a) reduce to

X())=Ei(—X)[Ei(X)—ln (y)i)j
+e"[Ei(—)i) —ink)[Ei( —P,)—ln (y)i) $

+2 (e +1)I e2r'+ (ln'y)'3+2 (1—e")(1»)'

( )t) vv

+in' 1n)i+e" P +P (—)t) "S (10d)

V()i) =Ei(—)i)[Ei()i)—1n(y)t) )
+e"[Ei(—)t) —in)t j[Ei(—)t) —in(q X)j[1—Xl

+-,'[e"(1—)I)+1]P2rs+ (in')2] —(1+e") ln(y)i)

—
2 [e~ (1—)t) —1$(In)i)'+ (1+in') jn)t

where
(iv I 1)lv—i 1

S-= Z
v=n+1

(10f)

1 n—1j.
I' =(e—1)S„——P —,

e!~=1 p
(1og)

TAnxE I. The functions X(A), F(A), 1+Pi(lj), and 1+b(X).

and Ei()i) is defined in Jahnke and Emde. '
In Appendix D, a simple and exact method to evalu-

ate the leading S is explained. The results up to n=4
are the following:,

Si——-'s2r', S2——-', (5—22r2) Ss=-'(A2rs —1) .

1 p157
S,=

)
—~ ). (10h)

4!6E 12 )

I~ (O,)t)/4= Dn(111/Z-:)+P(1)j
XI(0,)t)/2 —X()i), C.S. (10)

I (0,)t)/4= [ln(111/Z&)+f(3)$1(0,)t)/2
+)t[X (X)+I(O,X)/2/+ i/ (1)

—(1+)t)F()i), C.S. (10a)

where the abbreviations C.S. mean complete screening

0.01
0.019
0.03
0.055
0.1
0.17
0.3
0.6
1.0

X{))
—0.849—0.568—0.389—0.187—0.0339

0.0615
0.122
0.144
0.134

F(X)

2.766

2.293

1.764

1.274

0.764

1+$1{X)

1.880
1.797
1.734
1.644
1.552
1.469
1.382
1.282
1.213

&+6{~)

1.971

1.884

1.749

1.587

1.387
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The functions X(X) and F(X) are plotted in Fig. 4 as
functions of In)t in the range 0.01&)i&1 (see also
Table I). In that region Y(X) may be represented very
accurately by a linear function of ink.

Equations (1), (5), and (5a) together with Eqs. (1)
et seq. provide an exact expression (in the framework of
the Schiff's theory and the zeroth-order approximation)
for the forward spectrum in the case of complete screen-
ing. The corresponding results for the case of no screen-
ing are given by Eqs. (1), (5), and (Sa), and by the
relations:

FIG. 5. The functions
1+gg(X) and 1+)2(X).

2.0

l.8-

l.6-

l.4-

l.2. -4 -3 -2Ink~

E(0,)t) = in31(Z= 0)I(0,)i), N. S. (11)

L(O,X) =lnM(Z=O) J'(0,)). N. S. (11a)

K(O,X) =K(0,)t)c.s.

f
+2 Ej( )tg) (1+$) s lnL1+ (1+$)s/ps7dg

=E(O,X)c s —ln(1+ (1+P ) /p 7I(O,X), (12)

where Pi is a certain intermediate value of $ and

E(0,'A)c s is the expression for E(0,)i) in the case of
complete screening Lsee Eq. (10)7. Equation (12) gives
automatically the correct answer for the case of com-
plete screening (p—+~). The idea of the approximation
is, then, to determine the intermediate value by re-
quiring the right hand member of Eq. (12) to coincide
also with the correct result in the limiting case of no
screening (p«1). In the latter case, it is easily seen from

Eqs. (4) and (11) that

E(0,)%)N s = 2 ln(111p/Z'*)I(0, )i). (12a)

0»

-0.2-

FIG. 4. The functions -04-
X(x) and Y(x).

-0.6.

-0.8-

wl, Q

E. INTERMEDIATE SCREENING, FORWARD
RADIATION

In this section, an expression is given for the forward
spectrum, which yields the same results as the exact
treatment of Sec. D in the cases of complete and no
screening and provides a good approximation in the
region of intermediate screening.

According to Eqs. (4) and (6), we may write

Now we require the right-hand member of Eq. (12) to
coincide with Eq. (12a) in the limit p~. Remembering
Eq. (10), we find that $i is determined by the following
relation:

In(1+Pi) =P(1)—2Xoi)/I(O, X). (12b)

The solution of this equation is plotted in Fig. 5 as a
function of ink and we notice that it behaves practically
as a straight line in the region 0.01 &X&1.In fact, with
an accuracy of a few percent, we may approximate
1+pi(X) in that region by the formula"

1+pi()t)=1.22—0.143 ln) for 0.01 &)t &1. (12c)

L(0~)i) =L(O~X)c.s.—1nL1+(1+ps)'/p'7J(0, &). (13)

The function 1+b is plotted in Fig. 5 as a function of
ink (see also Table I).

The forward intensity spectra given by Eq. (1)
(expression between curly brackets) and Eqs. (5), (5a),
(12), and (13) for three different value of X is illustrated
in Fig. 6 in the case Z= 79 and 2EsZ&/(111@)=3. The
curve for X=0.1 is also compared with the forward and
integrated intensity spectra calculated from SchiG's
intrinsic distribution. These are given by the expres-
sions between curly brackets in Eqs. (1) and (3) of
reference 2, respectively. In Fig. 6, the integrated spec-

's If one so desires, one may use Kq. (12c) to obtain an approxi-
mate closed expression for the function X(X). Inserting Eq. (12c)
back into Eq. (12b), the following approximation for XP.) is
obtained in the range 0.01&X&1: X(X)=Dn(1.22 —0.143 in')—P(1)ge" Ki(—x).

"In making this comparison, we have replaced in Eq. (12)
the exact K(O,X) c s by the approxi. m.ate value given by Eq. (7) for
p~~. The difference between these two values is due, of course,
to the neglect in Sec. 8 of terms of order X,) lnX, ~ ~ ~ .

A short table of 1+(i as a function of )t is given in
Table I. One way of testing the validity of this approxi-
mation in the region of intermediate screening, is to
compare the predictions of Eqs. (12) and (12b) with
those of Eq. (7) for X«1. This comparison has been
made for ) =0.01 and the di6erence has been found to
be less than one percent throughout the whole spec-
trum. "Equations (12) and (12b) have been also com-
pared with the value of E(0,)i) calculated by numerical
integration for p=1 and ) =1 and the error was found
to be a fraction of a percent.

An analogous approximation for L(O,X) is given by



A. SIRLI N

70

80

behaves like a 8 distribution, so that in that limit the
actual spectrum coincides with the forward intrinsic
spectrum, as expected.
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APPENDIX A

The following are useful expressions for the evalua-
tion of the function F(y) defined in Eq. (7d)

Fro. 6. Forward intensity spectra for various values of X in the " (—y)"
case Z=79 and 2EOZ&/(111') =3. The curves are calculated on P(y) = —Pthe basis of Eqs. (1), (5), (5a), (12), and (13). n=1 ~2

for lyl &1, (A1)

trum has been normalized to the value of the corrected
spectrum at the maximum value of q, i.e., at g,„
=1—p/Es. Then the forward intrinsic spectrum is
normalized so as to preserve the original ratio to the
integrated spectrum (in our case the difference between
the two last distributions is still signi6cant at q,—0.975, although they are identical for an hypothetical
value of il,„=1).It is seen that the integrated spectrum
lies above the forward intrinsic spectrum, the de'erence
being greatest at ii=0 (about 12%).On the other hand,
the corrected spectrum lies below the forward intrinsic
spectrum in the low and intermediate energy region.
This shows that in this region the forward intrinsic
spectrum is a better approximation than the integrated
spectrum. In the high-energy region, however, the cor-
rected spectrum is better approximated by the inte-
grated spectrum, though this cannot be observed in
Fig. 6. An analogous comparison with the two cor-
rected spectra for X=1 and X=0.01 leads to identical
conclusions.

This behavior of the normalized curves of Fig. 6
may be understood again on the basis of the intuitive
argument used in Sec. C to explain the behavior of the
curves of Figs. 2 and 3. If by o(8,rI) we represent the
intrinsic distribution, then it is easily seen that, in our
case and for small values of r), o (g,r)) o (O,il,„)/
[o.(8,rf,„)o(O,r))] first decreases when 8 varies from zero
up to a certain small angle and then it begins to in-
crease with 8 to such an extent that the sum over angles
of o (g,r)) (integrated spectrum) lies appreciably above
the value for 0=0, if the normalization described above
is used. On the other hand, when we take into account
the inhuence of multiple scattering, the contribution to
the forward radiation of photons emitted at small

angles is weighted more heavily than that of those
emitted at larger angles. This may yield, then, a value
lower than that of the intrinsic forward spectrum.
For )~—+~ (T—4), of course, the weighting factor

F(y) = 6~'+2 (lny)' —F(1/y) for y )1, (A2)

(
F(y) =-F

I

— I+-,[ln(1+y)]' for y&0. (A3)
1+y)

~oo ( clsnq 2
Ides(yr')) expl —

l
=—exp-

P~p

y'A.

(B1)
(4n)

By multiplying Eq. (81) by n& ' exp( —n) and in-
tegrating with respect to e from 0 to ~, we get

oo t'
edw, (ya) l

1+—
l

A. 4 p ))
'X

exp —n — n" 'dn. (82)
(4n)

By differentiating both members of Eq. (82) with re-
spect to p and then setting p= 2, Eq. (Sb) is obtained.

APPENDIX C

The method which we found most convenient for
evaluating the integral of Eq. (9) is the following. The
range of integration is divided into two intervals, one
from n= 0 up to a value ni)))I. (say up to ni ——10K), and
then from n1 up to ~. The integration over the first
region is carried out numerically using the difference
between the two exponential integrals and considering
sufIiciently small intervals. The integration over the
second interval involving Ei[—xn/(n+))) may be

Use of the relation (A3) is convenient when 0.5&y&1.

APPENDIX B

Consider the Bessel (Fourier) transform of the
Gaussian function
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calculated by means of the expansion APPENDIX D

In order to evaluate X(X) [Eq. (10b)], we write

If o.&=10A, the integrals originated by this expansion
are elementary and converge very rapidly. The inte-
gration over theintervaln~&n& ~ involving Ei(—xn/X)
may be calculated by using the well-known series ex-
pansion for Ei(—x) (see reference 9, page 1 et seg.). For
the sake of completeness, we give now the exact results
for the integrals involving Ei(—xn/X) from 0 to
which can be given in closed form:

e-. lnl 1+—
I

dn. (D1)
E n)"o

The second integral is trivial. For evaluating the first
integral, we introduce u=n+X so that

EiL—xn/(n+lj. )]=Ei (—x) —e
—9./n+-,' P /n)'e-*L1 —x]

—-', (X/n)'e —*Lx'—4x+27+ . . (C1)
2X(X)= e I ln(n+)I, )]'dn+ e (inn)'dn

Jo Jo

(

xnan

e inn Ei x)
x

I+»I 1+-
I
»~+— (C2)

x+Z3 L x) 6

I' xn) (
e u lnu Eil ——Idn=Ai —ln vl 1+

X) & x)

e ~Dn(n+X)]'dn=e" e "(lnu)'dl

—ex pf
Bp Jp

(D2)

The integral in Eq. (D2) is simply expressed as a series
in 'A by expanding the exponential. The last integral in

Eq. (D1) is evaluated by introducing e=n+X and
making use of the expansion

1 x ( xi
(c3)

1yx/y y E y)

The energy-angle distribution depends much more
sensitively on the function E'(8,X) than on L(8,X). If
X((1, it is sometimes sufficient, then, to set X=O in the
integration involving Ei[—xn/(n+li)] in the evalua-
tion of L(8,1i), in which case we obtain the following
approximate expression:

oo Qn n—11
[&n(1—~)]'=2 P —P — for ill &1. (D3)

n=2 Q p=l p,

Then, we get

e lnl 1+—
I

dn

ao g &—~1 r e
= 2e" P —Q — dn (D4).

n=2 ~ p=l +g &
Nn

L(e,X)=—Dn(111/Zl)+-,'] Ei(—)i —x)

( x ) x
I+ 1+-

x+X)

x ( x)
X 1+-ln &I 1+-

I
. (C4)

E

Because of the approximations involved, Eq. (C4) has
not the proper asymptotic behavior for large x (it
should behave asymptotically as x '), so that Eq. (C4)
is not valid for x))X. A similar simplification in the
evaluation of E(8,X) would lead to a much poorer
approximation. This is due to the fact that setting X=0
in the integration involving Ei[—xn/(n+X)] intro-
duces a large error near n=0. In the case of L(8,1i),
however, the additional factor n tends to diminish the
contribution of that region. As the final energy-angle
distribution depends very sensitively on E(8,1i), it is
convenient, then, to evaluate this function by using the
accurate method described at the beginning of this
appendix.

The last expression is easily evaluated by partial inte-
grations. An analogous method is used in the calcula-
tion of I'(X).

In order to evaluate exactly the leading S defined in
Eq. (10f), the essential idea is to interchange the order
of the summations. For example,

1 v—11 oo 1
S,=P P-=P- P . (D5)

~=2 v(v —1) v=& p v=& v, ~=v+& v(v —1)

Observing that 1v(11)1
v=2 v(v —1) v=2 E v 1 v) p,

(D6)

we see that Eq. (D5) reduces to

A similar method has been used in the evaluation of S2,
S3, and 54.


