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Isobar Model for Meson Production in Proton-Proton Collisions*

SAUL BARSHAY

Radiation Laboratory, University of California, Berkeley, California

(Received December 26, 1956)

A model is considered for single- and double-pion production in which the production takes place via an
intermediate state wherein. either one or both of the initial nucleons is excited to the isobaric state of J=I= —,.
The treatment is phenomenological and comparison is made with recent experiments in the 0.5- to 1.5-Bev
range. Two striking features of the experiments, the strong preference for the emission of mesons with
kinetic energies of 50 to 150 Mev, and the rapid increase in the two-meson processes at bombarding energies
above 1 Bev, are exhibited by the calculation.

INTRODUCTION

ECENT experiments on meson production in
nucleon-nuc1eon collisions have thrown some light

on the usefulness of the J= ~, I= 2 isobar as an inter-
mediate state in high energy processes involving one or
more nucleons. At the Cosmotron, Vuan and Linden-
baum' have observed the energy spectra of positive and
negative pions produced in p —Be and p

—
p collisions

at 1 Bev and at 2.3 Bev. At the higher energy, double
production appears to predominate. At both 1 and 2.3
Bev, plots of the relative meson-production cross
sections per Mev per unit solid angle versus meson
kinetic energy in the nucleon-nucleon center-of-mass
system exhibit strong peaks between 100 and j.50 Mev.
In the case of x+ production, these peaks are surprisingly
similar in shape to the peak that appears in the ~+—p
total-interaction cross section when plotted versus meson
kinetic energy in the m.+—p center-of-mass system. ' At
1 Bev the curve is shifted somewhat toward the lower
energies. At 2.3 Bev the curve is considerably broadened
as compared to the m+ —p curve. The peaks in the
negative pion spectra are markedly similar to that
which appears in a plot of the m. —p interaction cross
section ~ersns meson kinetic energy. The m spectra
also show the eGects described above, at 1 and 2.3 Bev,
respectively.

These facts may be explained' in a qualitative manner
as follows. In the collision of the two nucleons, a
mechanism whose detailed nature is probably quite
complicated operates to form an intermediate state in
which either one or both of the nucleons has been raised
to the (J=—,', I= ~3) isobaric state. If the initial nucleons
have momenta &p in the center-of-mass system and if
the excitation process involves a transfer of momentum

g between the particles, the particles in the intermediate
state have momenta & (p —g). It is then supposed that
these particles separate somewhat, and one or both
decay by emission of a pion. The decay of one isobar
is to be thought of as being independent of the presence

~ The work was performed under the auspices of the U. S.
Atomic Energy Commission.

'L. C. L. Yuan and S. J. Lindenbaum, Phys. Rev. 103, 404
(1956).

L. C. L. Yuan and S. J. I indenbaum, Phys. Rev. 100, 306
(1955).

of another isobar or nucleon. It may be that the excita-
tion occurs near the edge of a region of strong inter-
action, with not too great a momentum transfer. This
would make the separation and independent decay
more plausible in the light of the very short lifetime of
the isobar (~10 "second). '

In this calculation we shall describe the excitation of
the intermediate state by amplitudes which we shall
define as functions of the bombarding energy. The
decay of the isobar will be described by an amplitude
which will be defined as a function of the total energy
in the total center-of-mass system of the pion-nucleon
system resulting from the decay. These amplitudes
are in general also functions of the relative momen-
tum and energy of the intermediate-state particles.
As a 6rst approximation we shall neglect this de-
pendence in the amplitudes which we define. That
is not to say that we shall consider the intermediate-
state particles to be literally brought to rest by the
excitation process. Being massive, their relative mo-
mentum will not be negligible, although their relative
kinetic energy may be small. We shall rather consider
that the final nucleons account for most of the conser-
vation of momentum and hence tend to follow the
directions of the intermediate-state particles, moving
o6 with approximately equal and opposite momenta in
the total center-of-mass system. We thus neglect the
part of the meson momenta (or equivalently the motion
of the center of mass of the two-nucleon system) in
total momentum conservation. Each of the final-state
nucleons will have about one-half of their energy of
relative motion and the latter will be given by the
meson energies and energy conservation. With this
kinematic picture of the collision we may construct
from our approximate amplitudes the transition prob-
abilities for single and double meson production.

In Sec. A under the Calculations, we give the charge
ratios in single and double production on the basis of
the model. These were derived originally by Peaslee'
and are presented here for clarity in the ensuing
discussion. In Sec. B, we define the fundamental ampli-
tudes to be used in calculating the transition proba-
bilities for meson production. These amplitudes were

' D. C. Peaslee, Phys. Rev. 94, 1085 (1954); 95, 1580 (1954).
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de6ned by Austern4 and were utilized by him in his
study of the photodisintegration of the deuteron on the
basis of the isobar model. The reader is referred to his
paper for a lucid discussion of the model. In Sec. C, we
derive the cross section for the process p+~e+ p+z'+.
The energy spectrum of the emitted pion is of particular
interest for comparison with experiment, In Sec. D,
we derive the cross sections for double-pion production
and present the energy spectrum of the pions. An
estimate of the double-to-single ratio as a function of
bombarding energy is given. In Sec. E, we discuss the
modi6cation of the angular distributions of the two
pions that would occur if a hypothetical meson-meson
interaction were present. The predictions of the model
are compared in the Discussion with the recent experi-
ments on meson production in p—p collisions.

CALCULATION

A. Charge Ratios in Single and Double
Production

An expansion of the initial two-proton state of total
isotopic spin I=1 and total s-component I,=1 in
terms of an I=2 isobar state and an I=—,

' nucleon
state leads to the following result for the single pro-
duction cross section:

9 2
o =—o (7r+p; e)+ o(7r+e; p)+——~(~'p; p). (1)

12 12 12

A semicolon stands between the pion-nucleon pair
resulting from the isobar decay and the second nucleon.
The z.+/z. o ratio is 5. It is important to note that the
total cross sections o (z+p; e) and o (z+e; p) represent
physically distinguishable processes, in that the z.+—p
pair and the x+—e pair will show the characteristic
Q-value of the isobar decay.

By expanding the initial state in terms of two I= 2

isobar states, one obtains for the double-production
cross section:

1
o =—(18o-(m+p; vr'e)+8o-(~'p; ~+e)+9o (vr+p; z

—
p)

45

scattering of positive P-wave pions by protons, at a
total energy E. We assume that the scattering proceeds
through an intermediate state that involves formation
of the (—', a2) isobar with energy Eo——m+@+0.16= 1.24
Bev, where nz and p are the nucleon and meson rest
energies, respectively. The I'-wave part of the incident
meson plane wave of momentum k may be written as

P Yi „*(k z)Yi, „(r z),
m=—1

(3)

where x is the axis of directional quantization and the
Y~, are normalized spherical harmonics. Boldface
symbols which appear in the arguments of spherical
harmonics denote unit vectors. The J= 2 part of
the product of the above expression with the initial
proton spinor with spin s-component s, E', is given by

m=1

P I'i, „*(k z)(1, -'„m, s~ 2, m+s)
~

—',, m+s). (4)
m=—1

If the initial pion-nucleon state is not pure I= 2, say
m+—e, then an additional Clebsch-Gordan coefficient
appears in the above amplitude, i.e., (1, —',, 1, —P ~, 2),
representing that part of the state that couples into
the I= 3~ isobar.

The scattering cross section may then be evaluated
in terms of II(E) and the result is'

do( Ez++p . +n++ p)— .

pE(~J)/) &n
= (gz.) '114 iDi '(3 cos'8+1)—, (6)

VE(z) 4z.

where D is an energy denominator given by

The definition4 of II is then achieved by stating that a
positive-meson plane wave of unit amplitude incident
upon a proton forms the J=~3 isobar with spin s-
component o.=m+s, with the amplitude

II(E)Yi, „*(k.z)(1, —',, m, s
~ 2, m+s)

+8o.(z'p z-'p)+2o (z-+e; z-+e)). (2) D= E Eo iF/2. — — (7)

This gives for total x+, m', ~ production the relative
weights 13, 14, 3, respectively. A prediction of this
model is that in the dominant double-production
process p+~vr'+z++e+p the z+ should be corre-
lated by Q-value to the proton 9/4 as often as to the
neutron.

1.36(k/p)'X58 Mev

1+0.77 (k/p)'
(8)

The quantity I' is introduced as an imaginary part to
the isobar energy owing to its decay and is given by'

B. Fundamental Amplitudes for Calculating where k is the meson momentum~ L(E—m)' —p']'*. The
quantity VE(z) is the incident pion velocity=k/o&,
where ~=E m; pE(zÃ) is t—he density of final states

Following Austern's method, we now define an = (2/z)k~. The amplitude 11(E) as a function of the
amplitude II in the following manner. Consider the

4 N. Austern, Phys. Rev. 100, 1522 (1955).
5 M; Gell-Mann and K. M. Watson, in Annual Remi em of Nuclear

Science (Annual Reviews, Inc. , Stanford, 1954), Vol. 4, p. 219.
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total cross section is then

Vs (z.)
II'(E) =4sr

~
D

~

'o.g (sr++ p—+s"+p).
pa(~X)

in terms of II(E) and T2(E), and the result is'

o a(sr++d~2p)
(9)

5
ps(2Ã)/V@(z. ) (D) II (E—ssl)T2 (E), (13)

In Austern's work, use was made of this amplitude with
the experimental cross section on the right-hand side.
In order to perform certain phase space integrations
when investigating meson-production phenomena, we
shall use a theoretical expression for aE(sr++P~sr++P)
given by the Chew-I. ow theory':

Vs (sr) = k/ru with a&= Lk'+p'js=E —2sss,

pa(2N) = (2/sr) pE/2 with p= $4tE' —sN'j'*.

We solve this for T~(E), using Kq. (9) for II(E).

9x
(10)

~

T (E) ~'= —((E—srs —Eo)'+-'I'2}'
10v2 p'

o g (sr++ d—+2p)
X

o (E)= 8)b.s2k4

ee'(1 —eo/eve)'+As'k'

where ve is the meson energy=[k'+is'$'=E sos, X—P
= (16/9)(f'/is')=29. 5 for the pseudovector coupling
constant f'=0.08, and eos=0.3 Bev.

We now need to evaluate one more 'basic amplitude.
We recapitulate Austern's argument in brief. Consider
the mesonic disintegration of the deuteron, sr++d~2p,
at a total energy E. We consider the process to go
through an intermediate state involving one isobar and
one nucleon. We neglect the energy of relative motion
of the particles in the intermediate state, and we
consider them to be in an S state. It is then readily
seen that, in order to conserve angular momentum and
parity, the Anal-state protons must be in a 'D2 state.
Now the D part of the two-proton plane wave of
momentum p is

o (@ TTTl*(sr++P~++P)
9x 4—{(E—~—E,)'+-,'I"}f

10v2 3k
o.s (p+~++I)x, («)

o &s &*(sr +~ +p)

where we have used the relation from detailed balanc-
ing:

o~(z++d—+2p) =-', (p'/k')oa(p+~sr++d). (15)

Our quantity I' here is defined by Eq. (8) with k
= L (E—2nz)' —p'j'.

tn=2

F2, „*(p z) V2, „(r z).
ye=—2

We define the amplitude' T2(E) by stating that the
two-nucleon plane wave of unit amplitude forms the
J=2, J,=m part of the isobar-nucleon state with
amplitude

C. Cross-Section Derivation for p+ pave++ p+n
We are now in a position to apply the model to

calculate some single and double production processes
involving unbound nucleons in the final state. We
consider 6rst p+~sr++sv+p. The transition is to the
'5& state of the 6nal nucleons, because they cannot
emerge in a '50 state with a P-wave meson and yet
conserve angular momentum and parity. The calcu-

T2(E)I's, *(p z). (12) IOOO

The cross section for the process may then be evaluated

vr+
l

p J=. T--S/2

Z0
IOO

U
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FIG. 1. Feynman graphs for double meson production through an
intermediate two-isobar state.

' G. F. Chew and F. Low, Phys. Rev. 101, 1570 (1956).

8 IN DEGREES

FIG. 2. (a) Plot of Eq. (35) versus a with OT ——45'. (b) Plot of
Eq. (35) times sin'8/q' eersls tI} with tIII=45', k1=20 Mev/c,
k2 ——30 Mev/c, e,=190 Mev, F=10 Mev. (c) Same as (b) with
k1= 70 Mev/c, k2=50 Mev/c. (d) Same as (b) with k1= 150 Mev/c,
k2 ——130 Mev/c.
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FrG. 3. Energy spectra for the meson produced in the reaction
p+p —+~++n+p at 450 Mev. The final-state n-p force is included
in terms of the low-energy triplet scattering length.

lation proceeds in a manner similar to that of reference
4. We construct the final n-p states of S= 1, S,= &1,0;
I=O, and I,=O, and from these we obtain the inter-
mediate state of isobar and nucleon by coupling the
pion to either the proton or the neutron. We then
extract the J=2, J,=0; I= 1, and I,= 1 part of this
state, and project it upon the initial two-proton state
with an amplitude T2', as only the 'D2 part of the
initial state conserves angular momentum and parity
with the intermediate state. The quantity

I
T2'

I

'
=(T2I'IP~(r=O)I ', where i'(r=O) is the deuteron
space function at r =0. (See Appendix B.) In computing
the cross section for this process, we add the cross
sections for the separate processes in which the pion is
coupled to the proton and to the neutron to form the
isobar, remembering that these two final states are
distinguishable by Q-values measurements. The results
for the two cross sections are

Fxo. 4. Energy spectra for the meson produced in the reaction
p+p —&m-++n+p at 565 Mev.

sin6 l Sing
e" d'rf(r) =constant Xe'~

qJ (17)

where 5 is the n-p scattering phase shift in the triplet
state, q is the magnitude of the relative momentum,
and f(r) is a function of the magnitude of the relative
coordinate between the nucleons. We approximate 5 by
qcotb=n where n '=5.39)&10 " cm is the triplet-
scattering length. The density of final states p&(2%~)
is given by

(2/n)k(u(2m) '2~»4~de,

Before using this result, we would like to modify it
to take into account somewhat the final state n-p
interaction. In Appendix A, it is shown that consider-
ation of the relative motion of the two nucleons in
the final state approximately modifies the above matrix
element by the multiplicative factor

"~l4'(r=0) I
'&/2L-'~' —»'1'where a= is when the ~+—p result from the isobar and

a=i/72 when the m+ —n result from the isobar. The
quantity Vz(E) = 'I'/E. The meson angular distribution
given here, as well as those presented in Sec, B for the
double production processes, is obtained with neglect
of the e8ect of the transformation from the isobar rest
system to the total center-of-mass system on the meson
momentum.

{(8 2m e) '—p'}'—{(8——m —-', c—Eo)'+-',I'}l

X
{(E—2m)' —y'}i{(8—m —Eo)'+-,'I'}'*

»lesbo. sic(n++~++ p) de
(19)

0'&@ &~(n'++~++p){u +me}

where c=q'/m is the relative energy of the nucleons.
&~ (p+~++p+n) =~12' '(&) I'I 11(&—m) I' Inserting the expressions for T2, II, and pz into Kq.

(16) appropriately modified for the final-state inter-
action, we obtain

Vs 1V kn.
(p+p +p+ ')
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The proportionality sign indicates that this is the ratio
to within a constant factor involving j'd'rf(r). The
quantity 0-~~: arises from the vertex at which the isobar
decays. The energy E& is taken as equal to the sum of
the kinetic energies and rest energies of the pion and
nucleon resulting from the decay. If we denote the
pion kinetic energy by t, then E&=p+m+t+2e. In
this expression we have set the nucleon kinetic energy
equal to one-half the energy of relative motion of the
two nucleons, 2e. In this approximation we neglect
the momentum of the meson and assume that the
massive nucleons account for most of the conservation

of momentum, and hence, tend to move oG in opposite
directions with about equal momenta in the total
center-of-mass system. The meson energy is given by
energy conservation: 3+p=E—2nz —e. These substi-
tutions into the matrix element and the three-body
phase space take into some account the motion of the
intermediate state particles which we have neglected
in the amplitudes describing the production and decay
of the isobar.

We now use Eq. (10) giving a.s~' as a function of

meson energy o)=Eg—m=E —2m ——,'e ..

0 ~~l(m++ p—+n++ p) = L(E—m —-', e)' —p']
( (E—2' ——,

' e)'L1 —(E—2ns ——,
'
e)/(ua)'+APL�(E

—2' ——',e)' —p'$'}
(2o)

Inserting this value into Eq. (19) and putting e=E
—2ns —p —t, we obtain the energy spectrum of the
produced pion for a given value of K The ratio of the
cross sections as a function of E is obtained by inte-
grating over e for 0&e&E—2m —p, . However, it must
be pointed out that this ratio will be badly distorted at
the higher bombarding energies by the approximation
that was used in writing the amplitude T~'(E) as an
energy-independent multiple of T2(E). (See Appendix
B.) This approximation neglects the high-momentum
components in the deuteron. In the single meson pro-
duction processes at high bombarding energies (above,
say, 800 Mev), the low-momentum components of the

final two-nucleon system will be less important and de-
teron formation will not occur except in rare instances
as a consequence of the high-momentum tail. At these
energies the quantity ~g&(r=0)

~

' should be replaced
by some energy-dependent factor such that this factor
times o.~(p+ p—&m++d) is approximately energy-inde-
pendent. The approximation should not be too bad for
single meson production below 800 Mev and for double
meson production in the range 1 to 1.5 Bev, where the
low-momentum components of the final two-nucleon
system are still important.

D. Cross-Section Derivation for
p+p~~++ ~++n+n

l.2—
I I I I I Turning our attention to the double-pion production

processes, we shall illustrate the method of calculation
for the process p+~++m++e+e. We consider only
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FIG. S. Energy spectra for the meson produced in the reaction
p+p —+m-++e+p at 680 Mev.

FIG. 6. energy spectra for the meson produced in the reaction
p+p —&x++n+p at '?95 Mev. Histogram is from the Brookhaven
experiment at 810%100Mev.
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F&G. 7. Energy spectra for the meson produced in the reaction Fzo. 8. Energy spectra for the meson propucep in the reaction
p+p~s++I+p at 1.015 Bev. Curve (a) nucleons are in an S p+p~v++I+p at 1.51 Bev. Tlm nucleons are in a ~ state.
state. Curve (b) nucleons are in a P state. Histogram is from the Brookhaven experiment at 1.5%0.1 Bev.

S states of relative motion for the 6nal two nucleons.
The 6nal state of the 2e is then the 'So. The production
process is now considered to go through an intermediate
state involving two J= 2, I= ~ isobars, We neglect the
energy of motion of the isobars and we consider them
to be in an S state. We have two identical fermions in
the intermediate state with total I=i, total I,=1.
These are in a symmetric space state and because the
total state must be antisymmetric, we see that the
total angular momentum of the intermediate state must
be J=2 or J=O. Hence the '$0 and 'D2 parts of the
incident two-proton state couple into the two-isobar
state, with amplitudes that we shall call Ao and A2,
respectively. In Appendix 8 it is shown that in the
approximation in which we neglect the dependence of
these amplitudes on the motion of the intermediate
state isobars, A2 is related to the amplitude T2' derived

Ao= So, As= (i)'5*$s (22)

IAsI' carries a statistical factor of 5 relative to IAoI'.

where fox(R) is the two-isobar wave function evaluated
at some relative coordinate E. characteristic of the
interaction region for meson production, f~, iv(R) is
the isobar-nucleon wave function, and the factor P is
energy-independent. An approximation such as this is
of very limited validity. It will be used only to get an
idea of the behavior of the two-meson excitation
function from 0.8 to about 1.3 Bev. We are not able to
relate Ao to a simpler reaction, so we leave it as an
undetermined parameter. However, the amplitudes Ao
and A~ bear the following relationships to the S-matrix
elements for the corresponding transitions, $0 and S2

The process to be calculated may be represented by the Feynman diagrams in Fig. 1.The energy denominators
that will enter into the matrix elements may be read o6 from the diagrams. The 6rst intermediate state contributes
D '=(E—2Eo—iso) '. The second intermediate state contributes D1, o =(E Eo p —Bs—se t—i 2

—sicko—) '—.
Here the subscripts 1 and 2 refer to Diagrams u and b and Diagrams c and d respectively. In the former case,
the meson ki is emitted first; in the latter case, the meson ks is emitted first. The 1i s refer to the meson kinetic
energies. The kinetic energy of the nucleon in the second intermediate state is taken as —,e, where e is the energy
of relative motion of the final two nucleons. The width Fo is given by Eq. (8) with k= (L(E—2m)'/4j —p'}'. We
must now evaluate the remainder of the matrix element. The wave function for the 'Sp state of the nucleons
and the two I'-wave mesons is

/=2 '(Xi& 'As & &—X& & &Nod &) Q I'i, „"(ki z)I'i, „*(ks z)Vi, (ri z)Fi„(rs z).
m, m~

(23)
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We combine meson k) with nucleon 1 in the J=I= ,' sta-te, and meson k~ with nucleon 2 in this state, with ampli-
tudes II(E)) and II(E2), respectively. To take into account Diagrams a and b of Fig. 1 (for a particular time
ordering), we also combine meson k) with nucleon 2 and meson k2 with nucleon 1. We then take the J'=2 and 0,
I=1, I,=1 parts of this two-isobar state and project them on the initial two-proton state with amplitudes A2
and Ao, respectively. The matrix element is then

M(m, m') =LII(E))D(E~)A2U~, *(k).z) Y) *(k2 z)D 'D). '2 '(&1, —',, m, —,
'

I 2, rm+ —',)(1, —',, ~', —
2 I 2, m' —

&&

X&-'„-'„rn+-,', r)t' ——,
'

I 2, o)+&1, 4, ~', k I 0, rN'+4&&1, 4, ~, —
k I4, ~—

k&&2, 2, ~'+ 2 ~—k I » o&

X&1, —,', m, —,'I-,', m+-,')&-;, —,', ~' ——,', ~+-', I2, 0&}{&1,4, 1, —2I-' -'&'&-' -'
2, AI1, 1&}

+same expression with D~ '~D2 'j+same expression with A2~AO and J'=2—+J=O
in the Clebsch-Gordan coefficients. (24)

In the line written out explicitly, the 6rst bracket contains the angular-momentum vector addition and the second
bracket contains the isotopic-spin vector addition. It should be noted that the angular-momentum bracket is
antisymmetric with respect to the interchanges m~m', s=-,'+-+s'= —~, which are equivalent to interchanging the
spin s components of the two isobars. The total transition amplitude is obtained by summing the expression (24)
over the spin z components, 0. and 0.', of each intermediate state isobar, subject to 0+0.'=J,=O. This is equivalent
to summing over m and m, ' in Eq. (36), subject to m+m =0. The result for the transition amplitude is

M=II(E&)11(E2)A2(E)D-'(DQ +D2 }(-',(2/5)'}(3/4~)(-', cose& cos82+-', sine) sin82 cos(@], (j&2)}

+11(El)11(E2)A0(E)D {Dl +D2 }(3(2/5) '}(3/4'r) ( 3 cosey cos82+ 3 slue' sln82 cos($1 f2) }~ (25)

The amplitude is properly symmetric in the two final-state mesons. The quantities II(E~) and II(E~) are the isobar
decay amplitudes evaluated at the total energies of the resulting pion-nucleon systems, E&——p+m+t&+ —,'e, and
E2——p+rz+t2+ —,e, respectively. The square of the transition amplitude is given by

IMI'= (2/45)(3/47r)'(1/9) III(E)) I'III(E2) I'IDI '(ID]
I

'+ ID2I '+2 Re(D/D2) '}
XI I

A2
I {4cos 8) cos 82+sin'8~ sin'82 cos'Q ~

—P2)+sin(28~) sin(282) cos(P~—P2) }
X

I
A o I'f 4 cos'8) cos'8~+4 sin'8~ sin'82 cos'(Pq —P2) —2 sin(28~) sin(282) cos(g~ —P2) }

+2IA~I IAOI cosAf —4cos'8) cos'ep+2 sin'eyslneg cos'(P& —P2)+—,
' sin(28)) sin(282) cos(P$ Ijl9)}g. (26)

Here 6=8p —82, the difference in the phases of the amplitudes Ao and A2. The differential cross section is obtained
by multiplying Eq. (26) by 2zpz(2m, 21V)/Uz(1V) where

pz(2~, 21V) = (2/z)'k~&u)d~~k2ar2dko2(2') 'rN'e'*dedQ~dQ2. (27)

The salient features of the angular distribution of either meson are best seen by integrating over one of the solid-
angle elements. The angular dependence is then given by

~(8)" IA21'f3 «s'8+1}+81AoI'+4IA2I IAoI cos~(1—3 «s'8} (2g)

Little can be said'about the interference term because the phase factor, cosh, is not given by this analysis. We
see that if A~ ——0, then the angular distribution of each meson is given by the familiar 1+3 cos 8 characteristic of
emission from a J=—,

' state. On the other hand, if A2=0, the angular distribution of each meson is isotropic, as
it must be for any initial state with J=O. Neglecting the interference term and using Eq. (22) to write o.(8) in
terms of the 5-matrix elements, we have

~(e) 5IS, I'+SIS, I'+15IS,I'cos'e (29)

If ISOI IS2I, the angular distribution can be somewhat more isotropic than that which is characteristic of the
J=-', state.

We now discuss the energy spectrum of the mesons and the total cross section as a function of energy on the
basis of Eq. (26). For simplicity, the angular integrations are performed with Ao set equal to zero. Substituting
from Eqs. (9), (14), and (21) into Eq. (26), we obtain

Uz(1V)P~(p+p~++z++e+e)/dedt) ~ plpd(r=O) I
'(t~(t&+2p) (E—2'—2p —t), —e) (E—2nz —t~ —e)e}*

X f (E—2r)t)' —p'} 'f(E—m —Ep)'+ —'I'}'*f(E 2EO)'+I'o'} 'I f(E—Eo t) ,'e p —m)'—+-'I—'(P-} —'—
+{ Eo+m+ @+4+,'—~)'+4I'0'} '+2( (E—Eo—4—-,'6 p sz) (—E~+m+p+tl+ —&)+-,'I'o'}
X{(E EO tl & P W) + —FO—}——{( E——o+rN+P+tl+ —

&) + I 0 } j((tl+)a+zt+ —
&
—EO) +—Fl }*

X( (E—t~ —x2e —p —m —E,)'+-,'I'p} '0»~(z++ p~++ p) 0 z2 (z++p~++ p)
Xo.z(p+~++d)/~(z )l(m++p)z++p). (30)
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In this expression az& 2(m++p~m++p) is given. by Eq. (10) with Ei t&——+-', e+y+m, E& E——m—p —fi—2—~, and

&i'= (4+-,'c) (4+-', &+2'), kP= (E —2m —2p —ti —', e—)(E —2m —ti —2e)

The I'i, 2 are defined by Eq. (g) with 0= k&, 2, respectively. The quantities P and Po are defined by Eq. (8) with
k= ( (E—2m)' —p'} l and k= (L(E—2m)'/4$ —y'}'*, respectively

(a) p+p —+p+p+m'+m',

(b) p+ p-+p+p+m++m-+,

(c) p+ p +n+ p—++++m',

(31)

whose relative weights were given in Sec. A. In con-
nection with Process (c), which is predicted by the
model to be the dominant one, and which, experi-
mentally, seems to be so, we note that the transition
amplitude into the 'S~ state of the Anal nucleons tends

The energy spectra are obtained by integrating over
|.for 0&e&E—2m —2p —tq, and plotting the resulting
function ~s 3& for given values of the total energy E.
Finally one integrates over t& for 0&t&&E—2m —2p to
obtain 0(E). It should be noted that in the energy
region above 1 Sev, where double meson production
begins to occur to some extent, 0(p+p—&+++0) is
essentially energy-independent. The right-hand side of
Eq. (44) should then give the shape of the double-
production cross section as a function of the total
energy E. For this purpose o &z ~&'(m++p~m++ p) will
be evaluated from the experimental work of Yuan and
Lindenbaum. ' As a 6nal test of the analysis, the ratio
of double to single production as a function of energy
may be obtained by using Eqs. (19) and (30). Normal-
izing this ratio to its experimental value at 1.5 Bev, we
may calculate it at lower and at higher energies and
compare the results with those of recent experiments at
around 800 Mev and 2 Bev.

In a similar manner, we may calculate the processes

to be suppressed. This condition results from several
factors. The total mesonic isotopic spin must be one.
In the approximation in which we may consider the
center-of-mass of the two-meson system to be in an
S-state, the relative orbital angular momentum of the
two mesons gives their total angular momentum in the
total center-of-mass system. However, the odd-orbital
states are forbidden by parity conservation, and the
even-orbital states are forbidden by the requirement of
symmetry for the two-meson wave function. The e8ect
implies that deuteron formation in the final state of
reaction (c) should be suppressed. Such an absence of
deuteron formation is not contradicted by the present
preliminary experimental results.

E. Modification of the Angular Distribution for
Two Pions Produced by a Meson-Meson

Interaction

In making this phenomenological analysis of the
meson-production problem, we have so far taken into
account the strong pion-nucleon interaction in the
J=I=

~ state and the nucleon-nucleon 6nal-state
interaction in the S state. There is also the possibility
that a meson-meson interaction may acct the mo-
mentum and angular distributions of the 6nal-state
pions. In this section, we introduce a hypothetical
eGect of a particular form, and observe its consequences
for the angular correlation of the two mesons. In the
same manner in which we separate out the relative
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Fro. 9. Energy spectra of the mesons produced in p+p —+2%+2+
at 1.015 Bev with 6nal nucleons in an S state.

Frc. 10. Energy spectra of the mesons produced in p+p —&2K+2m
at 1.27 Bev with final nucleons in an 5 state.
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production cross section is given by Eq. (26) in terms
of the polar angles of each meson with respect to the
direction of the incident nucleon.

0 (81/1 8+2) t2- {4COS 81 COS 82+Sill 81 Sill 82 COS ($1 P2)

+sin(281) sin(282) cos($1—$2))dQldQ2. (34)

An exercise in spherical trigonometry allows one to
transform this distribution into a function of the polar
angle, 0~, of one meson with respect to the incident
direction, and the polar angle, 0, of a second meson
with respect to the first.

The result is

a. (81,8) ~ {4cos'8l cos'8+sin'8l cos'8

+2.5 sill 81 cos 81 sill 8

+sin'8l (2 cos'8 —sin'8) )dQId0. (35)
.2

0
72 I 44 2l 6 288

motion of the two final-state nucleons from the matrix
element, and replace the plane wave by a wave function
of the form e" sinbf(r)/q for an 5 state, we may
separate out the relative motion of the two final-state
mesons and describe the interaction in terms of a
similar modification of the matrix element, where 8 is
now the meson-meson 5-wave phase shift and q is the
relative momentum of the two mesons. This separation
of the nucleon-nucleon and meson-meson final-state
effects is the simplest manner of observing the modifi-
cations brought about by each. In reality, the two
eGects may interfere, and one may be obscured by
the other.

For the meson-meson phase shift, we choose a
Breit-Wigner form

r/2
sin8=

{e—Ii—e,) 2T'/2— (32)

where e„ is the resonant kinetic energy in the meson-
meson center-of-mass system, F is the resonance width,
and e is the total energy of either of the two mesons in
their center-of-mass system. The e is given in terms of
the meson momenta in the total center-of-mass system,
k~ and k2, and the angle between them, 8~, 2, by

MESON KINETIC ENERGY IN Mev

FIG. 11.Energy spectra of the mesons produced in p+p —+2%+2~
at 1.51 Bev with final nucleons in an S state.

DISCUSSION

Figures 3 to 8 contain the energy spectra for the pion
produced in the process p+~22+p+z+. The final-
state nucleon-nucleon interaction is included in the
450-Mev spectrum, but is neglected in the spectra at
the higher energies. 'this Anal state interaction should
be most important when A/q))a, 2 where q is the relative

5— z. ol Bev

,4
V)I-
Z
D

~ 3

I-
E)

~ 2

In Fig. 2 we plot this function, as well as the function
modified by sirA/g2, vs 8 for 81=45', with parameters,
and e„=190Mev and I"=10Mev, for several pairs of
meson-momenta values. Because the mesons account
for a portion of the momentum conservation, there is
a kinematic tendency for angles 8)90'. This e6ect has
not been taken into account in the figure.

where

Also

42 {C01+472) kl k2 2klk2 COS81, 2)

&1, 2 {k1,2 +P )'

(33)

0
0 l08 2I 6 324 432 540

q= {kl'+k2' —2klk2 COS81, 2j'*.

The modi6cation of the angular distribution is then in
the factor sin25/q2. The angular function of the double-

MESON KINETIC ENERGY IN Mev

Pro. 12. Energy spectra of the mesons produced in p+p —+2K+2m.
at 2.01 Bev with final nucleons in an S state.

K.~M. Watson, Phys. Rev. 88, 1163 (1952).
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momentum of the Anal nucleons and a is the radius of
the region of the primary interaction (excitation of the
isobar). Experiment seems to indicate for the proton a
region of very strong interaction of radius ~0.5&10 "
cm surrounded by a region of weaker interaction of

1&10 " cm. ' Blokhintsev has termed the former
region the kernel of the nucleon, and the latter region,
the meson shell. In nucleon-nucleon collisions, one may
speak of interactions between the meson shells, between
a meson shell and a kernel, and between the kernels.
Barring a strong meson-meson eRect the first-mentioned
interaction, which is of the longest range, is probably
not responsible for the excitation of the isobaric states.
However, the interaction between the meson shell of
one nucleon and the kernel of the second may account
for this excitation. The region of the primary interaction

may therefore be ~1X10 "cm. The final-state nucleon-
nucleon interaction should play a decreasing role in
the reaction as the bombarding energy is raised and q
may be p. In any event, in this region the interaction
will not be describable in terms of the low-energy
scattering parameters. The curve labeled (b) in Fig. 7

and the curve in Fig. 8 represent the meson spectra
when the final nucleons are in a I' state. These are
obtained by replacing e" in the phase space of the final
nucleons by e&. In Figs. 6 and 8 the experimental
histograms at 810 Mev" and 1.5 Bev," respectively,
are superposed on the theoretical spectra. Agreement,
especially at the lower energy, appears to be fair. At
1.5 Bev a certain amount of double production may be
included in the histogram. " Further experimental
evidence on the shape of the energy spectra in the region
0.5 to 1 Bev is supplied by the Russian experiments on
the process p+~ts+p+7r+ at 560 and 660 Mev."
The mean energies of the experimental spectra were
82 and 110Mev, respectively. These are to be compared
with the peak energies in Figs. 4 and 5 of about 75
and 100 Mev, respectively. The neglected nucleon-
nucleon interaction in the final state would tend to
raise these peak energies somewhat. Figures 9 to 12
contain the energy spectra for the pions produced in
the processes p+p +2K+2m with the fin—al nucleons in
an 5 state. These spectra all exhibit pronounced peaks
at relatively low meson kinetic energies. Such a marked
preference for the emission of low-energy mesons is
indeed one of the striking features of the experimental
situation in the Bev range. ' "Another striking feature

Eisberg, Fowler, Lea, Shephard, Shut t, Thorndike, and
Whittemore, Phys. Rev. 97, 797 (1955).

9 D. Blokhintsev, Proceedings of the CERE Conference, Geneva,
1056 (European Organization of Nuclear Research, Geneva,
1956).

"Morris, Fowler, and Garrison, Phys. Rev. 103, 1472 (1956).
"Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 103,

1479 (1956)."Mescheryakov, Zrelov, Neganov, Vzorov, and Shabudin,
Proceedings of the CERE Conference, Geneva, 1956 (European
Organization of Nuclear Research, Geneva, 1956).

"Fowler, Shutt, Thorndike, Whittemore, Cocconi, Hart, Block,
Harth, Fowler, Garrison, and Morris, Phys. Rev. 103, 1489 (1956).
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FIG. 13. Two-pion excitation function versus bombarding
energy. The curvature of the upper portion of the solid curve is
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robably due to the neglect of the energy dependence of the factor
px, w(Rl~ ' which is not justified at the higher bombarding

energies. The dashed line is an extrapolation of the essentially
linear portion of the solid curve.

of the experiments, the rapid increase above 1 Bev of
the double meson production processes, ""is evidenced
in Fig. 13, where we have plotted a rough estimate of
the two-meson excitation function versus bombarding
energy. A rough estimate of the ratio of two-pion to
one-pion production cross sections versus bombarding
energy is plotted in Fig. 14.

The situation as to the charge ratios has been covered
in some detail in the recent series of papers by the
workers at the Cosmotron. "%e mention only that the
charge ratios in double production are not yet well
established. In single production, the isobar model
predicts a s+/m' ratio of 5. The experimental ratio at
present is between 5 and 17. In connection with this
ratio, it should be remembered that the process p+~

'4 Chen, Leavitt, and Shapiro, Phys. Rev. 103, 211 (1956).
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principle whenever the meson is in a I' state and the
6nal nucleons are in an S state. ~ The process will be
suppressed during that portion of the time in which
the final nucleons are in an S state.

Little can be said as to meson-meson e8ects between
two final-state low-energy pions. A marked forward-
backward asymmetry in the angle between the mesons
might be detectable if enough events could be observed.
No such correlation was observed in the few double-
production events analyzed in the early Brookhaven
work. '5

In conclusion, we may say that the current experi-
ments on meson production in the Bev range seem to
strongly indicate an important role is being played by
the J=I=2 isobar. This is particularly true when
examining meson-energy spectra and Q-values between
final meson-nucleon pairs. The mechanism of excitation
is unknown, but it seems to involve a sort of peripheral
collision in which the Anal nucleons retain much of their
incident momenta. The calculations presented here are
meant to give a rough idea of how far this model can
go in correlating the data on meson production.
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APPENDIX A

We here separate the nucleon-nucleon final-state interaction from the meson-production matrix element. If
we consider single-meson production, the part of the total transition amplitude in which we are interested is the
matrix element, that describes the transition from the isobar-nucleon intermediate state lPx, ~) to the meson-
two-nucleon final state,

l
/~i ~2, ). We shall call the operator that brings about this transition U. It operates on

the isobar with momentum s and energy E, to form a meson of momentum k and energy cd and a nucleon of
momentum p& and energy E&. The second nucleon has momentum p2 and energy E2 in the 6nal state, and y' and
E in the intermediate state. With all particles in plane-wave states, the matrix element is the following:

d i' d 1~id r~+Pr d rx exp[—z(lk I +pi 'rl+ p2 'r2)]

)(exp[i(s rx+p' r')]5(ri —rx)6(r —rx)5(r2 —r')(U)
(A-1)

In the second line, the notation for the position vectors of the particles is self-evident. The 5 functions arise from
the definition of an operator U in the r representation and the assumed local nature of the interaction. The quantity
(U) is the isobar-decay operator between initial and final states after the space dependence has been extracted.
This quantity is, in general, a function of k, ~, p&, E-i, s, S, and, possibly, even the spin orientation of the isobar
and the resulting nucleon. In this work the isobar motion has been neglected, and we have considered this function
to be given by our quantity II(E), with E=cu+Ei, times a P-wave spherical harmonic for the ineson. The relative

"Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 95, 1026 (1954).
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motion of the final-state nucleons may be separated out from Eq. (1) by writing the matrix element in terms of
R=-', (ri+r2), r=ri —r2,. P=yi+p2, and q=-,'(pi —p2). The factor e '&', which represents the plane-wave relative
motion of the particles, is then replaced by an 5 state wave function of the form

sin5
0()" " f() (A-2)

The matrix element now becomes the following:

sin6
(2')'b(y +iy 2 y—i p—'),~d'r~d'rid'r2d'r'd'rxexpL —iP (ri+r2)/2j exp( —ik r )e"

Xf(l ri —r2I) expLi(s rx+p' r')$5(ri —rx)b(r2 —r')5(r. —rx)(U)

S1.I18
I= (2s)'b(y~ —p')e" J' d'Rd'r expLi(s —k —yi) Rj expl i(s —k —pg) (r/2) jf(r)(U)

q
sin8

= (2s)'8(p2 —p')8(s —k —pi)e" &U&)t f(r)e'i'd'r. (A-3)

Comparing this result with the last line of Eq. (A-1), we see that the matrix element is modified by the factor
e'L(sinb)/q] f(q), where

f(q) =
~l f(r)e'~'d'r~~l f(r)d'r = constant. (A-4)

APPENDIX 8 state of energy, E, to the two-isobar state, in the
approximation that we neglect the effect of the motion
of the isobars upon the amplitude. The operator, T',
may be defined formally in terms of a potential oper-
ator, V, by the relation

In Sec. B, we defined an amplitude T~(E) for the
transition from a 'D2 two-nucleon state of energy, E,
to an isobar-nucleon state. This amplitude was
defined in terms of the cross section, o.e(~++d~2p),
and the previously defined amplitude, II (E), for
creation of the isobar. In order to modify T2(E) so that
we may use it in calculating 0'z(p+ p—+m++a+ p), we
need to observe that, by defining it in terms of the
deuteron mesodisintegration, we include it in a factor
of the deuteron wave function evaluated at the origin,
fq(r=o). This is because the production of an isobar-
nucleon intermediate state involves a matrix element
of the form

&»,~'
I

2'I ~»'&= 9» ~c
I

v l»~e&. (B-3)

The Iu& are plane-wave eigenstates of the free-field
Hamiltonian, Ho,

Holus&=Elm»&. (B-4)

The If& are eigenstates of the total Hamiltonian, &:
III' ')=(&o+v) l4' ')=E'I&'&.

They satisfy the Lippmann-Schwinger equation,

ye=~sy(E ao ip) 'Vp~.—

Introducing an r representation, we obtain

(», ~e
I
r I~»'&=a'(E, e)

&%el UI4'», &&=
J

d'p&&. l p&(pI UIX,&&, (B-1) (8-6)

where the integration is over the momentum distribu-
tion of the deuteron. The matrix element (pl U Igx, ~)
is II(E') at the total energy E' of the incident pion and
the nucleon within the deuteron that absorbs it to form
the isobar. If we neglect the deuteron momentum dis-
tribution, Eq. (1) becomes

d'«'r'Q x ~'lr&&r I VI '&&r'I r»~'& (B-&)

In the center-of-mass system, r and r' are the relative
position coordinates of the two particles. The inter-

(B 2) action is assumed to be local:11(E)
~

d'p(|4I p) =11(E)A(r=o),

'( ) jt& ()& "' '.

(rl Vl r') = V(r)b(r —r'),
where 8 is now the energy of the pion-nucleon system
when one considers the nucleon to be at rest. For use
in calculating the unbound reaction, we define

I
T~'(E) I' 2'(E»') = ~d'rex & (") I

V(") I »ir (r))
=

I
r, (E) I ly, (r=O) I-.

We now show that the amplitude T2'(E) can be of
use in describing the transition from the two-nucleon
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A (E)-4»'"(&)f(E), (B-12)

lp2x'~'(&)
I A(E) I'- I

T'(E) I'.
Eo+m (g)

(B-13)

The separation into amplitudes for various total J
states is obtained by writing

We have taken out of the integral the isobar-nucleon
wave function and have evaluated it at a relative
coordinate, R, characteristic of the region in which

Ipx, wx'(R) I' is large. In addition, we have written the
two-nucleon plane wave explicitly, where p is the
relative momentum. The quantity (V(r)) is the potential
operator between the two states after the position
dependence of these states has been extracted. This is
in general a function of E, E', y, and y' (the relative
momentum of the isobar and nucleon). As a first
approximation, we neglect the dependence on the
motion of the isobar-nucleon system.

In this approximation, the right-hand side of Eq.
(B-8) defines a function of E,

T'(E) =4x ~"' (&)f(E) (B-9)

A similar argument leads to the amplitude for the
transition from the two-nucleon state to the two-isobar
state in this approximation.

A (E)=lp2x'~'(R) f'(E). (B-10)
We have

I f(E)—f'(E)
I

—
I
(Eo—~)/Eo I

=0.3/1.24= 0.24; (B-i1)
therefore

process as going through an intermediate state involving
two isobars in an S state. These isobars move relative
to each other with a momentum 2s in their center-of-
mass system. The momentum s is given in terms of the
momenta of the Anal-state pions and nucleons by

s= kl+ pl= —(k2+ pg),

where kl 2 and pl, 2 are the pion and nucleon momenta
of the correlated pairs. If the isobars are in a P state,
the above reaction will take place from the 'Po ~ 2 states
of the initial protons into the P states of the final two
neutrons. The creation of the two-isobar state is
described by the amplitudes A ('Po), A ('Pl), and A ('P2),
whose possible dependence on the motion of the isobars
we continue to neglect. The decay of the two-isobar
system was described by the amplitudes II(El) and
II (E2) times P-wave spherical harmonics for each
meson, where B~ and E2 were total center-of-mass
energies of the pion-nucleon system resulting from the
decays. We shall neglect the eBect of the isobar motion
on the amplitudes II; however, we may modify the
matrix element by adding a P-wave harmonic that
describes the relative motion of the two pion-nucleon
systems, Ir& „(s z) . Because the massive nucleons
usually carry considerable more momentum than the
pions, we may approximate s, the intermediate-isobar
momentum, by p, the final-state nucleon momentum.
We may compute the modified angular angular distri-
butions as before. For example, for the Process (C-1),
the Anal state, with nucleon spin s component, S,= 1, is

(cVl& ~Kg& l) Q F'l, „*(kl z) I'l, (rl z)

TI=Z,T','P„V=Z,V,P„ (B-14) X Yl, *(k~ z) I'l, „(r2 z) I'l, „*(p z) I'l, „(r z). (C-2)

APPENDIX C

Consider the double production process,

p+ p—+2m++ 2e, (C-1)

at an energy E. We have up to now considered the

where the Pg are projection operators and Z~ means
the sum over J. An attempt to improve this crude
approximation may be made by constructing an energy-
dependent wave function for the isobar-nucleon state.
For example, if the isobar-nucleon system is considered
to be in an S state characterized by a scattering length
of o. ' 0.5 to 1.0X10 "cm, we may approximate

14x, N'(&) I' by f(~)/(~'+v'),

where q is the relative momentum. The relative mo-
mentum may be determined by considering the isobar-
nucleon system to be approximately on the energy
shell or by assigning a certain average momentum
transfer to the excitation process.

In the next appendix we show that one can somewhat
correct the angular distributions of this simple model
for the motion of the intermediate-state particles.

We perform the vector addition, combining the meson-
nucleon systems into isobars with amplitudes II, then
adding the two isobar angular momenta, and finally
combining this with the orbital angular momentum of
the isobars to a total J=O, 1, and 2 with the amplitudes
A ('Po l &), respectively. Computing the matrix for
S,=O, and weighting the absolute square of the matrix
elements for S,= 1 and S,=O with 2 and 1, respectively,
we obtain, for the angular part of the cross section from
the 'Po state of the initial protons, after integration
over azimuthal angles,

0 (gl)gg)0) o- {2COS 8& Sill gg+2 COS 02 Sill gl

+8 cos'8l cos'0~+ 16 sin'0l sin'02} cos'0

+{32COS gl COS gg+ 11 Sill gl Sill 02

+cos'8l sin'8~+ cos'82 sin'8l} sin'8. (C-3)

From the 'P2 state, we have

0 (gl 89,8) ~ {32cos'8l cos'02+ 64 sin'0l sin'02

+8 cos'gl sin'82+8 cos'02 sin'0l} cos'0

+{cos'0l sin'8, +cos'g2 sin'gl

+32 cos'gl cos'02+11 sin'8l sin'02} sin'8. (C-4)
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The angle 8 is the polar angle of the nucleon relative
momentum with respect to the incident-proton direction
in the total center-of-mass system. The angles 0& and
02 are the polar angles of the two mesons with respect
to this direction, also in the total center-of-mass
system, if one neglects the transformation from the
rest system of each isobar. By integration over the
meson angles in Eqs. (3) and (4), we can get an idea
of the angular distribution of the final-state nucleons
that could arise from inclusion of the I'-wave motion
of the intermediate-state isobars. For the transition
from the 'E0 state, we have

2zrdo (0)/dQ ~ (cosse+ sin'(l);

from the 'P2 state, we have the familiar

2ndo (0)/dQ ~ (3 cos'0+1).

(G-5)

(G-6)

Because the transition amplitudes from 'I'01 2 states
give rise to interference terms that depend on their
relative phases, a more detailed account of the exci-
tation of the isobaric states will be necessary in order
to obtain quantitative angular distributions. However,
the observed forward-backward preference for the
nucleons is not beyond the reach of the model.
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Photofission Cross Sections of U"', U"' Th"' Bi"', and Au"'
at Energies of 150 to 500 Mev*

JQHN A. JUNGERMAN Department of Physics& University of California, Davzs, California, and Radiatzon Laboratory, Berkeley, Calzfornia

AND

HERBERT M. STErNER Radiation Laboratory, Universzty of California, Berkeley, Cabfornia
(Received January 17, 1957)

Photo6ssion cross sections for U"', U"', Th'", Bi~', and Au"' have been measured by use of brems-
strahlung spectra whose maximum energies ranged from 150 to 500 Mev. The fissions were detected in 2m.

geometry with a double ionization chamber. A suggested correlation of the resulting cross sections with
those for proton fission and for photomeson production is made.

I. INTRODUCTION

EVKRAI. experiments have been performed to in-

'

~

vestigate photofission cross sections in the energy
region 100 to 300 Mev. ' ' In the experiment here
presented we have investigated the photo6ssion cross
sections of U"', U"', Th"', Bi"', and Au"' for photons
produced in bremsstrahlung spectra whose maximum
energies ranged from 150 to 500 Mev. The energy
region 150 to 335 Mev was investigated for the most
part at the University of California synchrotron, where-
as the higher energy data were obtained at the syn-
chrotron of the California Institute of Technology. In a
previous paper' (hereafter referred to as A) we have

reported the high-energy proton-induced 6ssion cross
sections of the above elements. The same apparatus
and essentially the same methods were used in the
measurement of the photofission cross sections.

~ This work was done under the auspices of the U. S. Atomic
Energy Commission.
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J. Gindler, thesis, University of Illinois, 1954 (unpublished).' R. A. Schmitt and N. Sugarman, Phys. Rev. 95, 1250 (1954).

'Katz, Kavanagh, Cameron, Bailey, and Spinks, Phys. Rev.
99, 98 (1955).' H. Steiner and J. Jungerman, Phys. Rev. 101, 807 (1956).

II. APPARATUS AND METHOD

A. Fission Chamber

The ionization chamber used in this experiment is
described in A. The beam was passed through the
chamber in the direction CBA in order to minimize the
eGect of the electron-positron pairs produced in the
sample backing. The distance from the thin entrance
window to the sensitive region of the ionization chamber
was approximately 4 inches, so that any pairs produced
in the entrance window had only a small chance of
producing uncanceled pulses in the sensitive region of
the ionization chamber. In order to minimize pair
production in the gas, the chamber was filled with
1 atmosphere of hydrogen. Finally, pair production in
the electrodes was kept small by making them of
140-tzg/cm' aluminum foil.

Chronologically, most of the photofission experiments
were performed prior to the proton experiments de-
scribed in A. Throughout most of the photofission runs
only one sealer was used to record the number of pulses
from the ionization chamber. However, in the last
photofission run at the Berkeley synchrotron we
switched to a system of using six scalers simultaneously
in order to obtain an integral bias curve for each


