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Evaluation of Some Nonlocal Theories for a Thin Suyerconducting Film*
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The magnetic susceptibility of a thin superconducting 61m has been evaluated as a function of 61m
thickness on the basis of nonlocal theories proposed by Pippard, Bardeen, and Schafroth and Blatt. Two
limiting boundary conditions corresponding to specular re6ection and random scattering of the electrons
at the surface have been applied, and the susceptibility appears to be insensitive to the boundary condition.
Deviations from the London theory occur for a thickness less than twice the penetration depth and give a
susceptibility smaller than the London value. Largest deviation is found for the Pippard theory and least
for the Schafroth-Blatt version. The experimental data of Lock are inconclusive with regard to the validity
of the nonlocal theories.

1. INTRODUCTION

ECENT experimental and theoretical investiga-
tions' ' have indicated that a generalization of

the London phenomenological theory of the electro-
magnetic behavior of a superconductor should be carried
out. On the basis of experimental studies of high-
frequency surface impedance of superconductors, Pip-
pard' has proposed a specific form of nonlocal theory
which accounts for many of the observed sects. Using
an energy gap model, Bardeen4 has derived a theory
for T=O very similar to Pippard's proposal. Schafroth
and Blatt' have suggested another form of nonlocal
theory based on a theorem dealing with the behavior of
the nonlocal kernel in momentum space. In order to
determine the validity of the nonlocal theories, the
magnetic susceptibility of a thin superconducting 61m
has been calculated on the basis of these theories as a
function of 61m thickness. It is well known that the
predictions of the local theory of London agree well
with the experimental results of Lock on tin films;
however, it was suggested by Ginsburg that a nonlocal
theory would give a susceptibility considerably smaller
than the London value for 61m thickness of the order
of the penetration depth.

Lock's measurements were carried out for a fixed
61m thickness. By varying the temperature he was able
to change penetration depth so as to cover a large range
of effective thicknesses, since the quantity which enters
the London theory is the ratio of 61m thickness to
penetration depth. The nonlocal theories, however,
contain another physical length whose temperature
dependence is not well known and for this reason direct
comparison with experiment is diKcult. If one assumes
that this new physical length varies with temperature
in a manner similar to that of the penetration depth,
then these calculations show that the resulting suscepti-
bility is indeed smaller than the London value.

2. TIME-INDEPENDENT SOLUTIONS OF
MAXWELL'S EQUATIONS

%e shall discuss only time-independent solutions of
Maxwell's equations because a complete nonlocal
electrodynamics for a superconductor has not been
worked out at this time.

The relation of primary interest is that between the
vector potential A and the supercurrent density j. The
relations are given both in momentum space and
con6guration space for convenience. YVe choose to
work in a gauge with V A=O.
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Bardeen:

—Pk}A(k) — A(k) for Pk»1.
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The calculations are carried out for two limiting
boundary conditions corresponding to (1) specular
reflection of the superelectrons at the surface and (2)
random scattering at the surface. The 6rst condition
admits an exact solution as a rapidly convergent series
while the second condition is handled by a variational
technique. The results are relatively insensitive to the
boundary condition.
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Schafroth-8 latt:
C
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The functions f(R) are obtained from the scalar
kernels in momentum space by

3. MAGNETIC SUSCEPTIBILITY OF A THIN FILM

We consider an in6nite superconducting film of
thickness 2u with the normal to the surface in the s
direction. A uniform external magnetic 6eld Hp is
applied parallel to the surface in the y direction.
Diamagnetic supercurrents will be established along
the x axis which shield the interior of the film as shown
in Fig. 1 . The magnetic susceptibility of the 61m is
given by

C

f(R) = — — k'K(k')dk' e'" Rds'k, (2.5)
32~4~
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2a~ p Hp
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where
4m.—j(k) —=K(k)A(k).

where Kp=——1/4s. , and we have used A, (0)= —A, (2a),
which can be chosen because of symmetry.

The coherence length, te, in the Pippard theory is
qualitatively related to the minimum size of the wave
packets which can be made from a group of states near
the Fermi surface with energy spread ~kT,. The
quantity $ is an effective coherence length which is
determined in part by the electronic mean free path in
the normal state. The parameter p, ' in the Schafroth-
Blatt theory is of the order of Pippard's coherence
length. The parameter Ak in the Bardeen theory is
related to the energy gap model by k'ksLB/m= ee,

where k ~ is the magnitude of the wave vector at the
Fermi surface and ep is the width of the energy gap at
T=0.

It should be noted that the Pippard theory reduces
to the Bardeen theory for Pk»1 except for a slowly
varying logarithmic term. Also, the Schafroth-Blatt
theory reduces to the London theory for k/p))1.
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FIG. 2. An array of image current sheets introduced to solve for
the susceptibility for the specular reHection boundary condition.

(A) Specular Reflection

We shall solve for A, (s) by introducing image current
sheets placed periodically along the i axis, parallel to
the film surface as shown in Fig. 2. Due to the anti-

symmetry of the solutions for reQection in the plane
at s= 2u, for example, one can see that, for each electron
in region I approaching the surface with a component
of velocity in the positive z direction, an electron in
region II is approaching this surface with the same
velocity parallel to the surface but the opposite s
component of velocity. Hence, we may consider that
these electrons exchange roles as they pass through the
surface s=2a and thus an apparent specular reQection
of the electron in region I has occurred. The magnitude
of the image surface current is

o =dIp/2s. (3.2)

Fourier-analyzing this array of image sources leads to
the following expression for the source current density:

0 Z 20

cHp
j:(s)= — P cosk„s,

27' &=p
(3.3)

FIG. 1. A superconducting i~1m of thickness 2u in a uniform
external field Ho with the supercurrent j, shielding the interior. where k„= (2n +1) /sa
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Introducing this source distribution into Maxwell's
equation and using the momentum space relation
between the supercurrents, j', and the vector potential,
we obtain

I.O
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Combining (3.1) and (3.5) gives the susceptibility for
an arbitrary nonlocal kernel,
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Figure 3 shows the ratio ~/~p plotted as a function of
the half-thickness of the film divided by Xo, the pene-
tration depth at T=O, with

$0/XL =6, &khr, =0.13, XL/Xp =0.7, and pXr, =0.05,
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H„(s) 2 k sin(k„s)

Hp g =o k„'+E(k„)
(3.7)

In the limit of an infinitely thick film, the penetration
law is

H„(s) 2 t" ksin(ks)
dk,

Hp pr& p k'+E(k)
(3.8)

and the penetration depth is given by

where ) I. is the London penetration depth. These values
were computed from the work of Pippard and Faber, '
Schafroth and Blatt, ' and Bardeen. ' Lock's experi-
mental data on tin films are seen to be in agreement
with the London theory as well as the Schafroth-Blatt
theory. Because of the similarity of these theories for
k/p«1, it is not. surprising that they give virtually the
same susceptibility, since the most important fourier
components for the penetration law satisfy this in-
equality.

The results of the Pippard and Bardeen theories fall
below the experimental curve for a&2XO, with the
logarithmic term in the Bardeen kernel increasing the
susceptibility for small a relative to the Pippard value.

The penetration law follows from (3.5) and is

FIG. 3. Susceptibility of a film, as a function of the half-thickness
of the film, calculated on the basis of several theories. I.ock's
~experimental data agree rather well with curve i.

where the integral is to be performed over the 61m.
Using the plane symmetry of the problem, (3.10) can
be reduced to a one-dimensional problem, where we
have chosen the origin of coordinates at the center of
the 61m.

d'A, (s)
G(s—s')A, (s')ds',

As
(3.11)

(3) Random Scattering

We now impose the boundary condition that each
electron approaching the surface has an equal proba-
bility of being scattered into any solid angle within the
61m. An equivalent problem is that of solving the
Maxwell equation over all space but requiring that the
electrons crossing the surfaces from outside the film
come from a field-free region and hence have a random
velocity distribution. Thus, we wish to solve

4x
V'A(r) = ——j(r) =

~t RLR A(r'))f(R)dr', (3.10)
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8 J. Bardeen, Hundbuch der Physik (Springer-Verlag, Berlin)
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The boundary condition to be imposed is

(3.14)

theories, it is felt the Bardeen theory should also be
insensitive to the nature of the scattering at the surface.
A similar argument holds for the Schafroth-Blatt theory
with respect to the London theory.

A variational equivalent of (3.11) incorporating the
boundary condition (3.14) is

1 t dA(x)' 1 t
dx+- ~ A (x)A (y)G(x —y)dxdy

l2~ . dx 2~ .
t .dA(x)

Hp — dx =0. (3.15)
dx

Choosing a trial function of the form

A(s)= P C„s".
tc oclci

(3.16)

(3.15) leads to the following set of equations for the C„:
m+~+ n—S

where

+G =Hpo",
m+I —1

pp )s
G = x"y"G(x—y) dxdy.

—a —a
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The calculation of 2 has been carried out analytically
retaining cubic terms in s for the Pippard kernel. The
corresponding susceptibility is shown in Fig. 3. We note
that the curve for specular reQection lies very close to
that for random scattering over the entire range of
a/Xp. The calculation for random scattering with the
Bardeen theory becomes quite involved due to the
complex form of the one-dimensional kernel in con6gur-
ation space and for this reason the calculation has not
been carried out explicitly. However, because of the
strong similarity between the Bardeen and Pippard

4. DISCUSSION

In comparing the theoretical susceptibilities based
on the nonlocal theories with Lock's experimental data,
it is important to realize that the data for which the
deviation is large (u/Xp(2) were taken close to the
critical temperature. The temperature dependence of
$p in the Pippard theory is not well known and for this
reason there is considerable doubt about drawing con-
clusions as to the validity of the theory. Direct com-
parison of theory and experiment in Fig. 3 implicitly
assumes that the temperature dependence of $p is the
same as that of XL,. Thus, it appears that the Pippard
theory in its present form with this dependence of $p

on temperature is incorrect. If one assumes, for ex-
ample, that $p increases somewhat more slowly with
temperature than ) I., the theoretical curve would come
into closer agreement with experiment. The Bardeen
theory has only been worked out for T=O and again
direct comparison with Lock's data is inconclusive.
Thus, until the theory has been extended to higher
temperature, the present experimental data give little
insight into the validity of the nonlocal theories. It is
hoped that experimental techniques will become avail-
able in the near future so that measurements can be
made on very thin films and give a critical check of the
existing theories.
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