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must be absorbed (or emitted) to achieve one photon
of net absorption (or emission). These net photons
must complete with the spontaneous-emission photons.
Thus, as Test is lowered, fewer photons need be handled
for the same signal-to-noise ratio. Here the tremendous
difference between so-called positive and negative
temperatures (our Tes) is apparent. For the absorption
case, the noise-power distribution $,(7) approaches
zero as Tesr approaches 40. However, it approaches
—hv as Ter approaches —0. This is intuitively satis-
fying, since it means that spontaneous-emission noise
actually acts as least-count noise in a net emission
system. To put it otherwise, if we have # photons per
frequency interval per second from the amplifier, the
least count is one photon and this is just the spon-
taneous-emission noise. We are dealing here with phase-
coherent photons, however, so the signal-to-noise ratio
is as the reciprocal band width, instead of as the square
root of the reciprocal band width, which is the case
when incoherent photons (or particles) are counted.
We have essentially solved the problem of the sta-
tistical noise for a linear system with coherent particles.

For those who like a simple, appealing, albeit inaccu-
rate, explanation of quantum-mechanical noise, we
offer the following suggestions that have grown out of
our work. At high effective temperatures, the noise is
high, since the least-count effect (shot effect) becomes
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large, because the net emission is small on account of
interfering absorption. As the effective temperature is
lowered, the number of photons to be amplified can be
linearly lowered and the same least count, i.e., the
same signal-to-noise ratio, can be maintained. The
limit as Tz approaches 0 will always be photon shot
noise.

Neglecting, then, many practical details that are
solely within the realm of engineering ingenuity (for
which we hold high regard), we have shown that the
limiting sensitivity of quantum-mechanical amplifiers
is given in a readily achievable limit by the effective
quantum-mechanical noise power density. This noise
power density is given parametrically by an effective
temperature. The essential and drastic difference be-
tween negative and positive temperatures is demon-
strated by this function, in that, as 7" approaches —0,
this function approaches (—#») and, as T approaches
-0, this function approaches 0. This means that in
the region where hv<kT, . the noise figure can be
represented, essentially, as the ratio of the quantum-
mechanical temperature and the source temperature.
With the equality sign reversed, the noise figure be-
comes large. For 1-cm radiation, this turning point is
at 1.5°K. At any frequency, we may say that the
limiting temperature sensitivity for a quantum-
mechanical amplifier is, essentially, #»/k.
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Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

1. INTRODUCTION

HE recent appearance of a very comprehensive
survey! of past attempts to justify the methods

of statistical mechanics in terms of mechanics, classical
or quantum, has helped greatly, and at a very opportune
time, to emphasize the unsolved problems in this field.

1D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal @ priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.

Although the subject has been under development for
many years, we still do not have a complete and
satisfactory theory, in the sense that there is no line
of argument proceeding from the laws of microscopic
mechanics to macroscopic phenomena, that is generally
regarded by physicists as convincing in all respects.
Such an argument should (a) be free from objection on
mathematical grounds, (b) involve no additional arbi-
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trary assumptions, and (c) automatically include an
explanation of nonequilibrium conditions and irre-
versible processes as well as those of conventional
thermodynamics, since equilibrium thermodynamics is
merely an ideal limiting case of the behavior of matter.

It might appear that condition (b) is too severe,
since we expect that a physical theory will involve
certain unproved assumptions, whose consequences are
deduced and compared with experiment. For example,
in the statistical mechanics of Gibbs? there were several
difficulties which could not be understood in terms of
classical mechanics, and before the models which he
constructed could be made to correspond to the observed
facts, it was necessary to incorporate into them addi-
tional restrictions not contained in the laws of classical
mechanics. First was the “freezing up” of certain
degrees of freedom, which caused the specific heat of
diatomic gases to be only § of the expected value.
Secondly, the paradox regarding the entropy of com-
bined systems, which was resolved only by adoption of
the generic instead of the specific definition of phase,
an assumption which seems impossible to justify in
terms of classical notions.? Thirdly, in order to account
for the actual values of vapor pressures and equilibrium
constants, an additional assumption about a natural
unit of volume (#*¥) of phase space was needed.
However, with the development of quantum mechanics
the originally arbitrary assumptions are now seen as
necessary consequences of the laws of physics. This
suggests the possibility that we have now reached a
state where statistical mechanics is no longer dependent
on physical hypotheses, but may become merely an
example of statistical inference.

That the present may be an opportune time to
re-examine these questions is due to two recent de-
velopments. Statistical methods are being applied to a
variety of specific phenomena involving irreversible
processes, and the mathematical methods which have
proven successful have not yet been incorporated into
the basic apparatus of statistical mechanics. In addition,
the development of information theory* has been felt
by many people to be of great significance for statistical
mechanics, although the exact way in which it should
be applied has remained obscure. In this connection it

2J. W. Gibbs, Elementary Principles in Statistical Mechanics
(Longmans Green and Company, New York, 1928), Vol. II of
collected works.

3We may note here that although Gibbs (reference 2, Chap.
XV) started his discussion of this question by saying that the
generic definition “seems in accordance with the spirit of the
statistical method,” he concluded it with, “The perfect similarity
of several particles of a system will not in the least interfere with
the identification of a particular particle in one case with a
particular particle in another. The question is one to be decided
in accordance with the requirements of practical convenience in
the discussion of the problems with which we are engaged.”

4C. E. Shannon, Bell System Tech. J. 27, 379, 623 (1948);
these papers are reprinted in C. E. Shannon and W. Weaver,
The Mathematical Theory of Communication (University of
Illinois Press, Urbana, 1949).
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is essential to note the following. The mere fact that
the same mathematical expression —3 $; logp; occurs
both in statistical mechanics and in information theory
does not in itself establish any connection between
these fields. This can be done only by finding new
viewpoints from which thermodynamic entropy and
information-theory entropy appear as the same concept.
In this paper we suggest a reinterpretation of statistical
mechanics which accomplishes this, so that information
theory can be applied to the problem of justification of
statistical mechanics. We shall be concerned with the
prediction of equilibrium thermodynamic properties,
by an elementary treatment which involves only the
probabilities assigned to stationary states. Refinements
obtainable by use of the density matrix and discussion
of irreversible processes will be taken up in later papers.

Section 2 defines and establishes some of the ele-
mentary properties of maximum-entropy inference, and
in Secs. 3 and 4 the application to statistical mechanics
is discussed. The mathematical facts concerning maxi-
mization of entropy, as given in Sec. 2, were pointed
out long ago by Gibbs. In the past, however, these
properties were given the status of side remarks not
essential to the theory and not providing in themselves
any justification for the methods of statistical me-
chanics. The feature which was missing has been
supplied only recently by Shannont in the demon-
stration that the expression for entropy has a deeper
meaning, quite independent of thermodynamics. This
makes possible a reversal of the usual line of reasoning in
statistical mechanics. Previously, one constructed a
theory based on the equations of motion, supplemented
by additional hypotheses of ergodicity, metric transi-
tivity, or equal a priori probabilities, and the identifi-
cation of entropy was made only at the end, by com-
parison of the resulting equations with the laws of
phenomenological thermodynamics. Now, however, we
can take entropy as our starting concept, and the fact
that a probability distribution maximizes the entropy
subject to certain constraints becomes the essential fact
which justifies use of that distribution for inference.

The most important consequence of this reversal of
viewpoint is not, however, the conceptual and mathe-
matical simplification which results. In freeing the
theory from its apparent dependence on physical
hypotheses of the above type, we make it possible to
see statistical mechanics in a much more general light.
Its principles and mathematical methods become
available for treatment of many new physical problems.
Two examples are provided by the derivation of Siegert’s
“‘pressure ensemble’” and treatment of a nuclear polari-
zation effect, in Sec. 5.

2. MAXIMUM-ENTROPY ESTIMATES

The quantity « is capable of assuming the discrete
values x; (¢=1,2 +--n). We are not given the corre-
sponding probabilities p;; all we know is the expectation
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value of the function f():

(f)= Zl pif(x:). (2-1)
On the basis of this information, what is the expectation
value of the function g(x)? At first glance, the problem
seems insoluble because the given information is insuffi-
cient to determine the probabilities p;.> Equation (2-1)
and the normalization condition

2 pi=1 (2-2)

would have to be supplemented by (z—2) more condi-
tions before {g(x)) could be found.

This problem of specification of probabilities in cases
where little or no information is available, is as old as
the theory of probability. Laplace’s ‘Principle of
Insufficient Reason” was an attempt to supply a
criterion of choice, in which one said that two events
are to be assigned equal probabilities if there is no
reason to think otherwise. However, except in cases
where there is an evident element of symmetry that
clearly renders the events ‘“‘equally possible,” this
assumption may appear just as arbitrary as any other
that might be made. Furthermore, it has been very
fertile in generating paradoxes in the case of continu-
ously variable random quantities,® since intuitive
notions of “equally possible” are altered by a change of
variables.” Since the time of Laplace, this way of
formulating problems has been largely abandoned,
owing to the lack of any constructive principle which
would give us a reason for preferring one probability
distribution over another in cases where both agree
equally well with the available information.

For further discussion of this problem, one must
recognize the fact that probability theory has developed
in two very different directions as regards fundamental
notions. The “objective” school of thought®® regards
the probability of an event as an objective property of
that event, always capable in principle of empirical
measurement by observation of frequency ratios in a
random experiment. In calculating a probability distri-
bution the objectivist believes that he is making

6 Yet this is precisely the problem confronting us in statistical
mechanics; on the basis of information which is grossly inadequate
to determine any assignment of probabilities to individual
quantum states, we are asked to estimate the pressure, specific
heat, intensity of magnetization, chemical potentials, etc., of a
macroscopic system. Furthermore, statistical mechanics is amaz-
ingly successful in providing accurate estimates of these quantities.
Evidently there must be other reasons for this success, that go
beyond a mere correct statistical treatment of the problem as
stated above.

¢ The problems associated with the continuous case are funda-
mentally more complicated than those encountered with discrete
random variables; only the discrete case will be considered here.

7 For several examples, see E. P. Northrop, Riddles in Mathe-
matics (D. Van Nostrand Company, Inc., New York, 1944),
Chap. 8.

8 IIF)I Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, 1946).

9W. Feller, An Introduction to Probability Theory and its
A pplications (John Wiley and Sons, Inc., New York, 1950).
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predictions which are in principle verifiable in every
detail, just as are those of classical mechanics. The
test of a good objective probability distribution p(x) is:
does it correctly represent the observable fluctuations
of x?

On the other hand, the “subjective” school of
thought!®!* regards probabilities as expressions of
human ignorance; the probability of an event is merely
a formal expression of our expectation that the event
will or did occur, based on whatever information is
available. To the subjectivist, the purpose of proba-
bility theory is to help us in forming plausible conclu-
sions in cases where there is not enough information
available to lead to certain conclusions; thus detailed
verification is not expected. The test of a good subjec-
tive probability distribution is does it correctly repre-
sent our state of knowledge as to the value of x?

Although the theories of subjective and objective
probability are mathematically identical, the concepts
themselves refuse to be united. In the various statistical
problems presented to us by physics, both viewpoints
are required. Needless controversy has resulted from
attempts to uphold one or the other in all cases. The
subjective view is evidently the broader one, since it is
always possible to interpret frequency ratios in this
way ; furthermore, the subjectivist will admit as legiti-
mate objects of inquiry many questions which the
objectivist considers meaningless. The problem posed
at the beginning of this section is of this type, and
therefore in considering it we are necessarily adopting
the subjective point of view.

Just as in applied statistics the crux of a problem is
often the devising of some method of sampling that
avoids bias, our problem is that of finding a probability
assignment which avoids bias, while agreeing with
whatever information is given. The great advance
provided by information theory lies in the discovery
that there is a unique, unambiguous criterion for the
“amount of uncertainty’” represented by a discrete
probability distribution, which agrees with our intuitive
notions that a broad distribution represents more
uncertainty than does a sharply peaked one, and
satisfies all other conditions which make it reasonable.*
In Appendix A we sketch Shannon’s proof that the
quantity which is positive, which increases with
increasing uncertainty, and is additive for independent
sources of uncertainty, is

H(pi+--pa)=—K 32 p; Inp;, (2-3)

where K is a positive constant. Since this is just the
expression for entropy as found in statistical mechanics,
it will be called the entropy of the probability distri-
bution p;; henceforth we will consider the terms
“entropy”” and ‘‘uncertainty’ as synonymous.

0 J, M. Keynes, A Treatise on Probability (MacMillan Company,
London, 1921).

UH. Jeffreys, Theory of Probability (Oxford University Press,
London, 1939).
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It is now evident how to solve our problem ; in making
inferences on the basis of partial information we must
use that probability distribution which has maximum
entropy subject to whatever is known. This is the only
unbiased assignment we can make; to use any other
would amount to arbitrary assumption of information
which by hypothesis we do not have. To maximize
(2-3) subject to the constraints (2-1) and (2-2), one
introduces Lagrangian multipliers N\, p, in the usual

way, and obtains the result
pi= e Nnf (=), (2-4)

The constants A, u are determined by substituting into
(2-1) and (2-2). The result may be written in the form

d
(f(x))y=——InZ(u), (2-5)
ou
A=InZ(u), (2-6)
where
Z()=Eiew @ (27)

will be called the partition function.
This may be generalized to any number of functions
f(x): given the averages

(fr@)=2i pifs (@), (2-8)
form the partition function
VAONRER W
=3 cexp{—[A\fi(®)+ - - HNufulx) ]} (2-9)

Then the maximum-entropy probability distribution is
given by

pi=exp{—[otFAifi(x)+ - -+ Anfu(®) ]}, (2-10)
in which the constants are determined from
0
(fr(x))y=—-—1nZ, (2-11)
O\,
No=InZ. (2-12)

The entropy of the distribution (2-10) then reduces to
Smax=)‘0+}‘1<f1(x)>+ e +)‘m<fm<x)>1 (2“13)

where the constant K in (2-3) has been set equal to
unity. The variance of the distribution of f,(x) is found
to be

92
M fp=(fA == 5;(1112)- (2-14)

In addition to its dependence on «, the function f. may
contain other parameters ai, as, -+, and it is easily
shown that the maximum-entropy estimates of the
derivatives are given by

af, 19
< >= iz
aak Ar aak

(2-15)
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The principle of maximum entropy may be regarded
as an extension of the principle of insufficient reason
(to which it reduces in case no information is given
except enumeration of the possibilities x,), with the
following essential difference. The maximum-entropy
distribution may be asserted for the positive reason
that it is uniquely determined as the one which is
maximally noncommittal with regard to missing infor-
mation, instead of the negative one that there was no
reason to think otherwise. Thus the concept of entropy
supplies the missing criterion of choice which Laplace
needed to remove the apparent arbitrariness of the
principle of insufficient reason, and in addition it shows
precisely how this principle is to be modified in case
there are reasons for ““thinking otherwise.”

Mathematically, the maximum-entropy distribution
has the important property that no possibility is
ignored; it assigns positive weight to every situation
that is not absolutely excluded by the given information.
This is quite similar in effect to an ergodic property.
In this connection it is interesting to note that prior to
the work of Shannon other information measures had
been proposed®®® and used in statistical inference,
although in a different way than in the present paper.
In particular, the quantity —3_ p# has many of the
qualitative properties of Shannon’s information meas-
ure, and in many cases leads to substantially the same
results. However, it is much more difficult to apply in
practice. Conditional maxima of —3 p cannot be
found by a stationary property involving Lagrangian
multipliers, because the distribution which makes this
quantity stationary subject to prescribed averages does
not in general satisfy the condition $;>0. A much more
important reason for preferring the Shannon measure
is that it is the only one which satisfies the condition of
consistency represented by the composition law (Ap-
pendix A). Therefore one expects that deductions made
from any other information measure, if carried far
enough, will eventually lead to contradictions.

3. APPLICATION TO STATISTICAL MECHANICS

It will be apparent from the equations in the pre-
ceding section that the theory of maximum-entropy
inference is identical in mathematical form with the
rules of calculation provided by statistical mechanics.
Specifically, let the energy levels of a system be

Ei(a,az,- ),

where the external parameters o; may include the
volume, strain tensor applied electric or magnetic
fields, gravitational potential, etc. Then if we know
only the average energy (E), the maximum-entropy
probabilities of the levels E; are given by a special case
of (2-10), which we recognize as the Boltzmann distri-
bution. This observation really completes our derivation

12 R, A. Fisher, Proc. Cambridge Phil. Soc. 22, 700 (1925).
13 T, L. Doob, Trans. Am. Math. Soc. 39, 410 (1936).
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of the conventional rules of statistical mechanics as an
example of statistical inference; the identification of
temperature, free energy, etc., proceeds in a familiar
manner,” with results summarized as

A= (1/kT), (3-1)
U—‘ TS=F(T,011,0[2,‘ . )= —kT ll’lZ(T,Oll,Olz, .. '), (3-2)
oF
S=———=—k 3 pilnp;, (3-3)
oT i
a
Bi=kT— InZ. (3-4)
6a1

The thermodynamic entropy is identical with the
information-theory entropy of the probability distri-
bution except for the presence of Boltzmann’s con-
stant.!® The “forces” B; include pressure, stress tensor,
electric or magnetic moment, etc., and Eqgs. (3-2),
(3-3), (3-4) then give a complete description of the
thermodynamic properties of the system, in which the
forces are given by special cases of (2-15); ie., as
maximum-entropy estimates of the derivatives
(0E;/day).

In the above relations we have assumed the number of
molecules of each type to be fixed. Now let #; be the
number of molecules of type 1, #, the number of type
2, etc. If the », are not known, then a possible “state”
of the system requires a specification of all the 7, as well
as a particular energy level E;(aiaz: - - |#ima- + +). If we
are given the expectation values

<E>7 <n1>’ <1’b2>, )

then in order to make maximum-entropy inferences,
we need to form, according to (2-9), the partition
function ,

Z(a1a2~ . l}\1>\2' . ,B)-: Z Z exp{—[)\lnl—}—)\gnz

ningeee 4

+... +ﬁEi(ak|”s)]}!

and the corresponding maximum-entropy distribution
(2-10) is that of the “quantum-mechanical grand
canonical ensemble;” the Eqgs. (2-11) fixing the con-
stants, are recognized as giving the relation between
the chemical potentials

M= '—kTN,

Y E. Schrédinger, Statistical Thermodynamics
University Press, Cambridge, 1948).

15 Boltzmann’s constant may be regarded as a correction factor
necessitated by our custom of measuring temperature in arbitrary
units derived from the freezing and boiling points of water. Since
the product 7'S must have the dimensions of energy, the units in
which entropy is measured depend on those chosen for tempera-
ture. It would be convenient in general arguments to define an
“‘absolute cgs unit” of temperature such that Boltzmann’s
constant is made equal to unity. Then entropy would become
dimensionless (as the considerations of Sec. 2 indicate it should be),
and the temperature would be equal to twice the average energy
;();e:{) l;iegree of freedom; it is, of course, just the “modulus” © of

ibbs.

(3-5)

(3-6)
(Cambridge
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and the (n;):
(n;)=0F /0y, (3-7)

where the free-energy function F=—kT\o, and A\g=InZ
is called the ‘“‘grand potential.”’6 Writing out (2-13)
for this case and rearranging, we have the usual
expression

F(T s+ g+ -)
=(E)—TS+ps(na)+pslng)+---. (3-8)

It is interesting to note the ease with which these
rules of calculation are set up when we make entropy
the primitive concept. Conventional arguments, which
exploit all that is known about the laws of physics, in
particular the constants of the motion, lead to exactly
the same predictions that one obtains directly from
maximizing the entropy. In the light of information
theory, this can be recognized as telling us a simple
but important fact: there is nothing in the general laws
of motion that can provide us with any additional infor-
mation about the state of a system beyond what we have
oblained from measurement. This refers to interpretation
of the state of a system at time £ on the basis of meas-
urements carried out at time . For predicting the course
of time-dependent phenomena, knowledge of the equa-
tions of motion is of course needed. By restricting our
attention to the prediction of equilibrium properties as
in the present paper, we are in effect deciding at the
outset that the only type of initial information allowed
will be values of quantities which are observed to be
constant in time. Any prior knowledge that these
quantities would be constant (within macroscopic
experimental error) in consequence of the laws of
physics, is then redundant and cannot help us in
assigning probabilities.

This principle has interesting consequences. Suppose
that a super-mathematician were to discover a new
class of uniform integrals of the motion, hitherto
unsuspected. In view of the importance ascribed to
uniform integrals of the motion in conventional sta-
tistical mechanics, and the assumed nonexistence of
new ones, one might expect that our equations would
be completely changed by this development. This would
not be the case, however, unless we also supplemented
our prediction problem with new experimental data
which provided us with some information as to the
likely values of these new constants. Even if we kad a
clear proof that a system is not metrically transitive, we
would still have no rational basis for excluding any region
of phase space that is allowed by the information available
to us. In its effect on our ultimate predictions, this fact
is equivalent to an ergodic hypothesis, quite independ-
ently of whether physical systems are in fact ergodic.

This shows the great practical convenience of the
subjective point of view. If we were attempting to
establish the probabilities of different states in the

16 D. ter Haar, Elements of Statistical Mechanics (Rinehart and
Company, New York, 1954), Chap. 7.
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objective sense, questions of metric transitivity would
be crucial, and unless it could be shown that the system
was metrically transitive, we would not be able to find
any solution at all. If we are content with the more
modest aim of finding subjective probabilities, metric
transitivity is irrelevant. Nevertheless, the subjective
theory leads to exactly the same predictions that one
has attempted to justify in the objective sense. The
only place where subjective statistical mechanics makes
contact with the laws of physics is in the enumeration
of the different possible, mutually exclusive states in
which the system might be. Unless a new advance in
knowledge affects this enumeration, it cannot alter
the equations which we use for inference.

If the subject were dropped at this point, however,
it would remain very difficult to understand why the
above rules of calculation are so uniformly successful
in predicting the behavior of individual systems. In
stripping the statistical part of the argument to its
bare essentials, we have revealed how little content it
really has; the amount of information available in
practical situations is so minute that it alone could
never suffice for making reliable predictions. Without
further conditions arising from the physical nature of
macroscopic systems, one would expect such great
uncertainty in prediction of quantities such as pressure
that we would have no definite theory which could be
compared with experiments. It might also be questioned
whether it is not the most probable, rather than the
average, value over the maximum-entropy distribution
that should be compared with experiment, since the
average might be the average of two peaks and itself
correspond to an impossible value.

It is well known that the answer to both of these
questions lies in the fact that for systems of very large
number of degrees of freedom, the probability distri-
butions of the usual macroscopic quantities determined
from the equations above, possess a single extremely
sharp peak which includes practically all the “mass” of
the distribution. Thus for all practical purposes average,
most probable, median, or any other type of estimate
are one and the same. It is instructive to see how, in
spite of the small amount of information given, maxi-
mum-entropy estimates of certain functions g(x) can
approach practical certainty because of the way the
possible values of x are distributed. We illustrate this
by a model in which the possible values x; are defined
as follows: let #» be a non-negative integer, and ¢ a
small positive number. Then we take
1=1,2, -,

x"H=¢, (3-9)
According to this law, the x; increase without limit as
i— o0, but become closer together at a rate determined
by %. By choosing e sufficiently small we can make the
density of points #; in the neighborhood of any partic-
ular value of x as high as we please, and therefore for a
continuous function f(x) we can approximate a sum as
closely as we please by an integral taken over a corre-

Xip1— %= e/xi",
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sponding range of values of x,

fa)— f F@)p(@)ds,

where, from (3-9), we have

p(x)=1x"/e.

This approximation is not at all essential, but it
simplifies the mathematics.

Now consider the problem: (A) Given (), estimate
x%. Using our general rules, as developed in Sec. II,
we first obtain the partition function

!

Z0)= f (@) Nd—

e n+1
with A determined from (2-11),
i) n+1
#)=——InZ=—
)N

Then we find, for the maximum-entropy estimate of &%,

@ =7 [ o) v e, (3-10)
9 {(x)} = 0 2?p(x)e x— s

Next we invert the problem: (B) Given (x2), estimate
x. The solution is

Z()\)=pr(x) exp(—Ax?)dx
' win! 1
T e (n/2) | etk
n+1

)
(P)=——InZ=——,
A 2\

@)y =2 f o) exp(—ha)dx

(WH) E <(;:)1')J'/ v

The solutions are plotted in Fig. 1 for the case n=1.
The upper “regression line” represents Eq. (3-10), and
the lower one Eq. (3-11). For other values of #, the
slopes of the regression lines are plotted in Fig. 2. As
n—o, both regression lines approach the line at 45°,
and thus for large #, there is for all practical purposes
a definite functional relationship between (x) and (x?),
independently of which one is considered ‘“‘given,” and
which one “estimated.” Furthermore, as » increases
the distributions become sharper; in problem (A) we
find for the variance of x,

(@)= ()= (@)*/ (n+1).

e

(3-11)

(3-12)
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, F1c. 1. Regression
P yd of x and «* for state
density  increasing
linearly with x. To
find the maximum-
p entropy estimate of
/ either quantity given
the expectation val-

0/ ue of the other,
" follow the arrows.

<XF—»

Similar results hold in this model for the maximum-
entropy estimate of any sufficiently well-behaved
function g(x). If g(x) can be expanded in a power series
in a sufficiently wide region about the point x=(x), we
obtain, using the distribution of problem A above, the
following expressions for the expectation value and
variance of g:

. (x)? 1
(g())=g () +s «@)Mw(})’ (3-13)

A (g)=(g*(x))—(g(x))*

, , (x)? 1
Ly ()] %+1+o(;;). (3-14)

Conversely, a sufficient condition for x to be well
determined by knowledge of (g(x)) is that x be a
sufficiently smooth monotonic function of g. The ap-
parent lack of symmetry, in that reasoning from (x)
to g does not require monotonicity of g(x), is due to
the fact that the distribution of possible values has
been specified in terms of x rather than g.

As n increases, the relative standard deviations of all
sufficiently well-behaved functions go down like #~%; it
is in this way that definite laws of thermodynamics,
essentially independent of the type of information given,
emerge from a statistical treatment that at first appears
incapable of giving reliable predictions. The parameter
#n is to be compared with the number of degrees of
freedom of a macroscopic system.

4. SUBJECTIVE AND OBJECTIVE
STATISTICAL MECHANICS

- Many of the propositions of statistical mechanics are
capable of two different interpretations. The Max-
wellian distribution of velocities in a gas is, on the one
hand, the distribution that can be realized in the
greatest number of ways for a given total energy; on
the other hand, it is a well-verified experimental fact.
Fluctuations in quantities such as the density of a gas
or the voltage across a resistor represent on the one
hand the uncertainty of our predictions, on the other
a measurable physical phenomenon. Entropy as a con-
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cept may be regarded as a measure of our degree of
ignorance as to the state of a system; on the other
hand, for equilibrium conditions it is an experimentally
measurable quantity, whose most important properties
were first found empirically. It is this last circumstance
that is most often advanced as an argument against
the subjective interpretation of entropy.

The relation between maximum-entropy inference
and experimental facts may be clarified as follows. We
frankly recognize that the probabilities involved in
prediction based on partial information can have only
a subjective significance, and that the situation cannot
be altered by the device of inventing a fictitious
ensemble, even though this enables us to give the
probabilities a frequency interpretation. One might
then ask how such probabilities could be in any way
relevant to the behavior of actual physical systems. A
good answer to this is Laplace’s famous remark that
probability theory is nothing but ‘“common sense
reduced to calculation.” If we have little or no infor-

F1c. 2. Slope of
regression lines as a
function of #.
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mation relevant to a certain question, common sense
tells us that no strong conclusions either way are
justified. The same thing must happen in statistical
inference, the appearance of a broad probability distri-
bution signifying the verdict, “no definite conclusion.”
On the other hand, whenever the available information
is sufficient to justify fairly strong opinions, maximum-
entropy inference gives sharp probability distributions
indicating the favored alternative. Thus, the theory
makes definite predictions as to experimental behavior
only when, and to the extent that, it leads to sharp distri-
butions.

When our distributions broaden, the predictions
become indefinite and it becomes less and less meaning- -
ful to speak of experimental verification. As the avail-
able information decreases to zero, maximum-entropy
inference (as well as common sense) shades continuously
into nonsense and eventually becomes useless. Never-
theless, at each stage it still represents the best that
could have been done with the given information.

Phenomena in which the predictions of statistical
mechanics are well verified experimentally are always
those in which our probability distributions, for the
macroscopic quantities actually measured, have enor-
mously sharp peaks. But the process of maximum-
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entropy inference is one in which we choose the broadest
possible probability distribution over the microscopic
states, compatible with the initial data. Evidently, such
sharp distributions for macroscopic quantities can
emerge only if it is true that for eack of the overwhelm-
ing majority of those states to which appreciable weight
is assigned, we would have the same macroscopic
behavior. We regard this, not merely as an interesting
side remark, but as the essential fact without which
statistical mechanics could have no experimental va-
lidity, and indeed without which matter would have no
definite macroscopic properties, and experimental
physics would be impossible. It is this principle of
“macroscopic uniformity” which provides the objective
content of the calculations, not the probabilities per se.
Because of it, the predictions of the theory are to a
large extent independent of the probability distributions
over microstates. For example, if we choose at random
one out of each 101 of the possible states and arbi-
trarily assign zero probability to all the others, this
would in most cases have no discernible effect on the
macroscopic predictions.

Consider now the case where the theory makes
definite predictions and they are not borne out by
experiment. This situation cannot be explained away
by concluding that the initial information was not
sufficient to lead to the correct prediction; if that were
the case the theory would not have given a sharp
distribution at all. The most reasonable conclusion in
this case is that the enumeration of the different
possible states (i.e., the part of the theory which
involves our knowledge of the laws of physics) was not
correctly given. Thus, experimental proof that a definite
prediction is incorrect gives evidence of the existence of new
laws of physics. The failures of classical statistical
mechanics, and their resolution by quantum theory,
provide several examples of this phenomenon.

Although the principle of maximum-entropy inference
appears capable of handling most of the prediction
problems of statistical mechanics, it is to be noted that
prediction is only one of the functions of statistical
mechanics. Equally important is the problem of inter-
pretation; given certain observed behavior of a system,
what conclusions can we draw as to the microscopic
causes of that behavior? To treat this problem and
others like it, a different theory, which we may call
objective statistical mechanics, is needed. Considerable
semantic confusion has resulted from failure to distin-
guish between the prediction and interpretation prob-
lems, and attempting to make a single formalism do
for both.

In the problem of interpretation, one will, of course,
consider the probabilities of different states in the
objective sense; i.e., the probability of state » is the
fraction of the time that the system spends in state #.
It is readily seen that one can never deduce the ob-
jective probabilities of individual states from macro-
scopic measurements. There will be a great number of
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different probability assignments that are indistin-
guishable experimentally; very severe unknown con-
straints on the possible states could exist. We see that,
although it is now a relevant question, metric transi-
tivity is far from necessary, either for justifying the
rules of calculation used in prediction, or for interpreting
observed behavior. Bohm and Schiitzer'” have come to
similar conclusions on the basis of entirely different
arguments.

5. GENERALIZED STATISTICAL MECHANICS

In conventional statistical mechanics the energy
plays a preferred role among all dynamical quantities
because it is conserved both in the time development
of isolated systems and in the interaction of different
systems. Since, however, the principles of maximum-
entropy inference are independent of any physical
properties, it appears that in subjective statistical
mechanics all measurable quantities may be treated on
the same basis, subject to certain precautions. To
exhibit this equivalence, we return to the general
problem of maximum-entropy inference of Sec. 2, and
consider the effect of a small change in the problem.
Suppose we vary the functions fi(x) whose expectation
values are given, in an arbitrary way; §fx(x;) may be
specified independently for each value of % and ¢. In
addition we change the expectation values of the f; in
a manner independent of the 6fx; ie., there is no
relation between &(fx) and (5fz). We thus pass from
one maximum-entropy probability distribution to a
slightly different one, the variations in probabilities 6p;
and in the Lagrangian multipliers 6A; being determined
from the 6(fx) and 8fi(x;) by the relations of Sec. 2.
How does this affect the entropy? The change in the
partition function (2-9) is given by

Mo=0 InZ=—2" i[O\ i) +Ni(0f k>]7

(5-1)
and therefore, using (2-13),
885=22k ML 6(fi)— (0.1 ]
=3k NidQr. (5-2)
The quantity
3Qi=0(fr)— (0w (5-3)

provides a generalization of the notion of infinitesimal
heat supplied to the system, and might be called the
“heat of the kth type.” If fi is the energy, 6Q; is the
heat in the ordinary sense. We see that the Lagrangian
multiplier A is the integrating factor for the kth type
of heat, and therefore it is possible to speak of the kth
type of temperature. However, we shall refer to \; as
the quantity ‘statistically conjugate” to f, and use
the terms “heat” and ‘‘temperature” only in their
conventional sense. Up to this point, the theory is
completely symmetrical with respect to all quantities f.

17D, Bohm and W. Schiitzer, Nuovo cimento, Suppl. II, 1004
(1955).
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In all the foregoing discussions, the idea has been
implicit that the (fi) on which we base our probability
distributions represent the results of measurements of
various quantities. If the energy is included among the
fx, the resulting equations are identical with those of
conventional statistical mechanics. However, in practice
a measurement of energy is rarely part of the initial
information available; it is the temperature that is
easily measurable. In order to treat the experimental
measurement of temperature from the present point of
view, it is necessary to consider not only the system o1
under investigation, but also another system o;. We
introduce several definitions:

A heat bath is a system o such that

(a) The separation of energy levels of ¢ is much
smaller than any macroscopically measurable energy
difference, so that the possible energies Eq; form, from
the macroscopic point of view, a continuum.

(b) The entropy .Ss of the maximum-entropy proba-
bility distribution for given (E,) is a definite monotonic
function of (Es); i.e., oy contains no “mechanical
parameters” which can be varied independently of its
energy.

(c) o2 can be placed in interaction with another
system oy in such a way that only energy can be trans-
ferred between them (i.e., no mass, momentum, etc.),
and in the total energy E= E;+ Es+ Ey,, the interaction
term E;; is small compared to either E; or Es. This
state of interaction will be called thermal contact.

A thermometer is a heat-bath o2 equipped with a
pointer which reads its average energy. The scale is,
however, calibrated so as to give a number 7, called
the lemperature, defined by

In a measurement of temperature, we place the
thermometer in thermal contact with the system o of
interest. We are now uncertain not only of the state of
the system o1 but also of the state of the thermometer
o3, and so in making inferences, we must find the
maximum-entropy probability distribution of the total
system Z=g¢1+ 03, subject to the available information.
A state of 2 is defined by specifying simultaneously a
state 7 of o1 and a state j of o2 to which we assign a
probability p;;. Now however we have an additional
piece of information, of a type not previously con-
sidered ; we know that the interaction of ¢; and ¢ may
allow transitions to take place between states (i) and
(mn) if the total energy is conserved:

EyitEgj=Ein+Eson.

In the absence of detailed knowledge of the matrix
elements of E;, responsible for these transitions (which
in practice is never available), we have no rational basis
for excluding the possibility of any transition of this
type. Therefore all states of 3 having a given total
energy must be considered equivalent; the probability
pi; in its dependence on energy may contain only

E. T. JAYNES

(EvitEsj), not Ey; and Es; separately.!® Therefore, the
maximum-entropy probability distribution, based on
knowledge of (Ez) and the conservation of energy, is
associated with the partition function

Z(N) =2 expl =MEv+Es)) 1=Z:(N)Z>(N),  (5-5)

which factors into separate partition functions for the
two systems

Zi(N)=2iexp(—NEw), Z:(\)=2;exp(—AEy;), (5-6)
with A determined as before by

(V]
(Epy=——1nZs(\); (5-7)
O
or, solving for A by use of (2-13), we find that the
quantity statistically conjugate to the energy is the
reciprocal temperature:

A=dSy/d(Es)=1/T. (5-8)

More generally, this factorization is always possible if
the information available consists of certain properties
of o1 by itself and certain properties of o by itself.
The probability distribution then factors into two
independent distributions

pii=p:(1)$;(2), (59
and the total entropy is additive:
S(Z)=S81+S.. (5-10)

We conclude that the function of the thermometer is
merely to tell us what value of the parameter A should
be used in specifying the probability distribution of
system ;. Given this value and the above factorization
property, it is no longer necessary to consider the
properties of the thermometer in detail when incorpo-
rating temperature measurements into our probability
distributions; the mathematical processes used in
setting up probability distributions based on energy or
temperature measurements are exactly the same but
only interpreted differently.

It is clear that any quantity which can be inter-
changed between two systems in such a way that the
total amount is conserved, may be used in place of
energy in arguments of the above type, and the funda-
mental symmetry of the theory with respect to such
quantities is preserved. Thus, we may define a ‘“volume
bath,” “particle bath,” “momentum bath,” etc., and
the probability distribution which gives the most
unbiased representation of our knowledge of the state
of a system is obtained by the same mathematical
procedure whether the available information consists
of a measurement of (fz) or its statistically conjugate
quantity Ag.

18 This argument admittedly lacks rigor, which can be supplied
only by consideration of phase coherence properties between the

various states by means of the density matrix formalism. This,
however, leads to the result given.
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We now give two elementary examples of the treat-
ment of problems using this generalized form of sta-
tistical mechanics. '

The pressure ensemble—Consider a gas with energy
levels E;(V) dependent on the volume. If we are given
macroscopic measurements of the energy (E) and the
volume (V), the appropriate partition function is

Z0uw) = f AV X exp[—NE:(V)—uV ],

where A\, p are Lagrangian multipliers. A short calcu-
lation shows that the pressure is given by

=—(3E,(V)/dV)=p/\,

so that the quantity statistically conjugate to the
volume is
u=AP=P/kT.

Thus, when the available information consists of either
of the quantities (T,(E)), plus either of the quantities
(P/T(V)), the probability distribution which describes
this information, without assuming anything else, is
proportional to

[Ei(V)—I-PV ”

kT

exp (5-11)

This is the distribution of the “pressure ensemble” of
Lewis and Siegert.?

A nuclear polarization effect.—Consider a macroscopic
system which consists of ¢ (a nucleus with spin /), and
o2 (the rest of the system). The nuclear spin is very
loosely coupled to its environment, and they can
exchange angular momentum in such a way that the
total amount is conserved; thus o is an angular mo-
mentum bath. On the other hand they cannot exchange
energy, since all states of o1 have the same energy.
Suppose we are given the temperature, and in addition
are told that the system o9 is rotating about a certain
axis, which we choose as the z axis, with a macroscopi-
cally measured angular velocity w. Does that provide
any evidence for expecting that the nuclear spin I is
polarized along the same axis? Let m. be the angular
momentum quantum number of o3, and denote by #
all other quantum numbers necessary to specify a
state of ¢2. Then we form the partition function

Zy(BN) = >_ exp[—BEs(nms)—Ams], (5-12)
n,mg
where 3=1/kT, and X is determined by
a Bw
(mey=——1nZy=—r; (5-13)
)N %

where B is the moment of inertia of ¢,. Then, our most
unbiased guess is that the rotation of the molecular

18 M. B. Lewisand A. J. F. Siegert, Phys. Rev. 101, 1227 (1956).
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surroundings should produce on the average a nuclear
polarization {m,)={(I,), equal to the Brillouin function

]
(m1)= —3)-\ an1 ()\), (5—14)
where
1
Zi(N)= X e (5-15)
m=1I
In the case I=1%, the polarization reduces to
(m1)=—% tanh(3N). (5-16)

If the angular velocity o is small, (5-12) may be ap-
proximated by a power series in A:

Zs (ﬁy)‘) =2 (ﬁ,O) [1 - >\<M2>0+%)\2<m22>0—]— ce ]’

where ( )o stands for an expectation value in the
nonrotating state. In the absence of a magnetic field,
{ma)o=0, #Xms*)o=kTB, so that (5-13) reduces to

A= —to/kT. (5-17)

Thus, the predicted polarization is just what would be
produced by a magnetic field of such strength that the
Larmor frequency wr=w. If |A\|<1, the result may be
described by a “dragging coefficient”

#I(T+1)

M) =——
m)=—T5

('WL2> . (5-18)

There is every reason to believe that this effect actually
exists; it is closely related to the Einstein-de Haas
effect. It is especially interesting that it can be predicted
in some detail by a form of statistical mechanics which
does not involve the energy of the spin system, and
makes no reference to the mechanism causing the
polarization. As a numerical example, if a sample of
water is rotated at 36 000 rpm, this should polarize the
protons to the same extent as would a magnetic field
of about 1/7 gauss. This should be accessible to experi-
ment. A straightforward extension of these calculations
would reveal how the effect is modified by nuclear
quadrupole coupling, in the case of higher spin values.

6. CONCLUSION

The essential point in the arguments presented above
is that we accept the von-Neumann—Shannon expres-
sion for entropy, very literally, as a measure of the
amount of uncertainty represented by a probability
distribution; thus entropy becomes the primitive con-
cept with which we work, more fundamental even than
energy. If in addition we reinterpret the prediction
problem of statistical mechanics in the subjective sense,
we can derive the usual relations in a very elementary
way without any consideration of ensembles or appeal
to the usual arguments concerning ergodicity or equal
a priori probabilities. The principles and mathematical

methods of statistical mechanics are seen to be of much
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more general applicability than conventional arguments
would lead one to suppose. In the problem of prediction,
the maximization of entropy is not an application of a
law of physics, but merely a method of reasoning which
ensures that no unconscious arbitrary assumptions
have been introduced.

APPENDIX A. ENTROPY OF A PROBABILITY
DISTRIBUTION

The variable % can assume the discrete values
(%1,* * -®»). Our partial understanding of the processes
which determine the value of x can be represented by
assigning corresponding probabilities (pi,- - «,pn). We
ask, with Shannon,* whether it is possible to find any
quantity H(p1- - -p,) which measures in a unique way
the amount of uncertainty represented by this proba-
bility distribution. It might at first seem very difficult
to specify conditions for such a measure which would
ensure both uniqueness and consistency, to say nothing
of usefulness. Accordingly it is a very remarkable fact
that the most elementary conditions of consistency,
amounting really to only one composition law, already
determines the function H(p:---p.) to within a con-
stant factor. The three conditions are:

(1) H is a continuous function of the p,.

(2) If all p; are equal, the quantity A4 (n)
=H(1/n,--+,1/n) is a monotonic increasing function
of n.

(3) The composition law. Instead of giving the
probabilities of the events (x1- - -%,) directly, we might
group the first & of them together as a single event, and
give its probability wi= (p1+-- -+ px); then the next
m possibilities are assigned the total probability
Wo= (prt1+ -+ * 4+ Prym), €tc. When this much has been
specified, the amount of uncertainty as to the composite
events is H(w;---w,). Then we give the conditional
probabilities (p1/wy,- - -,pr/w1) of the ultimate events
(%1---xx), given that the first composite event had
occurred, the conditional probabilities for the second
composite event, and so on. We arrive ultimately at
the same state of knowledge as if the (p:---p,) had
been given directly, therefore if our information measure
is to be consistent, we must obtain the same ultimate
uncertainty no matter how the choices were broken
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down in this way. Thus, we must have

H(pr- - - pn)=H (w1- - wa)+wil (p1/wy, - -, pu/w1)
+w2H(?k+l/w27 te 7Pk+m/w2)+ RN (A-l)

The weighting factor w; appears in the second term
because the additional uncertainty H (p1/w1,- -« +,pr/w1)
is encountered only with probability w;. For example,
H(1/2,1/3,1/6)=H(1/2, 1/2)+3H(2/3, 1/3).

From condition (1), it is sufficient to determine H
for all rational values

pi=mni/2 ni,

with 7, integers. But then condition (3) implies that H
is determined already from the symmetrical quantities
A (n). For we can regard a choice of one of the alter-
natives (x:---%,) as a first step in the choice of one of

2 M

=1
equally likely alternatives, the second step of which is
also a choice between #n; equally likely alternatives.
As an example, with #=3, we might choose (#%1,%2,%3)
= (3,4,2). For this case the composition law becomes

3(342 AG AW +A@2)=409)
9’9’9) 9 9 g

In general, it could be written
H(pr - p)+2 i piAdm)=A(in). (A-2)

In particular, we could choose all #; equal to 7, where-
upon (A-2) reduces to

A (m)+A (n)=A (mn). (A-3)
Evidently this is solved by setting
A(n)=K lnn, (A-4)

where, by condition (2), K>0. For a proof that (A-4)
is the only solution of (A-3), we refer the reader to
Shannon’s paper.* Substituting (A-4) into (A-2), we
have the desired result,

H(pr - po)=KIn(XC n)—K X p;Inn;

= —K Zi p@ hlpi. (A—S)



