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Nuclear Polarization and Impurity-State Spin Relaxation Processes in Silicon
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Two proposals are made for producing nuclear polarization by a transient analog of the Overhauser
eGect in the impurity-state electron spin resonance in silicon. The success of the proposal polarization
schemes requires that the electron spin relaxation process in which the impurity nucleus and the electron
simultaneously Qip their spins be faster than those relaxation processes in which an electron alone changes
its spin. A detailed study of many electron spin relaxation processes is carried out. It is found that for
suKciently low concentrations of P, As, and Sb impurities in silicon transient nuclear polarization should
occur; for Li impurities it should not. The foregoing theoretical predictions have been verified for As by
the recent experiments of Abragam and Combrisson, and of Feher.

I. INTRODUCTION

HK electron spin resonance of impurity states in
silicon is of particular interest because of the

very long relaxation times observed for extremely pure
samples, and the much shorter, highly concentration-
dependent, times found as the impurity concentration
is increased. ' In samples where the relaxation time is
very long (of the order of minutes to hours), a number
of interesting transient effects may be observable. In
this paper we propose the existence, under suitable
experimental conditions, of a transient nuclear analog
of the Overhauser effect. ' It should occur whenever the
relaxation process in which the electron and the im-

purity nucleus simultaneously Rip their spins is faster
than those in which an electron alone changes its spin.
The effect thus depends sensitively on the various
possible electron relaxation processes, so that an ex-
perimental and theoretical investigation of these times
is required before the feasibility of establishing nuclear
polarization by the above scheme may be established.
We were thus led to a theoretical investigation of a
number of possible electron spin relaxation mechanisms.

We were originally stimulated in the investigation
of such e6'ects by the experiments of Honig' and the
theoretical explanation proposed for them by Kaplan.
Honig studied the impurity spin resonance of As-doped
Si, for which one 6nds four lines, separated by the
hyperfine interaction of the impurity electron with the
As nucleus. He observed that passage through one of
the lines enhanced the neighboring lines, and on this
basis Honig and Kaplan concluded that nearly 100%
nuclear polarization occurred as a consequence of such

passage through the first line. Our first conclusion was
that Kaplan's proposed polarization scheme is, in fact,
lacking in validity. On the other hand, we found that
effects somewhat similar to those observed by Honig

' Feher, Fletcher, and Gere, Phys. Rev. 100, 1784 (1955); G.
Feher (private communication).

s A. W. Overhauser, Phys. Rev. 92, 411 (1953).
3 A. Honig, Phys. Rev. 96, 234 (1954).
4 J. Kaplan, Phys. Rev. 96, 238 (1954).

may be associated with a transient nuclear polarization;
however, the order of magnitude of the polarization
associated with such effects is considerably less than
100% and is of the order of that obtainable in a
steady-state Overhauser polarization.

Our calculations of spin-lattice relaxation times for
a number of possible mechanisms have led us to the
conclusion that at helium temperatures all relaxation
times for very pure samples are quite long (of the
order of minutes), essentially because the electron is
bound to a given impurity site in such a way that it
tends to respond adiabatically to changes in its environ-
ment. As a result the matrix elements for bound electron
spin Qip are considerably reduced over those one would
calculate neglecting the adiabaticity of the electron
response. We furthermore find that the simultaneous
spin-Rip mechanism should be more effective in pro-
ducing relaxation than the electron-spin-only mecha-
nism for extremely pure samples of P-, As-, or Sb-doped
silicon. Whether such conditions actually obtain in a
given sample is difFicult to decide in principle. First of
all, Honig's experiment does not provide any evidence
for the existence of a transient nuclear polarization.
For, as Feher' was the 6rst to point out, the experi-
mental results obtained by Honig can be explained in
terms of fast-passage theory. ' Second, Feher et ul. ' 6nd
that the spin-lattice relaxation time is quite sensitive
to impurity concentration, and is reduced from a time
of the order of seconds for a concentration of ~10'
phosphorous impurities in silicon to less than 10 '
second for a concentration of 4&(10'7. This concentra-
tion-dependent time is undoubtedly caused by an
an electron spin-Rip-only mechanism. Under what con-
ditions it is the fastest time of interest in a given
sample we are not able to predict. We have investigated
several possible causes for a highly concentration-
dependent relaxation time, but thus far have not been
able to invent a mechanism which yields sufficiently

5 G. Feher (private communication). See also A. Honig and J.
Combrisson, Phys. Rev. 102, 917 (1956).' F. Bloch, Phys. Rev. 70, 460 (1946).
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fast relaxation times to give agreement with experi-
ment.

Recently Abragam and Combrisson' and Feher' have
carried out experiments on samples of As-doped silicon
which show that the simultaneous spin-lip mechanism
is the most eKcient relaxation process for the impurity
electron, so that transient nuclear polarization should
occur in these samples. Furthermore, the relaxation
times they observe are in good accord with our theo-
retical prediction.

In the following section we consider the possibility
of producing a transient Overhauser eftect, and the
ways in which it may be detected experimentally. We
discuss two diGerent kinds of transient effects which
may be used to detect the polarization. In Sec. III we
report our calculations on spin-lattice relaxation times
for a number of possible mechanisms. In Sec. IV we
compare our calculations with experiment, and in the
appendix we analyze Kaplan's proposed explanation of
the Honig experiments.

We wish to take this opportunity to call the reader' s
attention to a paper by Pound' which contains, we
believe, the first description of a double-resonance
effect. In an ingenious study of nuclear resonances
with resolved quadrupole splittings, Pound applied the
double-resonance technique to unravel the various
relaxation mechanisms. The analysis we present below
is essentially the same, although arrived at indepen-
dently. It gives us particular pleasure to call the
attention of the reader to Pound's pioneering work,
since one of us (CPS) has omitted this important
reference in earlier publications on the Overhauser
eftect.

II. TRANSIENT OVERHAUSER EFFECT

Let us consider an impurity with nuclear spin and
electron spin both -', (as in the case of phosphorus) in a
very strong magnetic field. We can then characterize
the energy levels by Mg and Ml. We introduce the
notion (+ —), (++), etc., for the various levels,
where (+ —) means MB=+s, Mr= ——',, etc. The
energy levels are shown schematically in Fig. 1. Pos-

7 A. Abragam and J.Combrisson, Compt. rend. 243, 576 (1956).
s G. Feher (private communication).' R. V. Pound, Phys. Rev. 79, 685 (1950).

A. THERMAL EQUILIBRIUM. B.SIMULTANEOUS SATURATION OF G. FIRST TRANSIENT
BOTH RESONANCE: M +(I+A. EFFEGT,

Fxo. 1.Energy levels and their populations for a nucleus of spin ~~

and an electron of spin -', under various circumstances.

sible spin-lattice relaxation processes are those indi-
cated by the arrows, the corresponding relaxation
times being Tx and Tg. The process which gives rise to
Tx results from modulation of the hyperhne coupling
by the lattice vibrations. A process which gives rise to
Tg might result from modulation of the electron spin-
orbit coupling by lattice vibrations, or perhaps by
coupling with conduction electrons. We further assume
that times for processes in which the nucleus alone
flips are much longer than either Tx or Tq."If there
are X atoms, we have the populations at thermal equi-
librium indicated in Fig. 1.Here 2e =y,Hs/kT represents
the electron Boltzmann factor, and in calculating the
relative populations we have neglected the nuclear
gyromagnetic ratio y„with respect to the electron
gyromagnetic ratio y„andhave neglected the hyper6ne
interaction constant relative to y,ao. Prior to turning
on the Geld we have equally populated levels.

We now consider three diferent ways in which
nuclear polarization may be achieved, namely Over-
haus�e's steady-state method and two transient
methods.

(1) Normal Overhauser Effect

If we saturate both electron resonances simultane-
ously (i.e., the resonances associated with Mr=+ —',
and Mr= —s), we produce the normal Overhauser
e6ect. We show how this comes about to illustrate the
general type of calculation we carry out. The fact that
the electron resonances are saturated means that the
population (+ +) and (—+) are equal, and likewise
for (+ —) and (——).However, the relaxation process
Tz maintains thermal equilibrium between the relative
populations of (+ —) and (—+). We have therefore
the situation shown in Fig. 1, where M is to be deter-
mined. The condition on M is that the total population
must be X, and hence that

M+M+M(1 2e)+M(1 2—e) =X. —

We find therefore that M= isa(1+ e). The total number
of nuclei of spin up, m+, is therefore —', X(1+e) and the
total number with spin down, e, is —',X(1—e), giving
a ratio

I+/m = (1+e)/(1 e) 1+—2e—
Therefore, the nuclear population difference corresponds
to an effective nuclear gyromagnetic ratio of (y„),ff —p, .
This is just Overhauser's result.

(2) First Transient Effect

The first transient polarization can be seen very
simply. Let us assume that Tx«Tq. If we turn on the
magnet and wait a time longer than T~ but less than
T8, we have thermal equilibrium established between

' That nuclear times are long compared to the electronic times
of interest may be deduced from the recent experiments of R. G.
Shulman and B. J. Wyluda LPhys. Rev. 103, 1127 (1956)).
Their experiments indicate a nuclear relaxation time in the very
pure samples (&10'~ impurity atoms/cc) of at least 200 minutes.
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the two levels (+ —) and (—+), but no change in
the populations of the (+ +) or (——) states.
Therefore we have the readjustment of populations
indicated on the righthand side of Fig. 1. The number
of nuclei of spin up, n~, is «iV+«(1+«)1V, whereas the
number with spin down, n, is «X+«i(1—e)1V so that
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n+/n = (2+e)/(2 —«) =1+«.

Thus the neclei are polarized to the same extent they
Yooeld be if the neclees had a gyromagnetic ratio of 2y. .
This transient polarization will last for a time T8.

We could observe the presence of a polarization of
this type by watching the intensity of the microwave
electron spin resonance, which would reach its full
value in a time Tq, but half its full value in the shorter
time Tx. The presence of a pair of relaxation times Tx
and T8 should also show up in a measurement of the
magnetic susceptibility as a function of frequency using
an alternating magnetic field parallel to Ho. For low
frequencies the susceptibility should be N7, 'O'I(I+1)/
3kT. At an angular frequency of about 1/Te, the sus-
ceptibility should drop to —', ; it should become zero for
angular frequencies above 1/Tx.

(3) Second Transient Effect

The second transient eGect was invented by us to
explain experimental results of the type described by
Honig in which saturating one electron line enhanced
the second line. Bloembergen" has independently sug-
gested the same effect. As we have said, however, it
appears that it is more likely that Honig's results can
be best understood in terms of the rate of passage
through the resonance, that is, as a fast-passage eGect.

There are of course various experimental conditions
that might prevail as far as a microwave resonance is
concerned. The speed of passage through the line may
be fast or slow compared to the relaxation times or the
rate of transition induced by the external field, and
additional parameters enter if one is modulating the
magnetic 6eld. For simplicity we shall consider a case
in which T~&Tg and in which we can forget about the
peculiar coherence eR'ects of fast passage. We shall
assume that we go through the resonance in a time
long compared to Tx, and that the power level is high
enough to produce complete saturation.

The populations under various experimental condi-
tions are those shown in Fig. 2. A represents the situa-
tion before observation of the electron spin resonance.
8 gives the population changes produced when we
saturate the Ml = ——,'electron spin resonance line and
wait a time short compared to T~ but long compared
to Tx, so that the (+ —) and (—+) states are in
thermal equilibrium. C gives the level populations
which result after we then proceed to saturate the
Mr ——+—, line in a time which is short compared to Te.

"N. Bloembergen (private communication).
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We erst note that the mr +-——', is enhanced relative
to the nzl= —-,'line. To show this, we need a criterion
for intensity. Clearly there is a problem in how we
define this since we have assumed complete saturation.
However, a net amount of energy is absorbed from the
microwave 6eld, and we could use this as a measure of
the intensity. An alternative measure, which is equiv-
alent, is to take the population difference before
passage. The latter criterion is based on the fact that
the initial signal intensity (before the line is saturated)
is proportional to the initial population diGerence.
With these definitions, we note that the intensity of the
ml ————', line which we observe first is proportional to
2«. On the other hand, the intensity of the mr ——+2 line
is proportional to (5«/3)+«= (8«/3). The second line
is therefore enhanced by the ratio 4/3 relative to the
first line.

The degree of nuclear polarization produced at each
stage of the process is as follows:

After passage through the m~= ——,
' line:

n+ 2+5«/3 e—
= 1+2«/3,

n 2—2«/3

which is equivalent to (pn), « ——p,/3.
After passage through the mr =+-', line:

2(1+7e/9)

n 2—11«/9 —e/3
=1+14«/9,

which is equivalent to (y„),«=7y, /9. It is evident
that a sizeable nuclear polarization has resulted. We
should like to emphasize that althoegh the mr=+-,'
electron line has increased 30% in intensity, it is not
tree that the neclear polarization is correspondingly large.
That is, the intensity of the electron lines only tells us
the degree of nuclear polarization when we have a
theory of the detailed processes which take place.

The experimental situation in silicon is often that of
adiabatic fast passage. In this case it is a simple matter
to revise our calculations, the result being that (a)
passage through a line inverts the population and (b)
no changes in population are seen until relaxation has

A. THERMAL EQUILIBRIUM. B,AFTER SATURATING M("--2 C. AFTER NEXT SATURATING

ELECTRON RESONANCE. Mi=+- EI ECTRON RES.2

FIG. 2. Energy levels and their populations for a nucleus of spin &

and an electron of spin -', under various circumstances.
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taken place. Calculations along the lines we have
indicated can then be carried out simply, but we shall
omit them from our discussion. It is clear that one
can get larger eGective polarizations in this manner.
Feher" has explored the theoretical rami6cations
extensively.

III. RELAXATION TIMES FOR THE SPIN RESONANCE
OF GROUP V DONORS IN SILICON

We here wish to estimate the spin-lattice relaxation
time due to the hyperfine interaction of the electron
with the impurity nucleus, and to compare this with
its relaxation time due to any other cause. The phonon-
induced relaxation processes will only go if the spin
Rip of the electron is accompanied by the emission of
phonon of energy Ares (or inelastic scattering, if we are
considering a Raman process), where eve is the resonance
frequency for the electron. Since Amp is small compared
to the binding energy of the electron, we may expect
that the electron will tend to respond adiabatically to
any change in its enrivonment which takes place with
a frequency orp. As we shall see, this has the eGect of
reducing considerably the matrix elements for the
spin Qip of the bound electron. It also enables us to
apply with some con6dence the deformation potential
concept of Bardeen and Shockley" to the calculation
of our matrix elements.

As will be seen, we can obtain only an order of mag-
nitude estimate of the relaxation times. For this reason,
we shall not consider in detail the rather complicated
wave function which describes the bound electron cor-
rectly, but instead think of a simpli6ed wave function
which corresponds to a single energy minimum with an
average eGective mass of m~=0.31m. We have con-
sistently dropped all angular dependences, spin-
dependence of the matrix elements and the like, as
essentially leading to factors of order unity. We also
consider only longitudinal phonons in our explicit
calculations, although for some of the processes we
consider the transverse phonons may play an important
role.

Using the deformation potential, it is quite straight-
forward to show that the matrix element for a transition
from spin up to spin down induced by a change in the
electrostatic potential V and spin-orbit interaction or
hyperfine interaction Hl may be written

(A- (51'+5&r)4~)
= 8o- &i+~4'~)+ (&o+ &~) (A »4'+) (—1)-

Here 5V and 5III are the change in potential, and E~+6
and 5P+ are the change in total energy and wave
function for a spin up electron, all associated with a

"G. Feher, Phys. Rev. 105, 500 (1956) and private conr-
munication."J.Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

dilation A. For longitudinal waves we have

(ilgwu)a =div5R(r) =& I
le'"',

pj
(2)

where p is the density of Si. Ep and Ep+ are the energies
of the spin down and spin up electron in the undilated
lattice, and we have Ep+—Ep =AMp.

1 2s
t

dk
5(Ask —Ares) (Ns+1 P5A

I
lV'I)', (4)

Tx A " (2')'

and we 6nd
Tx= (8~A's'p)/(eve'kTy'A').

For the case where the nuclear spin is not ~, the relaxa-
tion rates for the electron in the spin-up state will
diGer slightly with diGerent nuclear spin orientations.
Let us define Tx as the inverse relaxation rate for the
electron with spin up, and the nucleus with spin state
—I. We then find the general expression

Ark's'p
Tx=

o)p2kTy'IA~

where A is the hyperfine splitting of two adjacent lines
in the spectrum. In Table I we give the calculated
values for T~ for various impurity states in silicon,
under the assumption that y =50, (&os/2m) =9000
Mc/sec and T=1.2' K.

(1) Electron-Nuclear Hyperfine Interaction

Let us first consider the matrix element (1) for the
hyper6ne interaction between the bound electron and
the impurity nucleus. In this case (Ps,Er+hfs+)
vanishes because the spin parts of the spin-up and
spin-down wave functions are orthogonal. We may
calculate g+ directly. The wave functions in the
absence of dilation are

4~= ~ i(r)x(+)+lac i(r)x( —),

where a=A/(Es+ Ep ), A i—s the hyperfine splitting,
and we have separated space and spin wave functions.
The change associated with dilation is

54~=5' (r)x(+)+l(5~) tp (r)x(—)+l(~5~ )(r)x(—),
and we find

(&~—~~) (4~,5k+) = a~A,

where bA is the change in the hyperfine splitting with
dilation. Writing this as

5A =yAd, (0),

where y is a multiplicative factor of order 10 to 100,
we may readily calculate our desired matrix element.
The transition rate, and hence relaxation time T~, is
given by
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It is perhaps worth indicating briefly the reasoning
which has led us to estimate y as being of order 10 to
100. The change in A with dilation is a change in

~lf(0) ~' with dilation, where p(r) is the simp1ified
impurity electron wave function. We have

4(r)=F(r)o (r) (7)

where F(r) is a modulating function corresponding to
the solution of the effective mass equation for the
bound electron, and p(r) is a Bloch-function appro-
priate to the energy minimum under consideration.
F(r) is given by

F(r) = exp (—r/a*),
(pra*s) &

where u* is the effective radius of the impurity atom
and is 20 A. If we consider only ~F(0) ~', we under-
estimate A considerably since

~
op(0) ~' introduces a

multiplicative factor of order 100 and the breakdown
of the eGective-mass approximation in the central cell

may introduce another factor of order 2. However, in
calculating changes in ~lt (0) ~' with dilation it is
probably a good first approximation to consider only
the changes in

~
F(0)

~

' (and hence in the radius of the
electronic orbit), since the adiabatic response of the
electrons to the dilation will tend to smooth out'the
changes taking place over the region of a cell. In any
case we underestimate y by this procedure. The change
in the Bohr orbit is due to a change in the dielectric
constant, ao, and in the effective mass, tn*, with dilation.
These changes are in turn closely related to the change
in the energy bands on dilation, and for Si such changes
may be considerable. Thus a 10% dilation might easily
lead to a 100% change in the dielectric constant and
a 50% change in the effective mass. For Si, these
changes add up, so that the figures we have quoted
would lead us to estimate y 45. In general we should
be surprised if y were greater than 100 or less than 10.

Impurity

Ll
P31
As7'
Sb121
Q)123

I
3/2
1/2
3/2
5/2
7/2

0.056X10 "
7.8X10-"

14X10 "
13X10 ~9

7.0X10 "

Tx

3 64X106
560
56
41
97

orbit coupling. Actually this admixture will be of two
kinds —that associated with the spin-orbit coupling
with the Si atoms and that associated with the impurity.
The amount of admixture may be roughly characterized
by a Ag due to each mechanism. At first sight it would

appear that the contribution to Ag from each of these
mechanisms should be roughly comparable, for although
the electron sees many more Si atoms, it is somewhat
pulled in toward the impurity atom in the cell sur-

rounding that atom, and the energy differences to the
excited impurity levels are only 1/100 those of the
excited conduction-type levels. This hypothesis is
easily subject to experimental verification, for if the
sample is allowed to warm up, so that the impurity
levels are ionized, it should be possible to observe a
shift in the central value for Ag as one goes from an
impurity resonance to a conduction electron resonance,
the impurity atom being relatively ineffective in this
latter case. Recent experimental indications' are that
the contribution to hg from the impurity atoms is at
least an order of magnitude smaller than that arising
from the Si atoms.

We carry out a much simplified calculation of the
matrix elements and associated relaxation times. We
first note that for constant dilation 6, the matrix
element will vanish. Expanding the dilation associated
with the resonance phonon wave vector ko, we find that

TABLE I. lz for the impurity state spin resonance in silicon.
I is the nuclear spin, A is the hyperfine splitting (in ergs) of two
adjacent lines, and Tz is the calculated value in minutes assuming
(cup/2pr) =9000 Mc/sec, y= 50, and 2'= 1.2' K.

6=&oqs&o. r (9)
(2) Modulation of Electron Spin-Orbit Coupling by

Lattice Vibrations

We now consider T~ for the electron due to spin-orbit
coupling. One might expect that this would be an
important relaxation mechanism. For the conduction
electron spin resonance in semiconductors it is the
dominant relaxation mechanism, according to the
work of Elliott. '4 As we shall see, for the bound electron
this mechanism is, in fact, singularly ineGective. We go
into the calculation in some detail, because a compari-
son of the bound and conduction electron matrix
elements for this process shows the important role
adiabaticity plays in reducing the bound electron
matrix elements We erst. calculate (fo,Fr+hfp+).
This matrix will be nonvanishing because of the
admixture in go+ of excited states P„due to the spin-

"R.J. Elliott, Phys. Rev. 96, 266 (1954).

gives the first nonvanishing contribution. For the spin-
orbit coupling associated with the Si atoms, the excited
state wave functions will be Bloch type, and

(fo,Fr+~go+) =&gsA'r+&o'qs(&~o), (10)

since the integral may be carried out over each cell
and yields just the cell size for (r)A„.Note that if we
are here considering the conduction electron case, the
term will still be about this size.

On the other hand, for the spin-orbit admixture
associated with the impurity atom, the excited state
wave functions are spread out over a distance of the
size of the Bohr orbit, zo(m/tN*)uo, and we may write:

(4'o—%+~4'o+) =&g' p&r+&osqor. o

for an excited atomic state e, where r„ois the dipole
matrix element for a transition from this state to the
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T..= min,
n'+0. 009

(13)

where n is the portion of Ag associated with the im-

purity atom, and we have assumed that a&1. The
maximum value of 0. is probably about yp so that
T„,.& 75 min under the above conditions.

Actually our time, given by (12), represents an
enormous overestimate of the effectiveness of this
relaxation mechanism. For, as is shown in detail by
Abrahams, " there is a "Van Vleck" ' cancellation
which occurs in the matrix elements (10) and (11).
The left-hand side of Eq. (10), for instance, may be
written as

(L4~+C+4+'jE~+~Lk~ C 4 '3)—--
Here C X/(DE —hppp), C+ X/(hE+h~p), X is the
spin-orbit splitting, and AZ is of the order of the energy
diGerences between the ground state and the levels
which are admixed by spin-orbit coupling. Because C
and C+ are nearly equal, the matrix element is reduced

by a factor of (C C+)/C+ —(hppp/hE). For the most
favorable case, given by Eq. (11), this reduction
amounts to multiplying the relaxation time by a factor
of ~10', so that this relaxation mechanism may be
completely ruled out vis-i-~is the hyperfine interaction
discussed above. '~

We now consider the contribution of the matrix
element, (Ep+—Ep ) (Pp,g+) for this process, and show

that it will generally be quite a bit smaller than that
we discuss above. Because of the applicability of the
adiabatic approximation we here assume that the wave
functions are also deformable. This will underestimate
the matrix element somewhat, but almost certainly by
not more than a factor of 10. If we use the deformable
wave function hypothesis, we have

Bfp= —5R Vgp+,

so that our matrix element is

(E~—Eo-)(4 ~R vk~)

It is instructive to compare this with that we should
obtain for this matrix element in the conduction
electron case. Here it is more reasonable to calculate g

15 E. Abrahams (to be published)."J.H. Van Vleck, Phys. Rev. 57, 426 (1940).
~A similar cancellation does not occur for the conduction

electron case because C and C+ there have quite differed, t angular
dependences.

ground state. We thus 6nd, for the relaxation time
associated with this mechanism,

t' 1 q Eg+'cop'kT
((~g)"-.&»- p)'+(~g)'~'9«')) (»)

5 r,) .. 2~5,'ps'

For a frequency of 9000 Mc/sec, E& 14 ev, (r)„p 2.4
)(10 7 cm, and T=1.2'K, we find

1.5

by perturbation-theoretic methods, although this will

tend to overestimate the matrix element somewhat. If
we used perturbation theory for g, we would have

where we have applied the deformable potential idea
of Bloch to obtain a very rough estimate. Thus, for the
conduction electron we have

(3) Modulation of the Hyperfine Coupling with Sipp

Nuclei by Lattice Vibrations

The modulation by lattice vibrations of the hyper6ne
interaction between the impurity electron and the Si"
nuclei in the sample (natural abundance 4.68'P~) can
also lead to spin-lattice relaxation of the electron spin-
Qip-only type. "The matrix element for the interaction

TABLE II. (Tz;/Tz) for impurity states in silicon. The values for
the lattice sum, S&(kp), are estimated from the work of Kohn. "

Impurity

Li7
P31
As"
$bl21
$bl23

I g

3/2 2.17
1/2 2.26
3/2 0.957
5/2 1.37
7/2 0.724

tw(o) t'

0.055X10"
0.44X 10'4
1.80X 10'4
1.20X 10'4
1.20X 1024

S& (kp)

4.7X10»
X10»

12X ].0»
10X10»
10X10»

Tsi/Tx

0.1
150

1000
2000
820

"We should like to thank Dr. George Feher for suggesting
that this mechanism might be important.

(E~ E)g— ,SP )=(P,SR VVy~).

This estimate of the matrix element leads to order of
magnitude agreement with experiment" and corre-
sponds to a relaxation time T~ 10 ' sec at helium
temperatures for the conduction electron resonance.
The ratio of the bound electron matrix element to the
conduction electron matrix element is &cop/ev~10 ',
so that even increasing the bound electron matrix
element by a factor of 10 leads us to a relaxation time
of at least 1000 sec. The estimate does not include an
additional eGect which acts to increase the time by a
factor of ~30; this comes from the difference in the
effective density of states for the two cases, and has
its origin in the fact that only one phonon can con-
tribute to the bound electron case. Thus, the mechanism
is clearly ineGective. The physical origin of the disparity
between the conduction electron matrix element and
the bound-electron term lies in the fact that the matrix
element can only be appreciable when there are con-
siderable variations in the effective potential acting on
the electron within a given unit cell. This may occur
for the conduction electron. However, because the
bound electron responds so nearly adiabatically, effects
of this sort are enormously reduced by about the
order of magnitude discussed.
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with a Si"atom on the ith lattice site may be written as

8A, =y;A;5 (0)/2.

8A; is the change in the hyperfine interaction of the
electron with the ith Si" atom as a consequency of the
dilation 6 and y; is the appropriate multiplicative
factor. We have

327r
IW(r~) I'~s»

3
32pr ( 1 ) (—2r;)

I expI II ~(0) I'»'»
3 pra*s E a~

where r, is the distance of the ith Si" atom from the
impurity nucleus. Again neglecting the change in

I y(0) I

' with dilation, we find

p;-Pr;/(a*)' 3/a—*)aa*/a~

We neglect 2r;/(a*)' with respect to 3/a*, an approxi-
mation which will lead us to overestimate y; for all
the lattice sites of interest (where 2r,/a*)&3, A; is so far
reduced as to be essentially ineffective). We then have
p;=p, i.e., the multiplicative factor is just what we
found for the change in the electron-impurity hyperfine
interaction with dilation. One may then easily show
that the ratio of the relaxation time for the process we
are considering, Ts;, to Tx for a given impurity nucleus,
is

T„/T =I 2Ig'I4(0) I'j/Lffs 2;44(r,)3,

1 2s.
t

dk
S(risk fi~) I (~„—u, ~,+,) I', (1S)

T A ~ (2~)s

where co is the difference in hyperfine splitting frequency
for the two electrons. We find for the relaxation time,

T, ,h
—— 8hss'sp/((u'kTC'J'), (16)

(4) Modulation of the Exchange Coupling between
Neighboring Impurities

The hyperfine relaxation mechanism may well be the
most eGective one in extremely pure samples for all but
Li-doped samples. However, the great reduction in
relaxation times (from a few seconds to ~10 ' sec)
observed by Feher et al. as the impurity concentration
is increased from 10'7 to 4)&10" in P-doped silicon
clearly cannot be explained on this mechanism. Because
of the strong concentration dependence, we decided to
investigate whether the fast relaxation time could be
associated with the presence of a cluster of impurity
atoms. We first consider the mutual Qip of tm 0 impurity
centers in which a net transfer of energy to or from the
lattice results. This transition comes from a modulation
of the exchange coupling between the two impurity
electrons.

The calculation may be carried out in directly
analogous fashion to that for the hyperfine interaction.
If the exchange interaction is JSi Ss, the matrix
element for spin Qip is given by

5J= -,'CJh(0),

where C is a suitable multiplicative factor. The transi-
tion rate is

J will be proportional to exp( —2r/a*), where r is the
distance between the impurities and a* is the "dielectric
Bohr radius. "We have2' 0'(r') = (1/36) LP'(kp) 3

where I and g are the spin and g value for the impurity
nucleus, and f is the fraction of Si" atoms in the and the ratio of T,„,i, and Tx may be written as

sample (4.68% natural abundance). Tx/T h=C'J'aP/(y'A'ppp').
Kohn" has calculated g;IP(r, ) I

for various im-

purity atoms in Si. He finds that it may be well approxi-
mated by

where q represents the extent to which the Bloch
function is pulled in at the center of each silicon cell,
and is ~200, ip while S&(kp) is a lattice sum which
depends on the exact position, ko, of the six energy
minima in silicon.

In Table II we list estimated values of S&(kp), and
the ratio of Tg; to Tx for various impurity centers. We
see that Tq; is faster than Tx for Li, but that it is con-
siderably slower for the other impurity centers. There
is some uncertainty in this calculation, because we do
not yet know with certainty the value of ko. However,
even if we take the maximum values for S&(kp) which
Kohn calculates (a factor of four higher than the
quoted values, found for kp ——0), we still do not find
that Ts; competes with T~ for P, As, or Sb.

"W. Kohn, Phys. Rev. 105, 509 (19571.

1dJ d d 2r 2r(1 day——=—lnJ= ———=—I—J d5 d5 d5 a* a*Eu* d5)

By way of comparison, we know that A —const/(a*)'
(from the F function of Kohn and Luttinger) and

Hence C/y 2r/3a* and—
T» ( 2r ) s (J ) s (sP )

T,„,~ (3a*) E A) E~,s)

But ~=A/0, so that we finally obtain

Tx/T,„,i,——(2r/3a*)'(J/A(up)'.
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For a concentration of 3X10" impurity atoms per
cc, we estimate r, the most likely nearest neighboring
spacing, as ~87 A, for which value the exchange in-
tegral J is ~0.88 gauss. Hence for an applied 6eld of
3000 gauss, we have T, ,b 4X10'Tx. For a concentra-
tion of 10" impurity atoms/cc, we find T,„,h 225Tx.
Hence we may rule out this mechanism.

and
dx/dt =IU(y x)—

dy/dt =N U(x y)+ W W+—y, —
(20a)

(20b)

where W = Wis —W21 and W+=Wls+Wsl By noting
the form of the differential equation for dy/dt, we see
that 1/W+ is the spin-lattice relaxation time for con-
duction electrons alone. Moreover, if the exchange
term were missing, we see that in the steady state,
y=W /W+. Therefore W /W+ must represent the

(5) Exchange Scattering

In the case that there are electrons in the conduction
band, we may encounter additional relaxation mecha-
nisms for the bound electron. Two such mechanisms are
the magnetic interaction of the bound spin with that
of a conduction electron and the bound spin with the
6eld of the moving change of a conduction electron. The
calculation of these processes is given in the forth-
coming paper by Abrahams. "

Another process that may occur when conduction
electrons are present is the exchange scattering in
which the impurity and conduction electrons change
places. The conduction electron then relaxes presum-
ably via a spin-orbit mechanism which could be fairly
rapid.

The analysis of the exchange scattering is inter-
esting, representing another case of coupled spins. We
de6ne the following quantities: e+, e —=number of
conduction electrons with spins up and down, respec-
tively; E+, E =number of impurity electrons with
spins up and down. Then we can write differential
equations for E+ and n+ as functions of time:

dN+/dt= (N rt~ N~n ) U— (19a)
and

dn+/dt = (N+n NN~) Uj(Wls'S——Wsln+). (19b)

The quantity U is a probability of transition by
exchange. The 6rst equation represents the fact that
mutual Qips are required for an exchange process to
change the impurity atom spin population. In the
second equation the quantities l/V~~ and 8'2~ are prob-
abilities of the conduction electron undergoing a spin
Rip due to a relaxation process. $~2 and H/'2i differ
slightly since at thermal equilibrium e 4e+. These
equations can be solved readily. In particular, if we
de6ne the quantities x and y which characterize the
population difference in + and — states by N+
= sN(1+x) and e+ ——se(1+y), we have two equations
for x andy:

thermal equilibrium value of y, the fractional spin
excess in the lower state. The steady state solution of
the pair of equations is x=y, y=W /W+. In other
words, both spin distributions for impurity and for
bound electron are in thermal equilibrium. .

If the spins are disturbed from thermal equilibrium,
they will return, the rate of return being described by
two characteristics times or their inverse, the relaxation
rates. The relaxation rates are given by

=I —+ +1I~ I

—+ +1I-
~U k~ ~U ) (~ ~U i ~U

(21)

The slower rate, which will control the relaxation, is
approximately W+/L1+ (N/e)+ (W+/n U)] and hence
is always slower than l/t/'+ alone. We see that if 8'+ is
very large, so that the conduction electrons are in
thermal equilibrium, our rate becomes nU, which is
essentially the rate at which an impurity atom ex-
periences collisions. We can estimate this time because
2 U=O. V, where 0. is the cross section for spin exchange,
and V the velocity of conduction electrons. The cross
section can be estimated from the approximate formula
for exchange scattering of electrons from hydrogen":
0 = 144m h4/m'e'. The cross section in silicon can then be
computed by assuming a dielectric constant, giving
0=3X10—"crn'. If we take V as 10' cm/sec, U=6
&(10 '/sec, and NU=6X10 'm. For I=10' this gives
a relaxation rate of 6)&10'/sec (or a time of 1.6&(10 '
sec) provided the relaxation rate of conduction electrons
is suKciently rapid. Actually, however„ it would be
very difFicult to achieve this situation because this
requires W+))NU. For 10" impurity atoms/cm' we
required P'+ large compared to 6X &0 X10' =6X10io
At room temperatures 5'+ is probably only 10', and
at He temperatures it is considerably less, so that we
find that our relaxation rate is given approximately by
W+n/N. That is, the conduction electrons are so few
that they gain energy from exchange collisions faster
than they can give it up. In the helium range the con-
duction electron line width reported by Portis et ul."
is about 2 gauss, indicating a relaxation rate of
4X10'/sec for W+. Hence, if e/N=10 " we would
have a relaxation time of about 400 minutes. Such large
values of e/N are unlikely as a result of thermal
ionization in the low-temperature range, although pre-
sumably at 20'K or above the excitation could readily
occur.

IV. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENT

Although in the preceding section we have estimated
the various relaxation times in somewhat cavalier
fashion, our results should be useful as an indication of
what relaxation mechanisms are likely to be most
effective in very pure samples. They should also provide

2 J. R. Oppenheimer, Phys. Rev. 32, 361 (1928).
"Portis, Kip, Kittel, and Brattain, Phys. Rev. 90, 988 (1953).
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a qualitative estimate of the relaxation times one
expects to encounter in such pure samples. In what
follows, we shall define a pure sample as one in which
concentration-dependent mechanisms are unimportant.
This is a convenient definition because thus far we have
not been able to invent an efhcient concentration-
dependent relaxation mechanism. We shall consider
below whether experiments on "pure" samples (by the
above definition) has thus far been carried out.

Our principle conclusion is that in "pure" samples at
helium temperatures the relaxation times are all very
long. We find that T8 is shorter than T~ for I i-doped
samples, but even here T8 is 3.64X10' minutes at
1.2'K and 9000 Mc/sec. For P-, As-, and Sb-doped
samples we 6nd that T~ should be faster than T8, so
that nuclear polarization via the first or second transient
effects we have discussed above should occur for suf-
ficiently pure samples. Furthermore, the purity required
for As or Sb samples will be less than that required for
a P-doped sample, since the T~ for the foregoing
samples is an order of magnitude faster.

Abragam and Combrisson and Feher have recently
verified the foregoing theoretical predictions for As-
doped silicon. Abragam and Combrisson worked with
a sample with a concentration of 10" As atoms/cc.
They observed the first transient effect described above.
By measuring the relative rate at which the extreme
and. median lines of the hyperfine multiplet grow, they
found a ratio of Tx/Ts= —', . By measuring the growth
of an extreme line with time, they obtain T8 20 min,
so that Tx was ~10 min in their sample. Our theo-
retical prediction (for their experimental arrangement
of 9000 Mc/sec and 2' K) is Tx=34 min. Feher worked
with a sample containing 3.5X10" As atoms/cc. He
used a technique similar to that of Abragam and
Combrisson. At 1.2' K and 9000 Mc/sec, he lnds
(Tx/TB)=-2, Ts=80 min and Tx=40 min, while our
predicted value of Tx is 56 min. In view of our rough
estimate of y, we regard the agreement between the
theoretical and experimental values of y as quite
satisfactory.

The situation with regard to T8 is somewhat puzzling.
The value found by Abragam and Combrisson of 20
min is considerably less than any T8 we have calculated
thus far. Furthermore, they do not find a quadratic
field dependence for T8, as one would expect for any
first order phonon-induced transition. Instead they
find that T8 is independent of field between 1000 and
10 000 gauss. Furthermore, they find for T8 a tempera-
ture variation much stronger than 1/T; Ts is 1 min
at 4' K and ~1 sec at 8' K. We are inclined to believe
that this rapid temperature variation and lack of field
dependence is produced by a concentration-dependent
mechanism whose origin is at present uncertain, rather
than to any of the mechanisms discussed in this paper.

We are in part led to this conclusion by Feher's
results with P-doped Si. There even in the purest
samples he has investigated (2.5X10" P atoms/cc),

T~ appears to be slow compared to T8. Further, TB is
of the order of minutes at 1.2'K and varies much more
rapidly with temperature than a 1/T law. And, as we
have mentioned, T8 is strongly concentration-depend-
ent, when the P concentration is increased above this
value. Thus we would classify even 2.5 X 10"/cc
P-doped silicon as "impure" in the sense of our dis-
cussion above,

Finally we might mention that certain of Feher's
experiments may be explained by the exchange scat-
tering with free electrons that we discussed in the
preceding section. Feher finds that shining light on a
sample acts to reduce the relaxation time markedly. "
For instance, he 6nds that shining light on a P-doped
sample (2.5X10"/cc) at 4'K reduces the relaxation
time from 20 to 2.6 sec. Such a reduction would be
accomplished provided the light produced 2.5&(10'
conduction electrons, a not unreasonable assumption.

The research described in this paper was begun
while all three authors were at the University of
Illinois. One of us (D.P.) has continued work on the
problem while a summer visitor at Bell Telephone
Laboratories, Murray Hill, New Jersey; his work
carried out there was notably aided by the stimulating
atmosphere provided by the staG and management. We
should like to acknowledge with pleasure helpful con-
versations on these and related topics with Dr. E.
Abrahams, Dr. P. W. Anderson, Dr. G. Feher, Dr. R.
C. Fletcher, and Dr. W. Kohn.

APPENDIX

Kaplan4 has proposed an explanation of Honig's'
postulated 100% nuclear polarization. Although the
original experimental interpretation has proved incor-
rect, the question still remains whether Kaplan's
theory might not apply to some cases. We wish to
discuss brieQy some objections to Kaplan's proposal.

The usual difFiculty in aligning spins by application
of an alternating magnetic field as a spin pump is that
the 6eld induces transitions in both directions. There
is no preferred sense of spin Qips. Kaplan does not
discuss reverse transitions, and thus we are led to
conclude that the polarization results from a unidirec-
tional Ripping mechanism. The physical basis seems to
be that the nuclear transition removes the paramag-
netic center from resonance so that no reverse transi-
tion occurs. It was this unidirectional feature that
originally bothered us most about Kaplan's theory. We
believe that his proposal is in error for the following
reasons.

Kaplan gives two justi6cations of his formula —one
semiclassical, the other quantum-mechanical. In the
former he solves the hyperfine interaction to first order,
neglecting the x-y components of the interaction. He

"G. Feher and R. C. Fletcher, Bull. Am. Phys. Sac. Ser. II, 1,
125 (1956).
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then considers that as a result of the electron spin Qips,
the x-y components behave randomly, possessing fre-
quency components which induce nuclear transitions.
We believe that the basic error in this approach is to
consider the x-y coupling to be random. One can solve
the hyperGne interaction exactly. In fact, inclusion of
the x-y terms produces energy shifts which are much
bigger than the line widths or alternating fields. One
might say that coherent effects dominate. There is no
transverse Geld "left over" to Auctuate.

The quantum-mechanical treatment is a second-
order perturbation theory modified to include the
effect of electron spin transitions. We point out to
begin with that the calculation is second order simply
because the 6rst-order solution does not solve the
hyper6ne problem exactly. If one starts with the exact
solution of the hyperfine problem, one has matrix
elements of the alternating field between Kaplan's
initial and final states. Of course, the energy difference
is wrong, and one gets transitions only if the level
widths are wide enough to satisfy the energy conser-
vation. Clearly such a process is not unidirectional
because the matrix elements are Hermitian.

Kaplan's calculation is not quite equivalent to this,
however, because he modifies the second-order per-
turbation theory to include the effect of induced elec-
tron transitions. His modification consists of an
assumed time dependence of the probability amplitude,
a;, of the initial state. Ordinarily one assumes that

c;=1. Following Weisskopf and Wigner, Kaplan
assumes an exponential time dependence, the decay
being T,g' in Kaplan's notation, the inverse of the
electron transition probability in the alternating field.
We feel this approach is incorrect, because once again
it overlooks other effects which surely dominate. To
compute T,~", Kaplan assumes a level broadening
characterized by a T2. As he points out, we do not wish
to include static broadening in T2, but only the natural
breadth of an individual impurity level. He attributes
the breadth to spin coupling with other impurities. In
order to avoid the complication of including two im-
purity atoms, let us assume instead that the natural
breadth is due to electron spin-lattice relaxation. Then
we see two effects result. In the Grst place, the energy
denominators are no longer so sharply resonant. In the
second place, the lifetime of the initial state is not T,q"
but Ti, presumed shorter. If T~ is rot shorter, we cannot
assume an exponential decay of a; since the microwave
Geld will carry the electron back and forth up and
down as in a molecular beam experiment. If we do not
assume that T~= T2, similar considerations apply.

We believe, therefore, that the correct method of
computing the transition rate involves first order per-
turbation between the exact states of the hyperfine
interaction. The transition probability becomes very
small since it is nonresonant, and moreover the transi-
tions are no longer unidirectional. No large polarization
results.


