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those of Malan and Schonland that there is no ob-
servable stepped electrostatic field change during the
downward course of a nearby stepped leader. This leads
one to the conclusion that the charge q lowered per cm
path during the step-Rash must be too small to produce
detectable steps in the electrostatic 6eld change. This
view was already put forward by Schonland' and has
been reiterated in his recent article. 7 Following Schon-
land, if it is supposed that the charge lowered per cm
during the step-Rash is 1/16th the charge per cm
carried by the pilot streamer and if the velocity of the
step-flash is taken as 2X10' cm/sec, the stepped-leader
current comes out to be (0.8X 10 sX 2X 10')/16 or 1000

6 D. J.Malan and B.F.J.Schonland, Proc. Roy. Soc. (London)
A171, 485 (1947).

73. F. J. Schonland, Encyclopedia of Physics, edited by S.
Flugge (Springer-Verlag, Berlin, 1956), Vol. 22. See article by
Schonland on "Lightning Discharge. "

amperes. It is to be noted that with the value of the
velocity of the step-Rash equal to 2X10' cm/sec, the
duration of the step-Gash would be 1—10 @sec for a step-
length of 20—200 meters.

The pilot streamer was considered by Schonland' as
responsible for the observed electrostatic fmld change but
his estimate of the pilot streamer current, i=320
amperes, is based merely on the observation that a
charge of 4 coulombs is lowered by the leader in a model
time of 0.0125 sec. In the present communication, it has
been shown that the same value for the pilot leader
current, prior to the step-flash, may be obtained from
I.oeb's streamer mechanism formula, i=pe~, by taking
the velocity u, of the streamer tip to be 4X10' cm/sec
which is considerably less than the velocity of the step-
Qash. A theoretical basis according to streamer theory
is thus given for the pilot leader current which is con-
sistent with the observed electrostatic field change.
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The noise figure or limiting sensitivity for both traveling-wave and resonant-cavity quantum-mechanical
amplifiers, sensitive to one direction of propagation, is derived with spontaneous emission as the limiting
noise. The concept of eRective temperature is introduced as an analytical parameter; thus negative temper-
atures appear in a natural fashion. It is pointed out that the results of this calculation can be considered
the solution to the problem of linear counting of coherent particles. In this case the least count is one and
the signal-to-noise ratio (for constant photon Aux) increases as the reciprocal of the band width. The limiting
temperature sensitivity of properly designed quantum-mechanical ampliflers is given as hr/b degrees because
of the drastic diRerence between negative and positive temperatures.

I. INTRODUCTION

' NTEREST in quantum-mechanical ampliders has
- - demonstrated that there are available many methods
for making such devices. ' 4 Of the many properties of
quantum-mechanical ampli6ers —gain, band width, sta-
bility —their limiting sensitivity or noise 6gure is of
great importance. This paper will be devoted to an
investigation of the noise figure for quantum-mechanical
ampli6ers of either traveling-wave or resonant-cavity
design. In later papers we shall discuss the problems
that enter into the actual design of quantum-mechanical
amplifiers.

* This work was supported in part by the U. S. Army (Signal
Corps), the U. S. Air Force (Oflice of Scientiflc Research, Air
Research and Development Command), and the U. S. Navy
(Oflice of Naval Research).' N. Bloembergen, Phys. Rev. 104, 324 (1956).' Scovil, Feher, and Seidel, Phys. Rev. 105, 762 (1957).

s M. W. P. Strandberg, Proc. Inst. Radio Engrs. 45, 92 (1957);
M. W. P. Strandberg, Bull. Am. Phys. Soc. Ser. II, 2, 36 (1957).

~ Gordon, Zeiger, and Townes, Phys. Rev. 99, 1264 (1955).
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II. TRAVELING-%'AVE AMPLIFIER NOISE FIGURE

We shall be considering the situation shown in Fig. 1—a piece of transmission line which has within it and
coupled to it energy levels that can be prepared for
operation as a quantum mechanical ampli6er. In this
paper we are not particularly interested in the actual
design; thus the amplifier that we visualize will be a
directionally sensitive amplifier, that is, it will amplify
waves unidirectionally. We merely state that it is
possible to design such a directionally sensitive ampli-
fier. This allows our amplifier to be insensitive to the
output-load temperature and also eliminates regener-
ative amplification arising from reAections.

The construction of such a directionally sensitive
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device is based on the Faraday eGect, with circular
polarization of the signal radiation. ' The Faraday eGect
of the amplifying energy levels or of auxiliary para-
magnetic or ferrite crystals may be used. Our work on
the development of directionally sensitive devices for
both low- and high-Q structures will be reported later.

The physics that we have to use at this point is
easily summarized. Induced transition probabilities are
proportional to the radio-frequency energy per unit
volume per frequency interval. We know also, from
radiation theory, that the spontaneous-emission prob-
ability is the same that we would have if we had a
radiation density of as many photons per frequency
interval per unit volume as the number of modes per
frequency interval per unit volume. ' This means that
the equivalent radiation energy density for spontaneous
emission is the photon energy divided by the eAective
cross-sectional area of the transmission line and the
group velocity of the radiation. The signal-power Qow

per frequency interval is simply the radiation density
multiplied by the group velocity and the effective
cross-sectional area.

We shall also require that, in the equilibrium condi-
tion, a net balance exist between the emission from the
transmission-line walls and the energy which they
absorb. The conditions outlined above, then, lead us
to our first equation for the rate of change of the power
per frequency interval in the section of the transmission
guide:

dp„A p„(es—ei)hi Ah, vah, res
+ +~.p +~'P (T.) (1)

The symbols in this equation are apparent: A is a
quantity related to the coupling between the quantum
mechanical levels and the electromagnetic radiation,
e2 and eI are the number of energy states per unit
volume in the upper and lower states, h is Planck's
constant, n, is the guide attenuation constant, and
p„(T,) is the characteristic thermal-noise distribution
function for the coupling line, given in terms of its
temperature T„and p„ is the total energy density,
which is x dependent.

In thermal equilibrium the left-hand side of Eq. (1)
is zero; this requirement is met by having an equality
in magnitude between the last two terms on the right-
hand side of the equation. The 6rst two terms are also
in proper form. In thermal equilibrium, the ratio ei/es
is just the Boltzmann distribution, and we are led to
the conventional form for the thermal-radiation power
density, which is given by

Ts
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Pro. 2. Symbolic system diagram.

The coefficient multiplying the radiation power density
in the first term on the right-hand side of Eq. (1) is

apparently the quantum-mechanical gain of the system.
If we use P for this term, the equation can be simplified
to more symmetrical form as

dp„/dr= pp„pp„(T,)—a,p„+n,—p„(T,). (3)

We have introduced in Eq. (3) the idea of a temper-
ature for the quantum-mechanical amplifier by defin-

ing ei/tie=exp(hi/kT, ). The concept of the quantum-
mechanical temperature can have no greater meaning
than that it is a convenient analytical parameter. We
shall retain the Planck form of the thermal-radiation
density given in Eq. (2), since there will be occasion to
use temperatures that will not make the exponent of e
small compared with 1. Equation (3) can now be
integrated along the length of the amplifier section,
and the output radiation power density can be given as

Pp. (T*) ~.p.(T.)—
(P )-~= (P )' g'+ - (1-g') (4)

(P ~.)
where g' is the gain of the quantum-mechanical ampli--
fier. The interpretation of Eq. (4) is obvious. The
effective noise radiated from the amplifying section
comes from the spontaneous emission in the quantum
mechanical system itself, and from the thermal-noise
radiation of the transmission lines. The kind of weight-
ing factor, expressed by the last term in Eq. (4),
between two noise sources coexisting at diGerent
temperatures, is, well known, and our calculation has
merely demonstrated that the spontaneous emission in
the quantum-mechanical amplifier gives rise to a noise
that is equivalent to the noise expected from a properly
dehned resistor.

We are now in a position to evaluate the limiting
sensitivity or noise figure of a complete system. We
shall choose a system and a notation that are indicated
in Fig. 2. The source is defined by an effective temper-
ature T, (see Fig. 2), the transmission line has a
power-loss factor t and a temperature T~, and the output
load of the amplifier has an excess noise power p„(To').
By conventional calculations, we obtain the noise
6gure of a traveling-wave quantum-mechanical ampli-
fier, which is

P.(T)=
exp (he/k T)—1

(2) noise figure = (P.). t =1+ (1—t)p„(T,)
tg p„(T,) ~p„(T,) I

IM. Tinkham and M. W. P. Strandberg, Proc. Inst. Radio
Engrs. 43, 734 (1955);Phys. Rev. 97, 937—966 (1955).

W. Heitler, Qaamtlra Theory of Radhatsol (Oxford University
Press, London, 1944), second edition, p. 105.
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Equation (5) may be expressed in a more familiar
form if we allow kT to be appreciably larger than hv.
In this case the radiation-density terms can be repre-
sented by their parametric temperatures. It is quite
obvious, from Eq. (5), that a noise figure approaching
unity can be obtained if reasonable gains (g=30) are
used, and if the transmission-line and coupling-line
losses are kept low. For example, if the transmission
line is operated at 300'K and the effective source
temperature is 3'K, a transmission-line loss of one
percent between antenna and ampli6er would result in
doubling the noise figure. The transmission-line coupling
section with a loss factor n, will probably be run at or
near

~
T, ~, so that, for any reasonable gain, the contri-

bution of the coupling section will always be negligible.

dpv =A p„(N2 —ei) V,hl + rs2V, hv
xhvV,

~Pv ~Pv Pv ext Pv wall
+ -+ . (6)

Qo Q. V. V.

In the steady state the left-hand side of Eq. (6) is
zero. We use the coeScient of p„ in the first term on the
right-hand side of Eq. (6) to define an amplifier Q, and
use this ampliaer Q, in the second term on the right-
hand side of Eq. (6), as we did in Sec. II, to define,

again, an effective ampli6er temperature T, in terms
of a population distribution, through the use of Eq. (2).
A straightforward rearrangement of terms then leads to

~v.p 4P (7'*)Q~ 4P (T'.)e~ 4P (T.)e~
+ + (7)

e. e.
where

III. RESONANT-CAVITY AMPLIFIER NOISE FIGURE

We shall develop the noise 6gure for a quantum
mechanical amplifier that acts in a high-Q cavity sys-
tem, by using a procedure similar to that used in Sec.
II. Again, we use as our model a directionally sensitive
system, so that the amplifier is shielded from the load
temperature, and the regenerative gain of the device is
stabilized by isolating it from load variations. The
stimulating radiation density, p„, and the Q's, which are
descriptive of the resonator losses and the external
losses, will be used. Spontaneous emission takes place,
as we observed in Sec. II, as if it were induced by a
radiation density of as many photons per frequency
interval per unit volume as the number of modes per
frequency interval per unit volume. With a resonant
system the number of modes is one, the characteristic
volume is that of the cavity, and the frequency width
is the effective power width of the amplifier, which is

just —,'mdiv. In conventional notation, the necessary
power balance in the system is given by

The substitutions in the last two terms in Eq. (7) for
the power from the external circuits and the power from
the walls may be rationalized from a consideration of
matching or, much more simply, they may be justified,
at this point, from arguments of thermal equilibrium.
In thermal equilibrium all components will be at the
same temperature; whence Eq. (7) reduces to an
obvious identity. If we delne the gain of a cavity
quantum mechanical amplifier as the ratio between the
incident and the rejected power, we have, in conven-
tional notation, the expression for this gain.

I,/I. =g'; g=2(e./e. )-1 (8)

One form that the noise figure takes is

noise figure = 1+ (1 I)p, (T—,)
Ip (&.)—

(g+1)' Q.+, P.(T.)+—I:P.(T.)—P.(T'.))

I p (&*) (9)
t'g —11

g+ I)
The observations to be made on Eq. (9), with respect

to transmission loss, cavity temperature, and so forth,
are fairly obvious and we dispense with them here.
The gain relationship displayed in Eq. (8) does, how-
ever, demonstrate a particular property of regenerative
ampli6ers. Since the loaded Q and the square root of
the gain are linearly related, we. have the property
that the square root of the gain multiplied by the band
width of the system is essentially a constant. In other
words, increased gain is paid for by decreased band
width, although, since the band width is decreased as
the square root of the gain, the price is not hard to pay.

IV. SUMMARY

We have tried to present a rational, sound analysis
of the limiting sensitivity of quantum-mechanical
amplifiers. Since the raisorI, d' etre for a quantum-
mechanical ampliher is its high sensitivity or low noise
figure, it is essential that these calculations be available,
in order that we may evaluate the worth whileness of
research along these lines. Although our calculations
may still contain errors, it is hoped that they are minor
from the viewpoint of our present understanding of the
physical processes involved. At least they have put the
role played by spontaneous emission in these devices
in proper perspective, and they have given a natural,
con6dent foundation to the concept of temperature in
these devices.

We may now see why such considerations of noise
are of interest in microwave systems that operate at
room temperature. At high temperature, say room
temperature, the net absorption (or net emission,
depending upon which dominates) is nearly canceled
by the induced emission (or absorption). Many photons
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must be absorbed (or emitted) to achieve one photon
of net absorption (or emission). These net photons
must complete with the spontaneous-emission photons.
Thus, as T,ff is lowered, fewer photons need be handled
for the same signal-to-noise ratio. Here the tremendous
di6'erence between so-called positive and negative
temperatures (our T,tt) is apparent. For the absorption
case, the noise-power distribution p„(T) approaches
zero as T,tt approaches +0. However, it approaches

hP as 7 ff approaches —0. This is intuitively satis-
fying, since it means that spontaneous-emission noise
actually acts as least-count noise in a net emission
system. To put it otherwise, if we have e photons per
frequency interval per second from the amplifier, the
least count is one photon and this is just the spon-
taneous-emission noise. We are dealing here with phase-
coherent photons, however, so the signal-to-noise ratio
is as the reciprocal band width, instead of as the square
root of the reciprocal band width, which is the case
when incoherent photons (or particles) are counted.
We have essentially solved the problem of the sta-
tistical noise for a linear system with coherent particles.

For those who like a simple, appealing, albeit inaccu-
rate, explanation of quantum-mechanical noise, we

o8er the following suggestions that have grown out of
our work. At high effective temperatures, the noise is

high, since the least-count effect (shot effect) becomes

large, because the net emission is small on account of
interfering absorption. As the effective temperature is
lowered, the number of photons to be amplified can be
linearly lowered and the same least count, i.e., the
same signal-to-noise ratio, can be maintained. The
limit as T,ff approaches 0 will always be photon shot
noise.

Neglecting, then, many practical details that are
solely within the realm of engineering ingenuity (for
which we hold high regard), we have shown that the
limiting sensitivity of quantum-mechanical amplihers
is given in a readily achievable limit by the eGective
quantum-mechanical noise power density. This noise
power density is given parametrically by an effective
temperature. The essential and drastic difference be-
tween negative and positive temperatures is demon-
strated by this function, in that, as T approaches —0,
this function approaches (—hv) and, as T approaches
+0, this function approaches 0. This means that in
the region where hv(kT. .. the noise 6gure can be
represented, essentially, as the ratio of the quantum-
mechanical temperature and the source temperature.
With the equality sign reversed, the noise 6gure be-
comes large. For 1-cm radiation, this turning point is
at 1.5'K. At any frequency, we may say that the
limiting temperature sensitivity for a quantum-
mechanical ampli6er is, essentially, hv/k.
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Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting "subjective statistical mechanics, " the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.

1. INTRODUCTION

HE recent appearance of a very comprehensive
survey' of past attempts to justify the methods

of statistical mechanics in terms of mechanics, classical
or quantum, has helped greatly, and at a very opportune
time, to emphasize the unsolved problems in this field.

' D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

Although the subject has been under development for
many years, we still do not have a complete and
satisfactory theory, in the sense that there is no line
of argument proceeding from the laws of microscopic
mechanics to macroscopic phenomena, that is generally
regarded by physicists as convincing in all respects.
Such an argument should (a) be free from objection on
mathematical grounds, (b) involve no additional arbi-


