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Critical Size and Nucleation Field of Ideal Ferromagnetic Particles~
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The field at which the spins of a previously saturated ideal ferromagnetic particle cease to be aligned is
defined as the nucleation field. This field is calculated, using calculus of variation, for an infinite cylinder
and a sphere, assuming three mechanisms of magnetization reversal: spin rotation in unison, magnetization
curling, and magnetization buckling. Theoretical treatment shows that, in fact, only curling and rotation
in unison need be considered.

The critical size for single-domain behavior, defined as the largest size at which magnetization reversal
proceeds by rotation in unison, is calculated for the prolate ellipsoid and is found to be practically inde-
pendent of magnetocrystalline anisotropy and elongation and approximately equal to A&/I, , Here A is the
exchange constant and I, is the saturation magnetization.

For cylinders larger than the critical size, the coercive force, for a field applied in the direction of the
long axis, is found to be equal to the nucleation field, when magnetocrystalline anisotropy is neglected.
The coercive force thus calculated decreases with the radius of the cylinder, R, according to II,=6.782/I, R .

Available experimental data are discussed and are generally found to be in a better agreement with
this than with previous theory.

1. INTRODUCTION

''N the last decade, interest in powder magnets has
~ - increased appreciably. In particular the high-energy
products promised by current theory' —' for elongated
iron fine-particle magnets promoted investigation in
this field. This theory suggests that the magnetization
changes in particles below a certain size (the critical
size) occur by spin rotation in unison. ' r ' The particles
are assumed to be always saturated and are referred to
as "single-domain particles. "The coercive force depends
on the various magnetic anisotropies, '' and thus is
generally calculated to be quite high.

The critical size is calculated by comparing the
energy of the single-domain configuration with the
energy of configurations which tend towards Aux clo-
sure. The calculation is carried out for zero external
field. Figure 1 shows the Aux closure arrangement
(ring model) usually assumed for prolate ellipsoids
which are thin compared to the wall thickness. ' "The
critical size in this case, as derived in Appendix I, is
given by

NsI 'R '/6A = ln(4R, /tt) —1, (1)

where I, is the saturation magnetization, E,—the
critical radius, u—the lattice constant, E~—the de-

*This paper represents part of a thesis to be submitted by one
of the authors (S.S.) to the Israel Institute of Technology
(TECHNION), in partial fulfilment of the requirements for the
D.Sc. degree.' E. C. Stoner and E. P. Wohlfarth, Trans. Roy. Soc. (London)
A240, 599 (1948).

~Mendelson, Luborsky, and Paine, J. Appl. Phys. 26, 1274
(1955).

3 Paine, Mendelson, and Luborsky, Phys. Rev. 100, 1055 (1955).' I. S. Jacobs and C. P. Bean, Phys. Rev. 100, 1060 (1955).
5 E. H. Carman, Brit. J. Appl. Phys. 6, 426 (1955).' Session on Permanent Magnets and Fine Particles, Proceedings

of the Boston Conference on Magnetisrg and Magnetic Materials
(to be published).' C. Kittel, Phys. Rev. 70, 965 (1946).

L. Noel, Compt. rend. 224, 1488, 1550 (1947).' C. Kittel, Revs. Modern Phys. 21, 544 (1949).
"A. H. Morrish and S. P. Yu, J. Appl. Phys. 26, 1049 (1955).

magnetizing coefFicient along the polar axis,"and A—
the exchange constant" (which is also referred to as
the stiffness constant, "or the Bloch wall coefficient'4).
From (1) it is seen that for 37& +0 (an i—nfinite cylinder),
8,—&~, since the self magnetostatic energy is zero.

In the current theory there are three points the
validity of which must be questioned.

(1) The calculation is carried out by tacitly assuming
that if the particle is a single domain at zero field, it
will stay saturated under any field. This means that
the changes of magnetization occur by rotation in
unison. It will be shown that this assumption is not
valid for many cases and leads to erroneous conclusions
concerning the coercive force."

(2) The second point to be questioned is the stability
of the states compared in order to calculate the critical
size. Any static physical state should be of minimum
free energy (not necessarily an absolute minimum). It
is shown in Appendix II that some of the configurations
discussed do not obey this criterion. Although the states
discussed are usually a good approximation to the
minimum energy states, yet, in some cases, as in the
evaluation of the remanence, they lead to erroneous
conclusions.

(3) The method of comparing the energy of different
configurations in order to find the actual state of
magnetization should be questioned as it does not allow
for the existence of hysteresis which is of fundamental
importance in ferromagnetism. It is easy to see that if
this method is followed consistently, the coercive force
vanishes identically as all magnetic energies concerned
are invariant to inversion of the magnetization except
the energy of interaction with the external field which
changes its sign.

"E.C. Stoner, Phil. Mag. 36, 803 (1945).' C. Kittel, Revs. Modern Phys. 21, 552 (1949)."E P. Wohlfarth. , Proc. Phys. Soc. (London) A65, 1053 (1952).
'4 C. Herring, Phys. Rev. 85, 1003 (1952)."S.Shtrikman and D. Treves, Bull. Research Council Israel

(to be published).
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FxG. 2. Modes of magnetization change for the infinite cylinder:
(a) spin rotation in unison; (b) magnetization curling; (c) mag-
netization buckling.

FIG. 1.Illustration of Aux closure produced by a ring configuration
in the equatorial plane of the prolate ellipsoidal particle.

In the following the behavior of ferromagnetic
particles is analyzed avoiding the arbitrary assumptions
discussed above. The calculations are based on the
following model:

(1) The particle discussed is a single-crystal prolate
ellipsoid, having no imperfections.

(2) The energies taken into account are Err, the
rnagnetocrystalline energy, E, the self-magnetostatic
energy, E„ the exchange energy, and 8&, the energy
of interaction with the external field. All other energies
are neglected.

(3) The exchange energy is represented by"

(2)

where n, are the direction cosines of the magnetization
vector, assumed to be continuous diGerentiable func-
tions of the coordinates.

(4) No distinction is made between total energy and
free energy, assuming the analysis to be valid only for
temperatures far below the Curie temperature.

(5) The analysis assumes static ferromagnetism. "
All eGects associated with the time rate of change of
magnetization are not considered.

The magnetic state of the particle is completely
described by the direction cosines o.; of the magnetiza-
tion at every point, and these are found by minimizing
the total energy E. The calculation will be best ex-
plained by going through some examples in detail. The
magnetic behavior of the in6nite cylinder is analyzed
in paragraph 2. This is done by studying three diferent
modes of magnetization change. The dependence of the
coercive force of the in6nite cylinder on its radius is
found. The behavior of the sphere and the prolate
ellipsoid are studied in paragraphs 3 and 4 respectively
and the critical size for single-domain behavior is
evaluated.

"J.L. Snoek, New Pevelopmeets ~rl, ferromagnetic Materials
(Elsevier Publishing Company, Amsterdam, 1947), Chap. 1.

A. Spin Rotation in Unison

This case has already been discussed in detail. ' ' The
hysteresis loop is rectangular, and the coercive force is

(3)

in terms of the reduced field

Ir =H/2z. I,. (4)

B. Magnetization Curling

In this case the magnetization changes occur by spin.

rotation from the s axis in a plane perpendicular to
the radius. The angle Op between the spin direction and
the s axis is independent of q and s, and thus a function
of r alone. The total energy E consists of E, and EII

2. THE INFINITE CYLINDER

Let an infinite cylinder of radius R be defined in a
cylindrical coordinate system (r, p,z). Let the z axis
coincide with the direction of the external held. If this
6eld is strong enough, there is only one state of stable
equilibrium; namely, all spins aligned in the direction
of the field. (Crystal anisotropy EIr is neglected for the
time being. ) Decreasing the field, a negative value is
reached for which this state ceases to be a minimum
energy state. To find the field dependence of the
magnetization state, one should 6nd the direction cosine
functions, rr, (r, ie,z), that minimize the total energy.
This is a rather complicated variational problem. To
facilitate the calculation a bit of guesswork is done,
guided by symmetry considerations and making use of
known low-energy con6gurations. Along these lines,
three ways of magnetization change, as illustrated in

Fig. 2, are considered:

(1) spin rotation in unison;

(2) magnetization curling;

(3) magnetization buckling.
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only, since in this case E =0,

~RE=, (E,+Err)2mrdr,
mE.'~, /2

If kt/2R«1, a good approximation is obtained
assuming co=0 for x=0, so that one obtains C=O.
(The exact solution is given in Appendix III.) The
boundary condition for x= 1 is

where E is the mean total energy per unit volume and
u is the lattice constant. Following Noel the lower
limit of integration is taken as a/2.

Substituting the direction cosines,

8—JiL(—hsr) &Sxj=0,
dx

so that either 8=0 or

(16)

0.,= since cosy, 0,„=since siny, 0,,=cos+,

in Zq. (2), one gets

(6) —JiL. (—her) &Sxj
dx

=0 (17)

E,=AL(dko/dr)'+ (1/r') sin'ko). (7)

The energy of interaction with the external Geld is
given by

E~———HI, cosco.

Using (4) and substituting

When h= h, is such that Eq. (17) is fulfilled, the second
variation of E at a=0 vanishes. The smallest h; will

accordingly be the nucleation field. Now the hrst
maximum" of Ji(y) is given by

y=1.84i,

x= r/R, Ro A'/I. , S——=R/Ro
so that

9 h =1.08S '. (19)
in (5), one obtains

2A t' I'Cko& ' Sin'ko
E= x/ —f+

R' &.t,tr & Cx) x
—2srS'hx cosa) dx. (10)

with the boundary conditions for mobile limits":

Cko/dx= 0, for x= u/2R and x= 1. (12)

The trivial solution co=0 is readily verified to be valid
for any value of h. However, this solution is a minimum
only for a certain range of h. The value'of h where u =0
stops being a minimum is dehned as the reduced
nucleation field h .

In order to find h„, only small angles need be con-
sidered, i.e.,

The Euler diGerential equation'~ which minimizes the
integral (10) is

C ko 1 dko ( cosko)
+———

~
hsrS'+

(
sinko=0,

dx' xCx ( x' J C. Magnetization Buckling

In this case spin rotation occurs in the x direction
alone. The spin deviation is a periodic function of s„
having a period of 2T. In order to calculate the nucle-
ation field which will generally be dehned as the held
at which the spins cease to be aligned, let the angle co

between the spins direction and the s axis be given by
the Fourier expansion

00

ko= g kos~ i COS (2ttt-1)—S .
m=1 T

(20)

In Appendix IV it is shown that at the nucleation
field, ~, changes discontinously. A graphical solution
of (11) and an approximate solution using the Ritz
method20 suggest that the magnetization reverses com-
pletely, coming to the second trivial solution of (11),

This means that here again the hysteresis loop is
rectangular with h„=h, .

n, = since, n„=0, o.,= costs,

co(&1. 13
Substituting the direction cosines

This simplihcation linearizes the diGerential equation
(11) to the Bessel equation

d'ko/dx'+x 'dko/dx —(hsrS'+x ')ko =0,

the solution of which is

ko= 8JiL(—hsr)iSxj+C1Vig( —hsr) &Sxj. (15)

into Kq. (2), and using (20), one gets

E,=A g 2rkos~ ts(2stt —1) (sr/T)s (21)

Here 8 and C are constants, and J~ and X~ are the
Bessel and Neumann functions of the hrst order,
respectively.

'iH. Margenau and G. M. Murphy, The Mathematics of
Physics and Chemistry (D Van Nostran. d Company, Inc. , New
York, 1956), second edition, pp. 198-200.

'8 See reference 17, pp. 214 and 215.

To evaluate the self-magnetostatic energy, the surface
and the volume charges are considered. However„ the
surface charges are proportional to m while the volume
charges are proportional to co~ and can thus be neglected

'9 Q. Petieu, Lu Theoric des Fonctions de Bessel (Centre National
de la Recherche Scientifique, Paris, 1955), p. 452.

20 See reference 17, p. 377.
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in the evaluation of the nucleation. The surface charges
0 are given by

0 =Ig cosy sino).

Since ar«1 is assumed, one obtains, using (20),

o=I, cosioP cos icos (2m —1)—s . (23)
m=1 T .

The energy associated with the surface charges is
evaluated in Appendix V and is given by

50—
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FIG. 3. Theoretical plot of the nucleation wavelength 2T for
the buckling mechanism in an infinite cylinder versus its radius R.
Re——Ai/I, is the characteristic radius of the material, A is the
exchange constant, and I, is the saturation magnetization.

HIs cc

Err= P ~s P. (25)

)&Hii'& i(2m —1)—R . (24)
T

Using (8) and (20), one finds

From Eq. (30) the nucleation wave number I.„(S)is
calculated. By substituting it in (29), h„(S) is obtained.
Figure 3 shows 2T/Rs= f($).

For L„—+0, h„~i. This is found by using"

limi Ji(ix)Hio (ix) = 1/sr.~0 (31)

QO

Is 2 ~em —i
m=1

L'(2m —1)'

xS'

Using (4), (23), (24), (25) and writing rrR/T=L, the
total energy is The solution of (30) gives in this case S—+0. This

means that only in the limiting case R=O, does the
buckling mechanism degenerate into rotation in unison.

For S—+, L—&, and using"

+sri ji(i(2m 1)L)Hii'&—t i(2m 1)L)—+h . (26)
lim iJi(iL)Hit'&(iL) = 1/srL (32)

/3C[-=
Bco 'BMg

=0 (27)

Since in this case K is diagonalized, (27) becomes

O'E
=0.

m=1 /~2~ l
(28)

The lowest value of h satisfying (28) or explicitly

L'(2m —1)'

+sriJiLi(2m —1)L)Hi'"$i (2m 1)L)=0—(29)

is the nucleation field.
Since h is a function of L(2m —1) only, m=1 is

chosen for simplicity. Minimizing h with respect to iL
yields

2L
LJi(iL)Hio&(iL)). (30)

wS' d(iL)
~1 A. C. Aitken, Deternsieants and Matrices (Oliver and Boyd,

Edinburgh and London, 1949), sixth edition, pp. 130-131.

A necessary condition for nucleation is that the
Hessian" tKt of E with respect to the variables &os~ i
is zero. This implies that

O'E

and Eq. (30), the asymptotic relation for S~~ is
found to be

L„=(-,'srS') 1= 1.16Si. (33)

dJi(x)/dx= Js(x)—I& (x)/x,

dHio&(x)/dx=Hp&'&(x) —H&'& (x)/x,
(35)

and tabulated Bessel functions. '4

It is obvious that of the three mechanisms discussed,
the physical system will choose the one yielding the
most positive h„. The results of the calculations are
plotted in Fig. 4. It is seen that for S&1.1, the curling
takes place and for S(1.1, buckling is the acting
mechanism while rotation in unison is equivalent to
buckling for S((1.

It is believed that the transition from buckling to
curling is not abrupt, and that in the neighborhood of
S=1, a mixed mechanism takes place somewhat lower-

ing the value of
t h„t in that region. It should be noted

~' See reference 17, p. 113 and p. 120.
~' See reference 17, p. 119.
s4 E. Jahnke and k Emde, Tables of Faleleoes (Dover Publi-

cations, New York, 1945), fourth edition, pp. 226-243.

From (29), one calculates that, for large values of S,

h„=—3/2L„= —(3/2) (2/sr)iS 1=—1.29S i. (34)

In the intermediate region, Eqs. (29) and (30) are
solved numerically with the help of the relations:
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Appendix III. When one uses (9), the energy becomes

3A ~v 1E=, [(8./8x) s+(1/xs)(8a, /88) s

2R'~p ~p

0.5—

0.2—
C

O.I

+aP/(x' sin'8) —(h —ss)mS']x'dx sin8d8. (39)

The Euler equation" is

8s~/8x~+(2/x)8~/8x+(1/xs)8&~/88&

+(1/x') cot8(Bc'/88) [—(h ,s—)vr-S'

+1/(x' sin'8)]a&=0, (40)

0.05—

0.02—

0.)
G2 0.5 10 20 50

with the boundary conditions'

(8a&/8x), r O——and co=0, on the 8=0axis. (41)

Equation (40) is solved by separation of variables.
Substituting &a= O(8)X(x), one gets the two differential
equations

FIG. 4. Theoretical plot of the nucleation field of an infinite
cylinder versus its radius R for magnetization curling and magnet-
ization buckling. The field is applied along the axis of the cylinder.
The nucleation field H„ is given by 2mI, h„, rvhere I, is the satu-
ration magnetization. RO=A&/I is the characteristic length of
the material, and A is the exchange constant. The coercive force
for rotation in unison is given for comparison.

d'X/dx'+(2/x)dX/dx
—[(h—s)mS'+b(b+1)/x']X=0, (42)

d'O/d8'+cot8do~d8 —[1/sin'8 —b(b+1)]O=0 (43)

where b is an integer. The solution of these equations'~
leads to

co=Ps CsPp'(cos8)x —V~;(Sx[—m(h —-', )]l),
that although not rigorously proved, it is believed that
the hysteresis loop for the cylinder whose axis is parallel
to the applied field, is always rectangular, thus identi-
fying the nucleation field with the coercive force.

where C~ are constants, E~' are Legendre's associated
functions of the first kind, and J~+~ are Bessel functions
of half odd order. The condition at 8=0 is identically
fulfilled. However, in order that ~ remains finite for
x=0, one needs b&0. The lowest h fulfilling the second
boundary condition,

3. THE SPHERE

The nucleation field for the sphere is calculated under
the assumption of the curling mechanism. The spherical
coordinate system (r, p,8) is introduced. The direction
of the external field is assumed to coincide with 0=0.
In the following calculations the angle co, as previously
defined, depends on r and 8 only. When one substitutes
(6) in (2) and writes the gradient in spherical coordi-
nates, the exchange energy becomes

d(x Vb+i[Sx(—m(h —s))&])/dx=O for x=1, (44)

is h„and is given for b= i.
Substituting the relation"

(my/2) &Ji(y) =siny/y —cosy (45)

in (44), one gets
(46)2y coty —2+y'=0,

y=S[-m(h —-', )] . (47)For this mechanism, when «&1, the self-magnetostatic
energy can be approximated by The smallest solution of (46) is

y'= 4.35,

and using this value one obtains from (47)

(37)E„=ssmI '—-'snI 'aP/2-.

The variable part of the total energy, if one neglects
terms in powers higher than &' and assumes A~=0, is
given by (48)h„=—,—1.39S '

E =A[(~~/Br)'+r '(8a&/88)'+sin'co/(r'sin'8)]. (36) where

tB
E= ssg—' (A[(8~/Br)'+(1/r')(8co/88)'

"o "o

Equation (48) is valid only for positive values of h„.
Negative values of h„have no physical signi6cance as
the coercive force for spin rotation in unison is zero in

+aP/(r' sin'8)] —(knI, /3 H)I,'/2)r'dr sin8d8. (38)—"See reference 17, pp. 207 and 208.
seA. R. Forsyth, Calculus of Variations (Cambridge University

The choice of the lower limit of r is thought to be a 27 See reference 17 234 and 235
good approximation in view of the results obtained in» See reference 17, p. 118.
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4. THE PROLATE ELLIPSOID

The first term in the right-hand side of Eq. (48)
comes from the demagnetizing field. Analogously the
nucleation field for the prolate ellipsoid with the
external field along the polar axis is

Ib =Nb/2w IbS —s (49)

Here k is a constant which varies from 1.08 for the
cylinder to 1.39 for the sphere.

From Fig. 4 it is seen that a good approximation to
the behavior of the cylinder can be made by neglecting
the buckling mechanism and taking the rotation in
unison instead.

If the coercive force h, for rotation in unison' as
given by

h.= (iVb —E )/2m. (50)

is larger than h„as defined in (49), rotation in unison
takes place, and the particle will behave as a single
domain. Here Xb and X, are the demagnetizing factors
along the polar axis and an axis perpendicular to it,
respectively. Equating (49) and (50) gives the critical
size,

S.s =2s.k/iV, .

From the variation of X, and k, one Gnds that

1.04~& S.~& 1.44.

(51)

(52)

The higher value of S, is for the sphere and the lower
for the cylinder. This result shows that contrary to
current belief, the critical size for single-domain be-
havior is practically independent of elongation, and is
approximately equal to Ro. When anisotropy is taken
into account, with the easy direction of magnetization
coinciding with the polar axis, an equal term E/7rI,
will be added to both h„and h„so that the critical
radius will not be affected.

The fact that the critical size is independent of
magnetocrystalline anisotropy can be best understood
from the nature of the energies concerned. The exchange
energy tends to keep the spins aligned while the self
magnetostatic energy tends to minimize the free charges

by forcing Qux closure paths. On the other hand, the
magnetocrystalline energy is a local e8ect and thus is
independent of the form of nucleation. The exchange
energy is caused by short-range forces and is predomi-
nant for small sizes, causing the single-domain behavior.
The magnetostatic energy, being a long-range eGect,
predominates for large sizes, causing magnetization
changes to occur by Aux closure mechanisms and thus
not allowing rotation in unison.

These speculations show that the critical size is a

this case. (It should be noted that also for positive h„
the coercive force is zero, as crystalline anisotropy was
neglected here. ) This immediately yields the critical
size for single-domain behavior:

S,= 1..44.

function of I, and A only. Following this idea, dimen-
sional analysis shows that the critical size must be
proportionaP' to A&/I, which equals R s, the character-
istic length of the material.

In this paper, only the nucleation Geld was calculated
for the prolate ellipsoid. Brown" had already pointed
out in 1940 the way to find the exact hysteresis curve
of an ideal ferromagnetic particle, by solving a set of
nonlinear partial differential equations. However, this
is a formidable problem and is not easily tackled.

5. DISCUSSION

The results of the above calculation show that below
a certain size (the critical size) the ferromagnetic
particle behaves approximately as a single domain. It
is found, contrary to current belief, that the critical
size is independent of crystal anisotropy and is almost
independent of elongation.

It follows from previous theory that an abrupt de-
crease in the coercive force at the critical size should
occur from the relatively high value given by the
magnetic anisotropy to the. low value associated with
domain wall movements. Bertaut, " Carman, ' and
Meiklejohn" found experimentally that the coercive
force of iron powders is inversely proportional to the
particle size. Similar behavior was reported by Keep'
as having been found by Gottshalk for magnetite
powder. The calculations given in this paper suggest a
gradual decrease of the coercive force with particle size
in cases where shape anisotropy predominates.

The absolute value of the coercive force obtained
experimentally for supposedly single-domain powders
is usually considerably less than that predicted by the
previous theory. ' ' ""Furthermore, Morrish and Yu"
remarked that there is in fact some evidence that the
coercive force continues to increase for particles smaller
than the supposed critical size. When one compares
the conclusions of this paper with experiments, di6.-
culties'~ are encountered in determining the value of A
needed to calculate Ro. Even for iron, which is the
material most studied, the value suggested for A varies
considerably, starting from A=0.3X10 s erg/cm (as
given by Wohlfarth") through 0.83X10 ' (Stoner"),
1.16X10 ' (Neel') to 2X10 ' (Kittel") Choosing
A =10 s with I.=1700 gauss, one finds from (9) that
Rs ——60A. For magnetite, choosing A=10-' erg/cm
following Gait, ' and I,=500, one Gnds R0=200A.
One sees that the critical size, which is approximately

~ After completion of this work, it came to our notice that
Dr. %. F. Brown reported a similar result at the Thanksgiving
meeting of the American Physical Society, 1956 t W. F. Brown,
Bull. Am. Phys. Soc. Ser. II, I, 323 (1956)].

lb W. F. Brown, Phys. Rev. 58, 736 (1940).
@F.Bertaut, Compt. rend. 229, 417 (1949).
bs W. Meiklejohn, Revs. Modern Phys. 25, 302 (1953)."L. Weel, Advances in Physics (Taylor and Francis, Ltd. ,

London, 1955), VoL 4, p. 191.
~ S. P. Yu and A. H. Morrish, Phys. Rev. 102, 670 (1956)."E.C. Stoner, Repts. Progr. in Phys. 13, 111 (1950)."J.K. Gait, Phys. Rev. SS, 664 (1952).



FREI, SHTRI KMAN, AND TREVES

equal to Eo, is smaller than that expected by current
theory. ' These rather low values of the critical size
suggest that the above-mentioned effects might be
explained by the fact that the critical size was not
reached in these experiments.

One must also admit the possibility that upon
decreasing the size the particles will become para-
magnetic'~ before reaching the size of single-domain
behavior.

In cases where E)&I,', as in MnBi and Ferroxdure,
the theory disagrees completely with experiment" since,
according to theory, the coercive force is independent
of particle size. This was already pointed out by
Brown. "Thus the model assumed does not apply in
this case. It is possible that a model taking into account
imperfections, might help in solving this discrepancy. "
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APPENDIX I. CALCULATION OF THE CRITICAL SIZE
OF THE PROLATE ELLIPSOID ACCORDING

TO THE RING MODEL

The critical size for this model is calculated by
comparing the magnetostatic energy to the exchange
energy. Taking ~=s./2 in (7), one finds for the exchange
energy density

E,=A/r'. (53)

When one uses (53), the exchange energy E, of the
ellipsoid per unit volume is

with respect to any set of chosen functions describing
a perturbation from this state must be positive.

Let the sphere be defined in a cylindrical coordinate
system (r, io,s) and let e be the angle between the
magnetization vector and the horizontal plane. In order
to facilitate the calculation of the self-magnetostatic
energy, e is assumed to be independent of z. From
symmetry considerations, e is also assumed to be inde-
pendent of p. In order to study the stability of the
state &=0, only angles e«j. are considered.

The surface charge 0- on the sphere is given by

0 =Isa cos|3) (57)

where 8 is the polar angle. Let the angle e be represented
by the series

Q +sn 1+2m 1/COS())
n 1

o=I, Q Bs„ res„ i,
n=l

(59)

where 82 ~ are constants and P2 ~ are Legendre
polynomials, 4' so that E can be readily calculated.

only polynomials of odd order are taken in order to
satisfy the symmetry relation

o (())= —o (s —8).

Upon substituting from (58) into (57); the surface
charge is

&Z ~bff —(r/R)2j&

(4/3) rrR'bE, = 2xr—'dzdr

E = Q Bs„ ts8s-'I, 'R'/(4l —1)' (60)

4 a/2~ 0 and with the notation= 4s.A bDn (4R/a) —17, (54)
Re A&/I, and S=——R/Rs,

E„=4rrAR Q 28s„ ts(4e —1) 'S'.
n I

where 2E and 2b are the short axis and the long axis of one obtains
the ellipsoid, respectively.

The magnetostatic energy is (61)

E„=-,'XsI,', (55)

where Eg is the demagnetizing coefFicient along the
polar axis. Comparison of (54) and (55) yields the
critical size E., :

The exchange energy derived from (7) is

8 (R& —r&)~

E =2A, ~
t (d~/dr)'+sinss&/r'j2s. rdsdr. (62)

~./2& 0

(I|Is/6A)I, RP = ln(4R, /a) 1. —(56)
Writing x= $1—(r/R)'5&= cos(), and using

APPENDIX II. STABILITY OF THE RING MODEL FOR
THE ZERO-FIELD STATE OF THE SPHERE

From symmetry considerations the ring model is an
equilibrium state. However, in order that this equi-
librium be stable, the Hessian of the energy function

s" L. Neel, Compt. rend. 228, 664 (1949).
3 Sixtus, Kronenberg, and Tenzer, J. Appl. Phys. 27, 1051

(1956).
~ W. F. Brown, Revs. Modern Phys. 17, 15 (1945).
~ Rathenau, Smit, and Stuyts, Z. Physik 155, 250 (1952).

o) =90—e, «&1,

one 6nds, upon integrating with respect to z, that

p 1 —a2/8R2

L(1—x') (d e/dx)'E,=4rrAR
0 —x'e'/(1 —x') jdx. (63)

Upon substituting (58) in (63), E, can be calculated
4' E. Jahnke and F. Emde, reference 24, p. 108.
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and will be in the form of

E =Q E iiBQ
%7

(64)

state, the Hessian of the total energy

In order that the state ~=0 be a minimum energy
with respect to the coefficients Bq„~should be positive.

The calculation yields for the Hessian

2' 11
1 P+ —S' —P——

9 6

137

60

11
Jx]

6
8mAR

137

60

23
p

60

697

60

2'
P+ —S'

121

31 2' 23
P+——S' — P——

6 49 60 (65)

where
P= ln(4RoS/A).

o=k(b —r) for r~(b,
&=0 for r ~& b,

(67)

where b is a constant and k is calculated to minimize
the energy. The variable part of E is

E,=8~AR $(d o//dr)' —o'/r')rdr,
4 a/2

E,= 8m ARk'b'$2 —a/b —ln (2b/a) j.
The variable part of the magnetostatic energy is

(68)

The Hessian as given above is an infinite determinant.
One is forced to study its behavior by studying the
series formed by its principal minors.

In the first approximation,

( BC ) i——8s.AR$1 —ln(4RoS/A)+ (2m./9)So), (66)

which is associated with

$6=8jI y.

~K
~
i is positive down to the critical size S,i, becoming

negative below it. S,~ is identical with the critical size
as usually calculated. ' For iron, E,&= 110A.

This might indicate that for particles larger than E,~

the ring model is of stable equilibrium. However,
examining the second and third approximations to the
Hessian which are associated with xo=BiPi+BoPo
and xo =BiPi+BoPo+BoPo, respectively, one finds
that the critical radius increases to 220A and 350A
respectively, hinting that taking more terms will push
the critical radius always higher. This suggest that the
ring model is never of stable equilibrium.

A second approach to this problem is to assume for
the perturbation

as the right-hand side is the energy of the region where
e/0 taken as that of an ellipsoid. Here b«E. is assumed.
In this case, Ã is given by

N=4sboR o ln(2R/b).

The total energy E is

(70)

O'E/Ok') 0. (72)

Taking for iron a= 3 A, Eo=60 A, and choosing
b=30 A, one finds that

O' E/Ok'= 16 irARb(o—1+1,6x ' lnx). (73)

Here x=2R/b. Equation (73) shows that o =0 is never
stable as O'E/Ok' &0 for any value of x.

APPENDIX III. THE HOLLO% CYLINDER

In Eq. (15) it is found that the angle cv varies with
the radius according to the relation

oo = 8JiL(—hs) &Sx)+bi/( —hs) &Sxj, (74)

with the boundary conditions

d&u/dx=O at x=1 and x=n. (75)

Here 0, is the reduced inner radius.
When one uses (35), the two boundary conditions

yield the equations

BLJo(p) J(p)/pg+C/Xo(p) —E (—)/ j=0, (76)

BL~o(p ) ~i(p~)/paj
+CL1Vo(pc) —&i(pe)/paj =0, (77)

where

The solutions
p, = (—h~)&S. (78)

E&k'8 ARb'L2 —a/b —ln(2b/a)
+-' b'R 'Ro ' ln(2R—/b) j. (71)

The condition for stability here is

E &-,'E(kbI, )'~b'2R, (69) 8=0, C=0 (79)
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hold before nucleation. At nucleation

BW0, CWQ, (80)

~p(/) ~i(/—)// &p( )—&i(/ )//

Jp(/4(X) —Ji(/4Q)//4CK cVp(/lCK)
—N i(/4Q)//441

(81)

so that the determinant of the coefficients of B and C
must vanish, yielding

For small values of or,

2A
E&const — 4p4x '(—3.39/12+ p) dx, (89)

~ a/2R

where prS'h = —3.39 is taken from (19).
It is seen that E decreases with co, thus assuring a

discontinuous change of the magnetization at nucle-
ation.

APPENDIX V. SELF-MAGNETOSTATIC ENERGY
ASSOCIATED WITH THE BUCKLING

CONFIGURATION

This equation gives /4 =/4 (a), and with (78) the nuclea-
tion field h„ is found as a function of the inner radius n.

From (81), one finds that, for n«1,

h =hp(1 —4.2n')
According to (23), the surface charge a on the cylinder

(82) is given by

where hp is the nucleation field as given in (19).Follow-
ing Xbel, ' the value of the inner radius is taken to
equal half a lattice constant. One has then

00 00 7r
0 —Q 0 p~ i —I cospp Q 4pp —i cos (2m —1)—z . (90)

m=1 m=1 T

The corresponding solution of the Laplace equation for
(83) the magnetostatic potential F yields

and as one considers only R)Rp (Fig. 4) and a/Rp«1,
one sees that h„ is essentially the same if one assumes
the boundary conditions co= 0 at x=0 or if one allows
for a mobile limit at x= a/2R.

00 7r

F=Q Ap iJi i(2m 1)——r
m=1 T

&&cos4p cos (2m —1)—z (91)
T

APPENDIX IV. DISCONTINUITY OF MAGNETIZATION for r&R, and
AT THE CURLING NUCLEATION IN THE CYLINDER

In Eq. (10), the total energy is found to be

2A
E= Lx(d4p/dx)'+sin'4p/x —2prS'hx cos4pjdx (84)

a/2R

2A
(x (dpp/dx)'+cp'/x —2prS'hx(1 —4p'/2)

~ a/2R

—2m.S'hxL4p4/4! —0 (4p 4)j
—$(24p)'/4! —O(pp')7/2x)dx. (85)

00 7r
F= Q Bp„ iHi'" i(2m 1)—r-

m=l T

Xcosp cos (2m —1)—z (92)
T

for r &~ R. Here A2» and 82» are constants.
Equating the potential at r =I/. yields

7r

Bp i=A& iJi i(2m 1)—R-
T

%hen one takes only terms up to co2, the nucleation
function is Laccording to (15)j

where Z» is a linear combination of Bessel and Xeumann
functions.

At nucleation,

p1
Lx(d(p/Cx)'+4p'/x —2m.S'h„x(1—4pP/2) jdx

~ o/2R

Hi"' i(2m —1)—R . (93)
T

The divergence of H equals 4rp. , and is found by using
H=gradF and (91), (92) so that

7r

Ap i—Ji i(2m —1)—r
dr T

Bpyg —i Hi'" i(2m —1)r =44rl, pp& i (94)
dr T

so that

=constant, (87)
From (93) and (94), one finds that

2A
E=constant — 4p4x '(m.S'h x'/12+-,')dx. (88)

~ a/2R
Ap i=24r'4pp iiRI,Hi&" i(2m 1)—R . —(95)

T
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The energy per unit volume of the cylinder is integration

00

E= P 'sr' s-cos ssPi&'& s(2rrs —1) —R
E=srR'Ssr(16sr'R'T) ' 4srFoRd pds. (96) ~=i . T

0 0

Using this and (90), (91), and (95), one obtains after
)(Ji i(2m 1—)—R . (97)

T
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Surface States on Silicon and Germanium Surfaces*
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Interface states are found in the upper half of the energy gap of silicon and germanium. On weakly oxidized
surfaces, they lie 0.42 and 0.13 ev above the intrinsic position of the gap with approximate densities 10'~
to 10' and 10M to 10"for silicon and germanium, respectively. On well-oxidized surfaces, interface states are
found approximately 0.44 to 0.48 ev and 0.18 ev above the intrinsic position of the gap with densities of
around 10"and 10"to 10"for silicon and germanium, respectively. At large bias voltages, high electric Gelds
exist in the oxide 61m. Changes in the structure of the interface states in the upper half of the gap of silicon
are found. A model is given which can account for the experimental observation.

INTRODUCTION
'N a previous paper, ' measurements of inversion

~ ~ layers on m-type germanium and silicon have been
reported. This paper represents an extension of reference
1 to measurements of inversion layers on p-type
germanium and silicon. Essentially, the same notation
and terminology will be used. From the steady state
and nonsteady state measurements, it has been deduced
previously that on both germanium and silicon there
is a very high density of surface states on or near the
surface of the oxide film (outer surface states) and a
much smaller density at the interface of the semi-
conductor and the semiconductor oxide film (interface
states). The outer surface states appear to result from
adsorbed atoms of the surrounding ambient gas. The
measurements of the interface states have been inter-
preted in terms of one localized state 0.138 ev and
0.455 ev below the middle of the gap for germanium
and silicon, respectively. The densities were approxi-
mately 10" states/cm' for germanium and 10"
states/cm' for silicon.

In the meantime, other contributions from workers
in the Geld have appeared in the literature which deal
directly or indirectly with a determination of the
interface states. ' ' The work of .Bardeen et al.'

* Supported in part by the Bureau of Ships.
'Statz, deMars, Davis, and Adams, Phys. Rev. 101, 1272

(1956).' W. L. Brown, Phys. Rev. 100, 590 (1955).
'Bardeen, Coovert, Morrison, SchrieGer, and Sun, Phys. Rev.

104, 47 (1956).
4 W. H. Brattain and C. G. B. Garrett, Bell System Tech. J.

35, 1019 (1956).' C. G. B. Garrett and W. H. Brattain, Bell System Tech. J.
35, 1041 (1956).' Many, Margoninski, Harnik, and Alexander, Phys. Rev. 101,
1433 (1956).' Harnik, Many, Margoninski, and Alexander, Phys. Rev. 101,

essentially conhrmed the previous 6nding for interface
states in the lower half of the gap of germanium. It
appears, however, that in addition to these localized
states there is a continuous distribution of surface
states near the middle of the forbidden gap. The total
number of these distributed states is considerably
smaller than that of the localized ones. ' Measurements
of interface states by conduction measurements of
inversion layers are dificult and sometimes even
impossible for states lying close to the center of the
forbidden gap. In such measurements, the charge in
the interface states as a function of the quasi-Fermi
level for holes or electrons is deduced from "pulsed"
conductance measurements as a function of bias
voltage. If the quasi-Fermi level describing the distri-
bution of the majority carriers in the surface layer is
close to the middle of the gap, then the conductance
of the inversion layer is very small. The saturation
current Rowing across the junction between the in-
version layer and the bulk of the material gives rise
to an ohmic drop in the inversion layer so that the bias
voltage between the bulk of the semiconductor and
the inversion layer is not constant along the base
region of the ss-p-0 and p-ss-p type semiconductor
bars. The inversion layer technique is, therefore, not
easily applicable for states near the middle of the band
gap. In addition, as will be shown, the occupancy of
the interface states may not be described by the
quasi-Fermi level for majority carriers if the ratio of
the capture cross for electrons and holes is unfavorable.

1434 (1956). LSee also contribution by Many, Harnik, and
Margoninski to appear in Proceedings of the Conference on the
Physics of Semiconductor Surfaces, University of Pennsylvania,
Phiiaddphia, Peurssylvawia, Elise, 1956 (to be published) j.

H. C. Montgomery and W. L. Brown, Phys. Rev. 103, 865
(1956).


