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An analysis is made of the magnetization of the conduction
electrons in a ferromagnetic material induced by their exchange
interaction with the d electrons. The problem is set up by using
the density matrix, some special properties of which are proved in
the Appendix. When this formalism is used, the exchange inter-
action between a conduction electron and the inner as well as the
d electrons associated with a given atom are found as a function
of the relative spin orientation of the atom and the conduction
electron. The problem is treated for TXT¢ and for T~Te¢.
Results for Fe have been calculated by using the nearly free
electron method and the cellular methods. The effect of correlation
is taken into account by the Bohm and Pines technique. A
magnetization of about 0.20u, per atom is found. An antiferro-
magnetic coupling is found to be possible between magnetic ions
in dilute alloys such as has been found experimentally in Cu-Mn.

The mechanism is a superexchange coupling of the magnetic ions
through the conduction electrons. A molecular field theory has
been worked out for this case on the basis of an antiferromagnetic
coupling between the magnetic ions and a ferromagnetic coupling
between these ions and the conduction electrons. This theory is
found to admit the possibility of an antiferromagnetic-ferro-
magnetic transition. Application of this theory to the Cu-Mn
alloys shows that it is unnecessary to assume that the s-d exchange
interaction is as weak as previously believed. It is, furthermore,
suggested that the combination of direct and superexchange
interactions between the 4f and conduction electrons in the rare
earths is responsible for their magnetic properties and in particular
is the source of the observed antiferromagnetic-ferromagnetic
transitions in erbium and dysprosium. °

I. INTRODUCTION

N the last ten years the exchange interaction between
the conduction electrons and d electrons in magnetic
materials has been the subject of a number of investi-
gations. One of the first to examine this interaction was
Vonsovskii! who treated it as a perturbation acting on
the conduction electrons. Due to the net spin of the
d electrons in a ferromagnetic there is a stronger
exchange interaction between a conduction electron
with spin parallel to the net d-electron spin than for a
conduction electron with opposite spin. Vonsovskii
concluded that this would lead to a different E(k)
dependence for conduction electrons of different spin
and would furthermore, give rise to a net magnetization
of these electrons. In other words there is an exchange
polarization? of the conduction electrons. He suggested
that the fractional magnetic moments observed in
ferromagnetics is a manifestation of this effect. The
conduction electrons were treated by a nearest-neighbor-
only, tight-binding method which puts many of his
results on a phenomenological basis. More recently he
and others have applied this approach to a number of
other problems.? Zener* has proposed a theory in which
the d-electron conduction electron exchange interaction
is the basic source of ferromagnetism. Kasuya® has
recently examined Zener’s model and points out that

* The research reported in this document was supported jointly
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Massachusetts Institute of Technology.
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since the 4 f orbitals in the rare earths probably have no
direct overlap, their magnetic properties are very likely
derived from the 4f electron-conduction electron ex-
change interaction. The role of the exchange interaction
between conduction and d electrons in the relaxation
process in ferromagnetic resonance has also been
examined.®?

In this paper the exchange polarization of the
conduction electrons is investigated with particular
reference to Fe. The model used for Fe is that of the
conduction electrons moving in a periodic lattice of Fe™
cores, an isolated core having a 3d” configuration. In
the crystal a given d orbital is assumed to have a form
such that it can be identified with a particular core and
such that it is orthogonal to all other orbitals associated
with that core and orthogonal to orbitals on all other
cores. Therefore, the d orbitals behave much like
Wannier functions. Each core is assumed to be in a
state of maximum multiplicity (S=% for Fe*). Well
below the Curie point each core is taken to have its
maximum M, value (M,=2 for Fet) while above the
Curie point the average of M, over all cores is zero.
The conduction electrons are assumed to occupy
orbitals spread out over the entire crystal and when the
core spins are perfectly ordered at 0°K, to satisfy the
Bloch condition. The total wave function is set up in
terms of the individual core states and the conduction
electrons. By finding the expectation value of the total
energy and varying this with respect to the conduction
electron orbitals, regarding those functions associated
with different spin but the same % as being independent
in accord with the unrestricted Hartree-Fock method,
the variational equations for these orbitals are found.
These equations involve the exchange interaction be-
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tween the conduction electrons and the cores. This is
found to be a function of the spin of the conduction
electron orbital and the M, value of each core. The
variational equations are written down for 7&7T¢ and
T~Te¢. Use is made in this paper of the density matrix
and a number of properties of this matrix are stated
with proofs given in the Appendix.

By using the results of a self-consistent field calcu-
lation on Fe based on the unrestricted Hartree-Fock
method in which there are separate exchange potentials
for electrons of different spin,® an estimate is made here
of the magnetization of the conduction electrons. This
was done by using both a nearly free electron description
and a cellular description of the conduction electrons.
Correlation effects between conduction electrons of
opposite spin tend to decrease the magnetization. This
was taken into account by a method used by Pines® in
discussing spin paramagnetism. Including correlation
the nearly free electron method gives a magnetization
of 0.20u per atom and the cellular method 0.16u per
atom. Callaway'® was the first to estimate the magnet-
ization of the conduction electrons in Fe and he arrived
at a value of 0.07u per atom. He also gives a discussion
of the exchange splitting of the ¢ band and conduction
band in the magnetized state of Fe.

In order to investigate the s-d exchange interaction
Owen, Browne, Knight, and Kittel"! examined the
properties of dilute alloys of Mn in Cu. It was expected
that the s-d interaction would at low temperatures
couple the spins of the Mn ions, which they thought
would be in the Mnt+ state with S=5/2, ferromagneti-
cally. Their experiments showed that the coupling was
antiferromagnetic instead. A possible mechanism for
antiferromagnetic coupling in dilute alloys is given in
this paper. It is based on a superexchange interaction
in which the conduction electrons play a role similar to
the electrons associated with the O~ ions in MnO. This
model leads to a prediction of the dependence of the
Néel temperature as a function of alloy composition
which is in agreement with that found by Owen et al.

A molecular field theory is worked out in the last
section of the paper based on an antiferromagnetic
interaction between the magnetic atoms or ions and a
ferromagnetic coupling between the magnetic atoms
and the conduction electrons. Two transition tempera-
tures result from the molecular field equations, one
being 7¢—7xy—CT and the other 7. Here 7¢ is the
ferromagnetic Curie point that would arise if the anti-
ferromagnetic coupling between magnetic centers were
absent. 7y is the Néel temperature which would arise
if the ferromagnetic coupling were zero. I" is a molecular
field coupling parameter and C a constant. If r¢> 7y
+1CT, one can show that at 0°K the ordering must be
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ferromagnetic. However, 7y may be greater than
r¢—7nv—CT. In that case a remarkable thing occurs.
As the material is cooled from high temperatures the
temperature 7y is reached first. Just below this point
the magnetization of the conduction electrons is zero
and the magnetic ions are antiferromagnetically ordered.
Somewhere below the temperature 7¢—7y—CT the
ordering becomes ferromagnetic with a net magneti-
zation of the conduction electrons appearing. It seems
that some of the experimental results of Owen et al."*
can be explained by the molecular field theory given
here making it unnecessary to assume that the s-d
exchange coupling is as weak as the theory given there
implies.

It is to be noted that the rare earth metals erbium??
and dysprosium® do show the magnetic transitions
paramagnetic to antiferromagnetic to ferromagnetic
with decreasing temperature. It seems very likely that
a combination of direct exchange interaction between
the 4f and conduction electrons acting ferromagneti-
cally and a superexchange interaction between the 4f
and conduction electrons acting antiferromagnetically
will explain these properties. The writer is presently
engaged in a complete molecular field analysis of this
problem.

II. EXCHANGE INTERACTION BETWEEN THE
"~  CONDUCTION ELECTRONS AND
d ELECTRONS

This section contains a formal analysis of the ex-
change interaction between the conduction and the
d electrons. This is based on setting up the variational
equations for the conduction electron wave functions,
where functions associated with « spin are varied inde-
pendently of those associated with 8 spin as in the
unrestricted Hartree-Fock method.? Although the dis-
cussion deals primarily with the case of Fe, the results
can be readily generalized to other ferromagnetics. The
situation of perfect ferromagnetic alignment at low
temperature is considered first. The equations for con-
duction electron wave functions are simplified by using
the density matrix notation and an averaged exchange
interaction. The case of T'~T ¢ is discussed next. More
complicated equations are arrived at due to the disorder
in the spin orientations of the ferromagnetic atoms. By
invoking some special properties of the density matrix
and an averaged exchange interaction these equations
may be put in a very convenient form.

In setting out to examine the exchange interaction
between electrons in the conduction band and electrons
associated with the d band as well as the very tightly
bound electrons there is an underlying assumption that
it is indeed possible to distinguish a single conduction
band. In Fe this band is commonly called the 4s band.
At those places in k space where the conduction band
crosses the d band, a mixing of levels takes place and
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the assumption breaks down. However, if the s band
varies rapidly in energy with %, these intersections will
be sharp and the over-all approximation should not be
too bad.!®! There is evidence that this is the case.
The model on which this discussion is based has been
described in the Introduction. Because of strong intra-
atomic exchange forces each Fe core is assumed to be
in a state of maximum multiplicity at all temperatures.
Well below the Curie point, the conduction electrons
are viewed as moving through the crystal with the spins
of all of the cores being aligned. There is an exchange
interaction between the conduction electrons and the
cores which in this case will be the same for all cores
and will only depend on the spin of the conduction
electron. As the temperature approaches the Curie
temperature, the spins of the cores are rotated in a
random fashion with respect to the direction of net
magnetization. Therefore, the exchange interaction of
a conduction electron with a core will depend on the
direction of the core spin as well as that of the conduc-
tion electron and it will vary from core to core. Above
the Curie point, the average exchange interaction over
the cores will be independent of the conduction electron
spin. These cases will be treated separately below.

A. TLT,

Let yp{S=3%, M,(P)} represent a product core func-
tion constructed from the orbitals regarded as being
tightly bound to the pth core. The total wave function
corresponding to our model for 7K T'¢ is

Yr=A{Y1G33%:3,3) - - ¥n (3101 - dnon}. (1)

Here A is the antisymmetrizing operator, N is the
number of Fe atoms in the repeating volume, and ¢;
represents the sth conduction band orbital which has
the spin o; associated with it.

¥r as it stands is not a state of definite multiplicity ;
however, the total core spin is diagonal. This can be
seen as follows. Let .S? operate on (1). Since .S? and 4
commute, 5% can operate on the product function with
4 operating on the result. In the product form the
electrons are distinguishable so that the first 25N
electrons are associated with the N cores, and the
remaining N electrons with the conduction electrons.
Let S be

25N 26N
S= Z S¢+ Z Sj=Score+Scond- (2)
=1 7=256N+1
Then
S2= Score2+Scond2+ZScore'Scond- (3)

Application of Seore? to the operand of 4 in (1) yields
N (8)(3+41) 42 times the original product while operating
with Seond? OF Score*Scona generates a linear combination
of products. Therefore, Y7 takes into account the spin
degeneracy problem for the cores but not that between
the cores and conduction electrons nor among the

147, C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

conduction electrons themselves. This is equivalent to
saying that the exchange interactions within and be-
tween the cores is strong while all other exchange
forces are much weaker and may be treated as pertur-
bations.

When one assumes the form (1) for the total wave
function, the best ¢’s are found by the usual variational
procedure. The expectation value of the total Hamil-
tonian

7 1 é
=3 "'2_Vi2_322 ——+2X—¢t 4
i m

¢ |ri—R,| i>iry

is taken with respect to (1) and this varied with respect
to the ¢’s assuming that the core orbitals are known.
Since we are interested in how the conduction electrons
will behave if those associated with « spin are regarded
independently of those with 8 spin, ¢ functions with «
spin are varied independently of those with 8 spin.
The resulting equation for a ¢ with « spin is

Higi(r)+ [Z eszdT]‘ﬁi(’l)
k 712
* )
~[s=ef Mdn]u,-(ro=fzi¢¢<n), )
7 712
where H, is given by
ﬁZ
Hi=——Vi—¢} . (6)
2m ¢ |r—R,|

The one electron function #;(r,) stands for any orbital
in the problem and the sum over % in the second term
of (5) is over all functions including #;=¢;. The sum
>-;% in the third term is over all orbitals associated
with « spin including ¢;. The variational equation for
a ¢ associated with 8 spin is exactly the same as (5)
except that the sum ;% is changed to 3,4,

A great simplification of these equations is brought
about by averaging the exchange interaction according
to Slater’s method.!® In the case where there is an
unequal number of electrons of each spin, the averaged
exchanged charge density for spin ¢ is'®

2w kU * (1)t (o) ™ (ro) i (71)
3 it (1)t (71) '

The Y_,.° stands for a sum over all orbitals m having
spin ¢ associated with them.

The averaged exchange interaction reduces the vari-
ational equations to eigenvalue type of the form

™

po(ri,re)=

Hepr=E ¢, (8

1 J_C. Slater, Phys. Rev. 81, 385 (1951).
16 G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952).
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where
Ha=H1+52f { 2k uk*(r2)u’:(r2) ~palrir) drs (9)
and
Hf=Hy e f { Lt (roJtar) = Palrars) }dm (10)
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H<« operates only on ¢’s with « spin and H# only on
those with 8 spin.

The solutions to (5) and the corresponding equation
for a ¢ with B8 spin or the solutions of the averaged
equations (9) and (10) define the two conduction
bands and the energies thereof.

B. T Comparable to T¢

In this case the intercore exchange energy is of the
same order as the thermal energy and the alignment of
the core spins begins to break down. Let the total wave
function now be written as

KbT:A[‘pl{%yMs(l)}tP?{%aMs(z)} e
XYn{3,M(N)}p1o1- - ~¢pnon]. (11)

Each core is in a state of maximum multiplicity with
S=%, but with the z component of the core spin left
free. Thus each ¥{$,M ()} now is a linear combination
of products. The total core spin is no longer diagonal
whereas the spin of each separate core is diagonal.

The result to which we will be led in the following
analysis is that the exchange charge densities become
functions of the M, values for the individual cores.
This is just what one would expect since a conduction
electron will have an ever decreasing exchange inter-
action with a given core as the spin of that core rotates
away from the direction parallel to the spin of the
conduction electron.

The exchange energy of an electron in the orbital ¢;
and with « spin for the new state (11) will be derived
below. We need not consider anew the average of H,
given by (6) with respect to ¢; nor the Coulomb
interactions between an electron in ¢, and the other
electrons since these two energies are completely inde-
pendent of the spin orientations. The total exchange
energy for the system is given by

Eex= - Z

>7

x*H;iP;xdr, (12)

where x is the operand of 4 in (11) and P;; is the
permutation which interchanges the space and spin
coordinates of the sth and jth electrons.

x is a linear combination of products and in each
product a definite association may be made between
the electron index and orbital index. That is, it may be
said that the jth electron occupies the gth orbital. Let
us define the set of electrons 4, ¢+1, ---¢+K to be

JR.

associated with the orbitals about the Rth core. Let
electron j be taken to occupy a particular ¢ function
say ¢; with « spin. By considering only those permu-
tations where ¢ ranges over the set ¢, i41, - -i+K
and keeping 7 fixed, we limit ourselves to the exchange
between ¢; and the core R. Keeping j fixed and taking
all 4 gives the total exchange interaction for an electron
in ¢ je

We first consider the exchange between ¢; and core
R as a function of the M, of that core. The exchange
interaction of ¢ja with the core state Yr{S,M,(R)} is
the same for the doubly filled orbitals of the core for all
M, values. Therefore, it must be found how the ex-
change interaction changes as a function of the spin
orientations of the unpaired orbitals. When M,=.S, ¢r
is a single product and the exchange interaction with
¢ is
=2 Mo (Du*(2) [u:(1)9;(2)}

=2 e (Du*(2)|ui(1)$;(2)}, (13)

where 3 runs only over doubly filled orbitals and >~/
only over singly occupied orbitals. Therefore, we con-
sider how the >, term changes with M.

In the >/ term of (13) we recognize a density
matrix formed from the unpaired orbitals

o' 0= uF(ro)u;(ri)=ps' (a, M;=S, rs, r1).

The exchange interaction with the unpaired orbitals is

(14)

, &*(r1)p(r2)ps’ (@,S,r9,71)
y f f dr. (15)
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The subscript S on p’ specifies the spin of the core.
The parameter « in the argument of p’ is used to indicate
that this is the charge density which interacts with a ¢
function associated with « spin. Since this charge
density will be found to be a function of M, of the core,
it is so indicated. Obviously, for the core where all
unpaired orbitals have « spin, we have

PS/ (6}5771772) =0.

To proceed further we need to use some properties of
the density matrix formed from the singly occupied
orbitals. These properties will be stated below as a set
of theorems the proofs of which are given in the
Appendix.

Theorem 1.—The density matrix of any order for a
state ¢ (S,M,,v) is independent of the M, value of the
state.

Theorem 2.—For any many-electron state of definite
M the first order density matrix p(r1,75) can always be
separated into two terms; one a sum over orbitals
associated with « spin and the other a sum over orbitals
associated with 8 spin. We define that sum only over «
spin orbitals as

(16)

PS(a)MB)rlyrZ)’ (17)
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and that over 3 spin orbitals as

PS(ﬂ,Ma,fl,'rﬁ)- (18)

Therefore,
pPS (71,72) =ps (Of;Mayrlyr2)+pS (B;M&;rh”» . (19)

Theorem 3.—For the state of maximum multiplicity
S and arbitrary M,

ps' (a,M sr1,r9)= { (S+M,)/2S}ps'(1’1,?’2) (20)

pS,(ﬂ)Ms,rlng)z {(S— Ms)/zs}psl(rlar2)) (21)

where the prime denotes the restriction that we only
sum over the singly occupied functions. If po(a,r1,72)
denotes the contribution from the electrons in doubly
filled orbitals with & spin and po(B,71,72) that coming
from the electrons in doubly filled orbitals with 8 spin,
then

and

Ps(a,Ms,fl,”z)
=pola,r,r2)+ps (@,Mer1,r2)
=po(a,7’1,f2)+ { (S+Mg)/2S}psl(1’1,7’2) (22)
and
ps(B,M o,r1,72) = po(B,r1,r2)
H{(S—M,)/2S}ps'(r1,r2). (23)

The exchange interaction between ¢,a and the core

state Yr{S,M,(R)} can be written

— 22 [YalS M. R0~

XY r{S,M(R)}¢;(7)dri;,

where the Y% is over the set of orbitals ¢, ¢+1, - - -1+ K
associated with the Rth core. The only permutations
which yield a nonvanishing result are those for which
oc(4)=0(j)=a. Every allowable permutation gives rise
to a term of the form

(24)

iy fu (Dus(5)¢:*(1)¢:(3) dris (25)

i

In general Yr{S,M(R)} will be a linear combination
of products each distinguished by a different spin
assignment to the singly occupied core orbitals. It is
readily seen that there will be no contributions to (24)
from cross products. The sum over ¢ of the terms (25)
gives just

B fps(a,M a?1,72)P;* (r2);(71)

dTm. (26)

*12

Writing this as an explicit function of the M, state of
the core, we have

/28 Jos’ (r1,r2) }b* (r2);(r1)

_ezf{Po(a,ﬂ:fz)‘f‘[(S‘f‘Ms)

d7'12. (2 7)
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The total exchange interaction between ¢;a and all of the cores is given by the sum of (27) over the cores:

_62ZRJ‘{Po(a,"l"‘z)+[(S+Ms(R))/ZS]PS'(TJL,N)}R¢j*(72)¢j(71)

dle. (28)

712

Similarly the total exchange interaction between ¢;8 and the cores is

—e?

5 Rf{Po(B,flh) FLES—M.(R))/2STps (r1,72)} ri™ (72)Pr(71) .

(29)

¥12

In addition to the exchange interaction between the conduction electrons and the cores, there is the exchange
interaction between the conduction electrons themselves. For ¢;a, this can be written as

&;*(r2)pi(r1)

—ezfpn(a’rl’rZ)

where

pelayri,re) =2 ;% b;*(r1)d;(r2).

The situation for 8 spin is exactly the same.

(30)

T12,

712

(31)

A Slater averaging procedure can be carried out for this more general case. The exchange charge density which

interacts with ¢ja is

{Zkﬂpo(a,fzﬂ V+LS+M,)/25Tps' (ro,71) Jr+po(asra,rs)
é;*(r)e;(r1)

@*(r)d;(rs). (32)

The probability that the conduction electron associated with « spin at r; be in ¢; is

¢*(r)d;(r1)/pe(a,rir).

(33)
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JR.

Therefore, the average exchange charge density for a conduction electron with « spin is

2 rlpofa,rer) +[(S+M ) /285 os' (72,71) Jr+pe(ayrera)

E(a7r2rrl) =

pc(a,7’1,1’1)

A similar expression can be written for the 8 spin case
where in (34) « is everywhere replaced by 8 and M, by
— M. If p(rs,71) denotes the total second-order density
matrix made up from all cores, all conduction electrons,
and both spins, we can write the equations for the
conduction electrons as

[H1+e2fp (72771) - E(‘T:r?’rl)d72]¢l)u (rl)
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=Ep'ppr°(r1). (35)
Equation (35) is to be used to find the two sets of
conduction band wave functions, one for s=a and the
other for o=, when the exchange polarization by the
cores is included.

III. EFFECT OF EXCHANGE POLARIZATION ON
THE BAND STRUCTURE

Since we are treating the conduction electrons
associated with « spin independently of those with 8
spin, two conduction bands will be obtained, one for
electrons of each spin. In the case of Fe where the cores
have a net spin, there will be unequal exchange inter-
action with the conduction electrons. As a result the
bottom of the a spin conduction band will occur at a
lower energy than that of the 8 spin band, if one
assumes that the M, of the cores is positive. This
separation of the conduction band has been pointed
out by Callaway.!® Aside from being shifted in energy,
the bands will have slightly different shapes and
effective masses.

Although the emphasis here has been on the conduc-
tion band, the d band can be similarly treated, the
fivefold d band for & spin lying lower than that of 8
spin. Callaway estimates this splitting to be of the
order of the band width for the unmagnetized state.
He is led to a picture of the magnetized state of Fe in
which the d band is split into two halves with a gap in
between.

A. Nearly Free Electron Treatment

In this section an estimate of the exchange splitting
of the conduction band in Fe will be made using first-
order perturbation theory and by representing the
Bloch functions of the conduction band as plane waves.
If we regard the conduction electrons as forming a
degenerate electron gas, the net magnetization of the
conduction electrons by the core exchange interaction
may be simply carried out.

The energy as a function of %k to the first order is

pela,r,rs). (34)
given in the nearly free electron approximation as
E(k)= Voot (5%/2m*)k2. (36)

The Fourier coefficients of the crystal potential V(r)
are given by

V(K,)=(1/4) f V(r)e-%ivsds, 37)

where the integration is over the unit cell whose volume
is A. If we represent V(r) as the sum of cellular po-
tentials, i.e., V(r)=>, V(r—R,), such that the po-
tential V(r—R,) is zero outside the nth cell, then the
V(r) function in (37) is the cellular potential about the
origin. Let V() now be split into a Coulomb part and
an exchange part. The exchange potential which a
conduction electron sees depends of course on the spin
of that electron. Therefore,. the energy of an a spin
conduction electron will be given by

E(a,k) = Vooo (Coulomb)

+ Vooo(a,exchange)+ (h2/2mq)k*  (38)
and for 8 spin
E(B,k)=Vooo(Coulomb)

+ Vooo(8,exchange)+ (52/2mg)k2.  (39)

Regarding the exchange potential as a perturbation,
we see that the first-order theory displaces the two
bands by a constant amount equal to

E(a,k)— E(B,k) = Vooo (a,exchange)

— Voo (B,exchange). (40)

Second-order perturbation theory introduces k-de-
pendent terms in E(e,k)— E(8,k). Callaway'” has made
a Fourier analysis of the exchange potential used in his
Fe calculation. It turns out that while the Fourier
coefficients of the Coulomb part of the crystal potential
do not fall off rapidly with increasing K, the coefficients
of the exchange potential do fall off rather fast. There-
fore, in this case the major effect of the exchange
interaction with the cores is just to displace the bands.
This effect is shown in Fig. 1.

The number of conduction electrons with « spin is
given by

1 Ko(a)
Mg =— k*dk (41)
272,
and the number with 8 spin is
1 pEo®
ng=— f Rk, 42)
27? 0

17J. Callaway, Ph.D. thesis, Princeton University, 1953
(unpublished).
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where Ko(e) is the % value of the highest occupied level
in the « spin conduction band and K,(B) is the & value
of the highest occupied level in the 8 spin conduction
band. For Fig. 1 we see that!®

(7/2me) [ Ko(e) P= (#/2mg) [ Ko(8) I

+ Vooo(B)— Vooole). (43)
Therefore, ;
@)= [T ()
VOO() (6) VOOO (a)
“( ) ( (72/2ms) Ko (@) )+ ' } - )
Setting mq,=mg=m and using the relation that
na—ng=(1/6m"){[Ko(e) F—~[Ko(8)F},  (45)
we find that
na—ng={Ko()/4w?} 2m/52){Vo0e(8)— Vooo(a)}. (46)

The exchange potential can be conveniently treated
using the &(o,7s,r1) function defined in (34). If the
density matrices po(a,r1,72) and p.(8,71,72) due to the
conduction electrons are constructed from an unper-
turbed set of plane waves with n.,=#g, then p.(a,r1,71)
=p.(B,1,71)=n/2, where n is the total conduction
electron density. One finds then that

5(6,7'2,7'1) - E(C!,?'g,?’l)
= (e/'n)z R{[Ms (R)/S]Ps'(1’2,7’1) } RPc(”l;”z)- (47)

Here p.(r1,72)=2_; ¢ (r1)p;(rs), where 7 runs over all
occupied conduction band levels of both spin. The
difference in exchange potentials is

V) —V(=—

efg(ﬁir%rl) - E(Ol,?’z,f]) drs. (48)
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This shows the expected result that if the net M, of all
the cores vanishes, V(8)— V(a) is zero and the two
conduction bands are coincident. The (0,0,0) Fourier
coefficient of (48) is to be used in (46).

In order to obtain a qualitative numerical estimate
of the extent of the exchange polarization in Fe the
results of a self-consistent field calculation on the Fe
atom by Wood and the author® were used. In this work
two potentials were constructed for the atom, one for
all electrons of « spin and another for those of 8 spin.
The exchange terms were averaged according to Slater’s
free electron method.’® The atomic calculation was
based on a 3d8, 4s* configuration. In order to apply this
work to the present problem two new exchange po-
tentials were calculated. One was for a 347, 4sa con-
figuration and the other for a 3d7, 4s8 configuration.
The exchange potential for the crystal was represented

18 For brevity Voo (B, exchange) and Voeo(a,exchange) are
written in the following equations as Voo0(8) and Veoo(c), respec-
tively.
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F16. 1. Schematic representation of the splitting of the conduc-
tion band due to exchange interactions with the cores. The abscissa
to the right of zero represents the « spin conduction band, and
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that to the left of zero the B8 spin conduction band.

as
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and a similar expression for the 8 spin exchange po-
tential. V(o,r—R,) was taken to be the exchange
potential for the atom with the modified configuration.
The quantities Vooo(o,exchange) in (40) were taken as

R
Vooo(o,exchange) = (47/A) f Vie,)r’dr. (49)
0

The radius R of the S sphere replacing the Wigner-
Seitz polyhedron is given by Callaway'’ as 2.667as.
The result of the calculation was

Vooo(8) — Vooo(a)=0.36X 107! erg,
resulting in a value of #,—#ng from (46) of
na—ng=0.22X10%/cm?.

The total conduction electron density #.+ns is 0.85
X 10%/cm? assuming one 4s electron per atom.

This treatment of the magnetization of the conduc-
tion electrons has so far neglected the effects of corre-
lation. Such a neglect always tends to favor the case in
which there is a net spin alignment due to the corre-
lation introduced between electrons of parallel spin by
the exclusion principle. If one could take into account
the correlation which must exist between electrons of
antiparallel spin, the tendency for electrons to align
their spins would be reduced. An estimate of the
reduction by correlation of the exchange polarization
can be obtained in the following way. Let the exchange
interaction with the cores be represented by a fictitious
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internal magnetic field H whose strength is given by

2uoH = E(B,k)— E(a,k)
=TV 000(8)— Vooo ().

This suggests treating the problem as one of spin
paramagnetism and using the collective electron treat-
ment of correlation as applied to spin paramagnetism
by Pines.® In this theory #,—#g is given by

(50)

na—ng= 2nucH)/a. (51)
The value of « as given by Pines is
a= (20/9)Ef+ (8/9)Eexch+al.r.+as.r.; (52)

where E; is the Fermi energy of the conduction elec-
trons, Eexen their exchange energy, ai... accounts for
their long-range correlation, and as... for their short-
range correlation. The ratio of n,—ng as calculated
with correlation to that found with no correlation is

(na“nﬁ)w.c./(”a’_nﬁ)n.c.=an.u./aw.c.- (53}

This turns out to be
(na'— nﬂ)w.e. = %(”a— nB)n.c. = 017)( 1023/Cm3.

This amounts to a magnetization of the conduction
electrons of 0.20u, per atom.

The magnetization of the conduction electrons is
proportional to Voo (8)— Vooo(e). Equations (28) and
(29) show that this is in turn proportional to M,/S
where M, is the average M, over all the cores. Thus at
T>0°K the magnetization of the conduction electrons
is directly proportional to the net core magnetization.

B. Cellular Method

A second estimate of the separation of the two
conduction bands at #=0 was obtained by taking the
expectation value of

V(Br)—Viar)

with respect to the cellular function found by Callaway®
for the I'; state in his investigation of the band structure
of Fe. The resulting separation was found to be 0.29
X 10" erg. Using this separation to define a fictitious
magnetic field, Pines’ treatment leads to a value of
#o—ng including correlation of 0.14X102/cm? or 0.164,
per atom.

The values obtained here are in every case larger
than the values obtained by Callaway!® who found that
the two conduction bands would be separated by
0.14X 107 erg for two excess d-electrons per atom of «
spin which he calculated would produce an excess
conduction electron spin per atom of 0.07u,.

1 J. Callaway (private communication). The writer is indebted
to Professor Callaway for the use of this function.

JR.

IV. SUPEREXCHANGE COUPLING BETWEEN THE
CONDUCTION ELECTRONS AND d ELECTRONS
IN DILUTE ALLOYS

Owen, Browne, Knight, and Kittel" investigated
the magnetic properties of dilute alloys of Mn in Cu.
In these alloys it was felt that the Mn would go in as
Mn*+ which has a spin of 5/2. If these Mn*+ ions were
to partially line up their spins, one could picture the
conduction electrons as moving in an internal magnetic
field due to this partial alignment. This is not-a true
magnetic field but is the electrostatic exchange coupling
which is often equated to a fictitious internal magnetic
field. The theory of spin paramagnetism of conduction
electrons shows that the total energy of the conduction
electrons decreases as the square of the field.?® There-
fore, at 0°K the Mn*+ ions, which are assumed to be
coupled only to the conduction electrons through the
Coulomb and exchange interactions, would be aligned
ferromagnetically to produce the maximum internal
magnetic field. Owen et al. discuss the s-d exchange
coupling in the Cu-Mn case in terms of molecular fields
using a single ferromagnetic coupling between the Mn
ions and the conduction electrons. They find that the
Mn*+ jons should be ferromagnetically coupled with a
Curie temperature of 3.5/°K, where f is the atomic
percent of Mn in Cu.

The experimental results indicated that the s-d
exchange coupling was apparently much weaker than
it would be for a free Mn* ion and furthermore that at
low temperatures the alloys were antiferromagnetic
instead of ferromagnetic. Even the 1.49, Mn alloy was
antiferromagnetic with a Néel temperature of about
12°K.

These results lead one to question the molecular field
treatment given for the dilute alloy problem and
further suggest that the source of the antiferromagnetic
coupling is through the interaction of the Mn ions with
the conduction electrons. It is true that Owen ef al.
were unable to determine the state of the Mn in the
alloys, for example whether it was Mn*+ or neutral
Mn. As they point out, if it were neutral Mn, it would
completely alter the interaction with the conduction
electrons tending to decrease the exchange interaction.
Let us simply assume that the Mn does go in as Mn*+
and ask the question, can the interaction of these ions
with the conduction electrons lead to an antiferro-
magnetic coupling of the Mn*+ ions?

The answer to this question will be sought by intro-
ducing the superexchange mechanism. In MnO the
antiferromagnetic interaction has been discussed on
the basis of a very simplified model. Two Mn** jons
whose charge densities are assumed not to overlap are
separated by an O= ion. One takes into consideration
those configurations in which an electron from the O=
is transferred to one of the Mn*t ions and also in
which two electrons are transferred from the O=, one

0 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p. 601.
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to each of the Mn** ions. It is supposed that the
solution of this configuration interaction problem will
result in the situation in which the two Mn** ions
prefer not to align their spins. One can say that the
theory can lead to this case but no one has actually
carried out the calculation because the number of
possible configurations is very large. Instead an even
more simplified model is treated in which the Mn*+
ions are replaced by centers with only one electron
about them and the O= is replaced by a center with a
doubly filled orbital. Such a system has been discussed
by the writer,2! and it was found that the theory does
admit the possibility that the lowest state is that in
which the spins about the centers which replace the
Mn*t ions prefer not to align. A numerical example
was worked out there in which this was found to be
the case.

A superexchange mechanism which can lead to the
observed antiferromagnetism in the Cu-Mn alloys is
simply that in which the conduction electrons play the
role of the O= electrons in MnO or those of the non-
magnetic center in the very simple four electron problem
described above. Consider then the simplified model of
two centers 4 and B, each with one electron about
them in a crystal and so far apart that there is no direct
interaction between them. They represent a very
simplified picture of two Mn*+ ions in Cu. The point
to be examined is whether, as a result of their interaction
with the conduction electrons, the electrons on these
centers will or will not align their spins. Let these
electrons be in localized orbitals v(r— R 4) and v(r— Rp)
and consider their interaction with a particular Bloch
function b(k,7). The configurations which must be
taken into account are

$1=v(r1— Ra)a(1)b(k,rs)a(2)b(k,rs)

XB(3)v(rs—Rp)B(4), (54)
¢2=0(r1—R4)B(1)b(k,ra)a(2)b(k,rs)
XB(3)v(rs—Rp)a(4), (55)
m=v(r1—Ra)a(1)v(ro— R4)B(2)b(k,rs)
Xa(3)v(rs—Rp)B(4), (56)
n2=0(r1—Ra)a(1)v(ro— R4)B(2)b(k,rs)
XB(3)v(ra—Rp)a(4), (87)
n3=0(r1— Ra)a(1)b(k,72)8(2)v(rs— Rp)
Xa(3)v(rs—Rp)B(4), (58)
na=v(r1— R4)B(1)b(kr2)a(2)v(r3— Rp)
Xa(3)v(rs—Rp)B(4), (59)
ns=0(ri—Ra)a(1)v(rs—R4)B(2)v(rs— Rp)
Xa(3)v(r«—Rp)B(4). (60)

¢1 and ¢, represent the two ground configurations. 7,
through 75 represent the excited configurations in which
various charge transfers are made and all possible spin

2 G. W. Pratt, Jr., Phys. Rev. 97, 926 (1955).
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orientations taken for each configuration of charges
with the restriction that the total M, be zero.

The configuration interaction may be very conveni-
ently discussed by using Kramers’ method.?? The
unperturbed states of the problem (54) through (60)
are separated into two classes, the ground states and
the excited states. The excited states are incorporated
into an effective Hamiltonian matrix Uj,,, where k and
m refer only to the ground set. Thus the effect of the
excited states is that of a perturbation on the ground
states. The matrix Uy, is given by

Ukm:Hkm+Za HkaHam/(E_Haa)
+ 28 HroH apH g/ (E—H o) (E—Hpgg)+ -+ -, (61)

where H is the actual Hamiltonian for the four electron
system and the Greek indices refer only to excited
states, i.e., n1 to n5. Since Uyi= Use, this can be set as
the zero of energy. If U, is negative, the spins of the
electrons localized about the centers 4 and B will be
aligned in the lowest state, that is this state will have
S=1. If Uy, is positive, these spins will not be aligned
and the lowest state will have S=0. The matrix
element U, turns out to be

Urp=+g (Es— E)—2d*(J+g)/ (E,— E)*

~4hdg/ (E:— E)(E,— E), (62)
where
b(kr)b* (k,ro)v* (ri—Ra)v(r2—R
g="2ff (kyr1)b* (kyra)v i”l a)(r 5) o, (63)
12
j=ezffb*(k,h)b(k,fz)'()(f]_"".RA)fy*(rg*RA) o (64)
712
=f1)*(7’1—RA)be(k,1’1)dTl
. 1)*(7’1—RA)b*(k,?’z)’l)(rl“‘RA)'l)(1'2—RA)
+é ff o T12
+e2ffb*(k,fl)b*(k,fg)b(k,?’l)'l)(rz—RA) o
712
v*(r1i—Ra)v(r1— Ra)
Xv*(ra—R 2—R
te f f TR R L 63)
712

and

hzf”*(’l_RA)Hlb(k,fl)dn
+232ffv*(rl—RA)b*(k’m)v(r‘_RA)'U(’Z—RB)

T12
712
b*(k,rl)v* (rg—RA)fv(rl—R,;)v(rz—RA)
+82ff T12.
712
(66)

2 H. A. Kramers, Physica 1, 182 (1934).
2 P, 0. Lowdin, J. Chem. Phys. 19, 1396 (1951).
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E, is the diagonal energy of the excited states 51 to 74
corresponding to the case where one of the conduction
electrons is captured by a magnetic center. E, is the
diagonal energy of ns where both conduction electrons
are trapped. The configuration n; must be included
otherwise it can be proved that Ujs can only be nega-
tive.2* The first term in (62) comes entirely from 75 the
contributions from #5; to 74 cancelling out completely.
Since E;> E, the first term? in (62) is positive definite.
Therefore, if the higher order terms in Uj» do not
reverse the sign, the magnetic centers 4 and B do not
align their spins in the lowest state. Under these
circumstances the superexchange coupling of these
centers via the Bloch function &(%,r) isantiferromagnetic
in character.

Suppose the term g2/ (E,— E) is taken to represent
the source of the antiferromagnetic interaction in a
dilute alloy. Then it is possible to estimate the depend-
ence of the Néel temperature on composition. The
separation between the S=0 and S=1 states due to
Uz is 2g?/E,. Therefore, let the Néel temperature be
taken proportional to g*/E,. It remains to determine
the dependence of g and E; on composition.

The integral g defined in (63) is the electrostatic
energy of two charge distributions,

o(r)=0%(kr1)v(r1—Ra) 67)
and

U,(fz)zb*(k,fz)’l)(rz—RB). (68)

Since v(r;— R4) is localized about R4, so must be o(7y).
Similarly ¢'(r2) is concentrated about Rp. If these
charge distributions are non-overlapping, as we assume
for a dilute alloy, g is essentially

2
g=—

AB

o(r)dr f o (r3)drs, (69)

Let N, represent the number of magnetic atoms per
cm?® in the alloy and N be the total number of atoms
per cm?. The assuming a uniform alloy R4z is (V/N 4)Ro,
where R, is the average nearest neighbor distance.
Thus g? is proportional to (V,/N)% In any actual case
there will be many different g integrals. However, they
will all have the same dependence on R 4p.

The quantity E, depends on R4z, or composition,
only through an integral of the form

A
aTi2,

(70)

v*(r1—R4)v(r1— Ra)v*(r2— Rp)v(r2— Rg)
f

712

2 The proof is given in reference 19.
25 Unfortunately this term was omitted in Eq. (29) of reference
19. The inequality given in (34) there should read

8/ (BEa—E) —4hdg/ (E\— E) (Ey— E) >2d*(J+¢) / (E1— E)2.
In the numerical example considered, the omitted term must be
taken as zero owing to the very small value of g. Therefore,

Eqgs. (40) and (41) and their consequences apply for the example
as stated.

JR.

which is essentially a constant over Rap by the same
arguments used with the g integral. Therefore, E,
may be written

Ey=C1+4C3y/R45. (71)

Using the relation between R,p and N, the Néel
temperature is

(W Gimmm)

For a sufficiently dilute alloy Tx~ (N./N). This is
shown to be true in the Cu-Mn case.!* Although this
result cannot be regarded as a very stringent test of
the theory it does indicate that a model for Cu-Mn in
which the Mn ions are uniformly dispersed can be
consistent with the concentration dependence of the
Neél temperature. Furthermore uniform dispersion
with an antiferromagnetic coupling going as 1/Rup
would result in an ordered, probably two sublattice,
structure in that nearest neighbor spins are antiparallel
on the average.

(72)

V. MOLECULAR FIELD THEORY FOR A DIRECT
EXCHANGE AND SUPEREXCHANGE
COUPLED SYSTEM

In this section a molecular field description is given
of a magnetic material which has an antiferromagnetic
superexchange coupling between the magnetic ions
(cores) and a ferromagnetic direct exchange between
the cores and conduction electrons. The results obtained
here will be applied to the experimental results of
Owen et al.* on Cu-Mn alloys.

Let the magnetic atoms be assigned to two sublattices
A and B. In the dilute alloy this corresponds to the
idealized situation where the magnetic atoms are
uniformly dispersed in the host crystal. The phenome-
nological Hamiltonian is taken to have the form

H=2""[—TI:S4:-Sp;j—1I2(S4:-Sc+Sg,S.)
ij

—I3(8484;488887)]  (73)

Here S, stands for the net spin of the conduction
electrons. I; may be called the interaction integral
coupling the spins of atoms on sublattices 4 and B. In
the very simple four electron problem discussed above,
I, is g?/E;; and in a more realistic problem, I is
derived from (61). For an antiferromagnetic coupling
between sublattices A4 and B, I; is negative. There will
be a coupling of the atoms on sublattice 4 with each
other and of B atoms with each other. This is given in
the last term of (73). The factor I, represents the
direct exchange interaction between the conduction
electrons and magnetic atoms. It is positive, indicating
a ferromagnetic coupling. Equation (73) may be re-
written in terms of the total magnetizations of the
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sublattices 4 and B and of the conduction electrons as
IIZABMA ¢ MB I2(MA+MB) * Me
3N (gug)?

3(3:

2gus®

I
—l—zﬁa’_)z(ZAAMAMA"‘ZBBMB MB) (74)
24V \8LB

Where Zp is the number of nearest neighbor B sites
to a given A site and vice versa and Z 4 4 is the number
of nearest neighbor 4 sites to a given A4 site with Zpp
similarly defined in the B sublattice.

From (74) the fictitious internal magnetic field
acting on an atom in sublattice 4 is

I 1Z AB I 2 2I 3Z AA
4= - M. (75)
3N (gus)? 2gus* 3N (gus)?
The internal field acting on a B atom is
VEVAY:] IM, 2I5Z44
: - M. (76)

B= 1 . AT 2 T 1 .
3NV (gus) 2gus® 3N (gus)
The internal field acting on the conduction electrons is

I,

H.=

(M+Mp).
2gus’®

Let I.Z4p/iN(gup)?=—A, where A is positive;
IsZ 44/3N (gug)*= —T'/2, which can be positive or nega-
tive; and I,/2gug*=n, with n positive. Then above all
transition temperatures the magnetizations of the
sublattices and conduction electrons in an applied field
H, are given by

M4=(C/2T)(Ho— AMp+nM . ~TM4), (78)
Mp=(C/2T)(Ho— AM s+nM ,~TM3z), (79)
M .= (M 4+ Mp)nxc+Hoxe, (80)

where C= Ng2ug*S(S+1)/3k and x¢ is the paramagnetic
susceptibility of the conduction electrons. Setting H,
equal to zero the possible transition temperatures are
found by setting the determinant of the coefficients of
M4, Mg, and M, in (78), (79), and (80) equal to zero.
There are two possible transition temperatures

T\=3iCA-T)=ry,
To=Cr’xc—3C(A4+T)=7¢—75—CT.

(81)
(82)

Here 7 is the Néel temperature which would be found
if the ferromagnetic coupling were absent, ie., =0
and 7¢ is the Curie temperature which would be found
if both 4 and I were zero.

The susceptibility above the highest transition

7y

temperature is readily found to be

C(1+nxc)?
T—{Crxc—1C(A+T)}

(83)

X=XeT

The ordering at 0°K may be found by writing (74) as

C‘C=AMA'MB-‘-I'/Z(MA'MA—{—MB'MB)
—n(Ms+Msz)-M,

and comparing the energies of the ferromagnetic case,
where M 4=Mgp both of which are in the direction of
M., and the antiferromagnetic case, where M= —Mj.
The condition for antiferromagnetic ordering at 0°K is

A>2xc. (85)

Therefore, if T' is positive, a high temperature suscepti-
bility of the form
x=const/(T—6),

(84)

(86)

with 6>0 means that unless 5, 4, and T' are tempera-
ture-dependent, the material must be ferromagnetically
ordered at 0°K.

This molecular field treatment admits the interesting
possibility of an antiferromagnetic-ferromagnetic tran-
sition. If

2Cnxe>CA, (87)

the material is ferromagnetic at 0°C. However, the
temperature 7y in (81) corresponds to a spontaneous
antiferromagnetic ordering, i.e., My=—Mpand M.=0.
It is possible for (87) to be satisfied and at the same
time to have ry>r¢—ry—CT if

2C2xe>CA> Cr’xe. (88)

Under these circumstances, as the material is cooled
from high temperatures it reaches 7y first, at which
point it orders antiferromagnetically. This must change
to ferromagnetic ordering at some lower temperature.

The equations for the magnetizations in the ferro-
magnetic case below the transition temperature are,
for zero applied field,

N WM oe— AMs—TM4
MA=;uogSBs[( v )Sgﬂo], (89)

N oM—AM4—TMp
MB=*2-MogSBs[( T )Sgﬂo], (90)

M= (Ms+-Mp)nxe. (91)

If M, is eliminated in (89) and (90) by (91) and the
argument of the Brillouin functions is taken to be
small, the temperature at which the ferromagnetic
ordering disappears can be solved for and turns out to
be r¢—ry—CT, ie., the same as (82). Therefore, the
antiferromagnetic-ferromagnetic transition must occur
between 0°K and I'=r¢—7y—CT.

There is also the possibility that 6 be positive in
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(86) and that the material never order ferromagneti-
cally. This comes about if

0=Cn’xc—3C(4+)T>0 (92)

and the antiferromagnetic conduction (85) is also
satisfied. For this to obtain

—CT'>CA—2Crxc, (93)

which can be satisfied for negative I'. As such a material
is cooled from high temperature, it reaches 7y first, at
which point M 4= —Mp which persists to 0°K.

No choice of constants will allow the possibility of a
change in ordering from ferromagnetic to antiferro-
magnetic as the temperature is decreased. That is, the
conditions 7¢—7y—CIT'>7x and (85) cannot both be
satisfied.

It is of interest to see how this molecular field
treatment might serve to explain some of the experi-
mental results of Owen ef al.* on the dilute alloys of
Mn in Cu. This theory can lead to the observed high-
temperature susceptibility given in (86) with positive
6 as is shown in (83). Furthermore, for a positive 8 it
can lead to the observed antiferromagnetic ordering
below 7. The results of Owen, Browne, Knight, and
Kittel indicate an s-d exchange interaction in the alloys
somewhat stronger than that of the free ion on the
basis of the predicted and observed Curie points while
all of their other results pointed to a considerably
weaker exchange interaction. In particular, their
analysis of the Knight shift of the Cu nuclear resonance
of a 0.03%, alloy at 1.2°K was interpreted on the basis
of their theory to mean that the actual s-d exchange
interaction was very weak, perhaps one-fiftieth that
of the free ion. They reasoned that if the alloy were in
the paramagnetic state at that temperature, a Knight
shift four times that in pure Cu should be observed as
the result of the exchange coupling between the con-
duction electrons and the Mn ions. As shown in Sec.
IIT a magnetization of the conduction electrons pro-
portional to that of the magnetic cores due to direct
s-d exchange comes about by the lowering of the energy
of the conduction band of one spin with respect to the
band of opposite spin. The superexchange effect de-
scribed in Sec. IV is based on the capture by the core
of a conduction electron of spin opposite to that of the
core due to the Exclusion Principle. Consider the case
of Cu-Mn where a net magnetization of the Mn** ions
has been induced by an external magnetic field. The
conduction band with spin parallel to the net Mnt+
spin will have its energy lowered by direct s-d exchange
while the conduction band of opposite spin will have
its energy lowered by the exclusive ability of these
electrons to spend part of the time in a bound 34
orbital which partly screens the extra positive charge
of the Mn**, Thus the net lowering of one conduction
band with respect to the other may be very small
resulting in a very small net conduction electron magne-
tization.

JR.

The screening charge about an Mn** has a contribu-
tion from conduction electrons of the same spin as the
core. This is described by excited states where the
conduction electrons have normally unoccupied &
values. These states lead only to a ferromagnetic
coupling, i.e., Urn of (61) negative to second order.
It would be interesting to investigate a dilute alloy
where the core has less than a half-full d shell so that
the Exclusion Principle would not operate as in Cu-Mn.

Unfortunately there do not appear to be enough data
in reference 11 to estimate the coupling constants n, 4,
and T'. It would be particularly interesting to see
whether neutron diffraction experiments show an anti-
ferromagnetic-ferromagnetic transition. It seems that
one can conclude that an s-d exchange coupling whose
strength is comparable to that for the free ion is not
inconsistent with the experimental results obtained on
the Cu-Mn alloys if the more general molecular field
treatment given here is used.

As pointed out earlier, the existence of an antiferro-
magnetic-ferromagnetic transition has been observed
in the rare earths erbium and dysprosium. Since the 4 f
or magnetic electrons do not overlap between neighbors,
the usual exchange mechanism of ferromagnetism in
the transition elements does not apply here. It is the
opinion of the writer that the direct and superexchange
interactions between the 4f electrons and the conduc-
tion electrons is the basis of the magnetic properties of
these metals. A complete molecular field treatment of
this situation is being carried out and will be reported
in a subsequent publication.
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APPENDIX
Theorem 1.—The density matrix of any order for a
state ¥(S,M;) is independent of the M, value of the
state.

Proof—Consider the first-order density matrix
formed from the state ¢(S5,S). This is

ps(rl,rl’)=fnl/*(S,S; r1e )W (S, S - crn)dry.

The first-order density matrix for the state (S, S—1) is

S——
ps—1(rirs)= f—““lﬁ*(S;S,fl' )

7(25)t 71(25)

XY(S,S; 7 -rp)dry,
which equals

gk Cpienn .. ’
25ﬁ2f5 SY*(S,S; 71 - )P (S, S, - - ra)dTy .



d ELECTRONS IN MAGNETIC MATERIALS 65

But S+5-/2S%2 operating on ¥(S,S) is equal to ¥(S,S),
so we have shown that

ps—1(ry,r)=ps(rir’).

Let us assume that pg_,(r1,71)=ps(ry,r). If we can
establish that the same is true for S—#»n—1, then the
theorem is proved by induction. We have

fg&*(S, S—n—1;r1 o )¥(S, S—n—1;7/ - -r,)dr!

=————————fS+S‘1l/(S, S—n;r1ec1s)
72(2S—n) (n+1)

XY (S, S—n;ry--ry)dry.
But

StSY(S, S—n;r1- - 7a)
=12(25—n) (n+ 1Y (S, S—n;r1—7a),
and so
ps—n—1(r,71)=ps_n(ry,71).

Since the above proof is independent of the order of
the density matrix, the theorem is proved.

Theorem 2.—For any many electron state of a definite
M, the first-order density matrix can always be sepa-
rated into two terms; one a sum over orbitals associated
with « spin and the other a sum over orbitals associated
with 8 spin. We define that sum over only orbitals of a
spin as pg(a,Msr1,71’) and that only over 8 spins as
Ps (ﬁ,Ms,ﬁ,?‘l')-

Proof—First consider a single determinant of one
electron space and spin functions whose spatial parts
are orthonormal. For this determinant,

p(ry,r) =Zk 2ok wit (r)ue (r)on (V) (1’).

Obviously one can separate . into one part in which
all sx=0a and another in which all ¢;=4.

Any many-electron state of definite M, can be
expanded as a linear combination of determinants
composed of orthonormal one-electron functions. Since
in finding the first-order density matrix one integrates
over all spatial coordinates but one, because of the
orthogonality of the orbitals the only nonzero cross
products will be between determinants differing only in
the replacement of one spatial orbital by another. If
#p is replaced by u,, the contribution of the cross
product to p(r1,7,") will be

wp(r)g(r)ap(1)ag(1').

The total M, can be preserved in two ways: first,
gp=0g, in which case the cross product contributions
can always be classified according to ¢,=c,=a or
ap=0,=; second, if ¢, 7, with other spin differences

arising to compensate this difference preserving the
total M .. But this must result in terms in the summation
over all spins of the form

Op=a (x)‘f =B (x) )

which is zero. Therefore, the only contributions to the
first order density matrix are for o,=0,. Since we have
shown that the direct products between determinants
as well as the cross products can be classified according
to spin direction, the theorem is established.

Corollary.—According to Theorems 1 and 2, the first-
order density matrix for a state ¥(S,M,) may always
be written as

Ps (7'1,71,) =ps (ayMsyrhrll)_l_PS (B:Ms‘:rl:rll) .

Here pg(a,M,,r1,r1") is the total contribution to ps(ry,71")
coming from the orbitals associated with « spin and
the second term is the total contribution coming from
orbitals associated with 8 spin.

Theorem 3.—For the state of maximum multiplicity,

Ps (a:Mhrl,rl’) = [(S+ Ms)/2S]pS (7’1:71,)

ps (B, M or1rt)=[(S— M)/ 28 Jps (ruyri).

Proof—A state of multiplicity S and arbitrary M,
is given by

and

M=Ms+1 1
vEsMI= I ﬁ[(S+M)(S—M+1)]%)

X(§7)5My(S,S).

For the state of maximum multiplicity, ¢(S,M,) is
symmetric under any permutation of spin coordinates.
Such a state is a linear combination of determinants,
each with S—M, spins reversed and each appearing
with a coefficient

S |M==Il|fz+1 1
(5= M=5 [(S+M)(S—M+1)]*)'

No determinant appears twice, and with the above
coefficients the state is normalized. If the one-electron
function #; has « spin associated with it in a given
determinant, it will make a contribution to
ps(a,Mri,re") due to that determinant of

M=Ms+1

(S—Mmye JT

M=8

(S+)(S—M+1) }“ (r)uus(ry).

There will be no cross products, as proved in Theorem 2.
The number of determinants in ¢(S,M,) in which #;
has a spin is

@S—-DYVLS—M)(S+M~1)!]

The total contribution of #; with a spin to ps(a,M s71,71")
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) (2s-1)!
(S—M,)r
(S—=M)(S+M,—1)!
M=Ms+1
=5 { (S+M) (S—M+1) ]“" (rous(ry).

The sum over all #; gives just ps(e,M s,71,71"). Therefore,
@2S—-1D)I(S—M,)!
(S+M,—1)!

P(a;Msyrlrrll) =

ps(rir).

M=Ms+1 1
X II (
u=s \(S+M)(S—M+1)
The product = in the above equation is equal to
M=I”f+1( 1 ) (S+M,)!
=5 \(S+M)(S—M+1))  @S)I(S—M)!

JR.

Therefore, ps(a,Mqr1,rd) is

(25— 1)1(S— M) (S+M.)!

(S+M—1)1(28) I(S—M)!
S+M,

= ps(r1,71).

25

ps(a,Ms,1‘1,7’1,) = Ps(flafll)

From the Corollary, we have

Ps (5;M877’1;7’1,) =ps (rlyrl’) —Ps (a;Ms;rlyrll) .
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Hence
S—M,
ps(B,M sr1,r1") = ( )ps(h,’ 1)
28
Therefore, the theorem is proved.
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From the anomalous rise of the thermal expansion near the melting point, a value of about 0.7 ev for the
energy of formation of vacancies in copper and gold is found.

INTRODUCTION

ROM theoretical calculations it is known that the
energy of formation of vacancies in copper and
gold is of the order of 1 ev,! which is a value sufficiently

3-105,
# Cu /
a:Linear extrapolation Gn
Gr: Griineisen ~curve 2
70 /
a |970%p
5
60 “6r
/ —————— 0
500 500 1000 °C

F1c. 1. Upper curves: Temperature dependence of coefficient of
thermal expansion 8 of copper. Circles refer to actual measure-
ments.5 The dashed curve Gr represents the Griineisen curve
obtained by Nix and MacNairt from the data below 500°C; the
straight line ¢ is the linear extrapolation of the temperature de-
pendence of 8 below 500°C. Lower curves: Smoothed differences
between observed and extrapolated values of 8, obtained from the
upper part of the figure, as a function of temperature. Gr: differ-
ences with regard to the Griineisen curve; ¢: differences with
regard to the linearly extrapolated curve.

1H, B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942);
H. B. Huntington, Phys. Rev. 61, 325 (1942); A. D. Le Claire,

low to expect appreciable concentrations of vacancies
in thermal equilibrium at temperatures near the melting
point. An anomalous rise of the electrical resistivity,
which was attributed to the vacancies mentioned, was
observed by Meechan and Eggleston? in copper and
gold above 500°C. The extra resistivity closely followed
an exp(E;/kT) law, and values of the expected order
of magnitude for the formation energy E; of vacancies
were obtained.

When vacancies are formed the metal must expand,
so an anomalous rise of the thermal expansion will occur
at sufficiently high temperatures. As far as we know,
Gertsriken® was the first to deduce a value for the
formation energy of vacancies in copper from this
phenomenon ; however, the data he used were not very
accurate.

In the present paper we apply the same method,
using more accurate data and a way of extrapolating
the low-temperature values of the thermal expansion
coefficient to higher temperatures which has a some-
what better theoretical justification.

?ctgsl;detaﬂurgica 1, 438 (1953); F. G. Fumi, Phil. Mag. 46, 1007
1955).
( 2 (i.)]. Meechan and R. R. Eggleston, Acta Metallurgica 2, 680
1954).
3 G. D. Gertsriken, Compt. rend. 98, 211 (1954).



