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If the Hamiltonian of a system is broken up into a series of homogeneous operators in the space coordinates,
the sum of their mean values multiphed by the degree of homogeneity equals zero for a bound state.

Assume that the Hamiltonian contains three groups of homogeneous terms: for example, kinetic energy,
Coulomb energy, and a third interaction, U, which is small. By the "virial" theorem, the energy can be
expressed in the mean values of any two of these terms. From perturbation theory, another relationship is
derived which allows various orders of the energy to be obtained from the mean value of any one of the three
terms of the Hamiltonian.

The perturbation relation is U= Z nE„, where E„ is the eth order correction to the energy, defined byz- zz„.

T= ', Q,(r; &-;V)A„

holds both in classical and quantum mechanics. In the
former case the bar indicates a time average, while in the
latter a quantum mechanical average. The term on the
right, where r; is the position coordinate of the jth
particle, and p'; the gradient operator, is the virial of
Clauses for the special case where the force can be
described by a potential gradient. This term by Euler's
theorem, becomes equal to —V/2 if the particles inter-
act only via Coulomb forces. Then

2T+V=O. (2)

Hereafter, the symbol V will be reserved for Coulomb
interactions.

A variety of proofs of the quantum virial law has been
given by various authors, ' ' and also the relativistic
analog for a Dirac particle has been derived. ' ' ' In the
following, a relation corresponding to the virial theorem
for a more general Hamiltonian is considered, along
with some applications from the use of perturbation
theory

It will be assumed for simplicity that the particles
involved are subject to no constraints not included in
the Hamiltonian. Of particular interest is a many-body
system of electrons and nuclei, which will be considered
first as a concrete example. For most purposes the
Hamiltonian, in the absence of an applied 6eld, is given
to su6icient accuracy by

H =T+V+ U, ,+U. ..

INTRODUCTION

'~OR a bound system of particles having kinetic
energy T and potential energy V, it is well known

that the virial theorem

U, ,=-,'Pg — u; u;—
'wj r'2'-

3(u; r;,)(u; r;;)-

. .2rij

It will be shown that for the Hamiltonian (3), the
virial law becomes

2F+V+3U= 0,

where U= U, ,+U, ,
Thus the energy

can be expressed in terms of any two of the mean values
F, V, or U'. Sy treating U as a perturbation, the various
orders of 8 can be written in terms of the various orders
of 7, V, or U alone.

PROOF OF EQUATION (6)

The proof of (6) easily may be obtained from the
simple variational argument of Fock.' One difFiculty in
this proof, however, is in knowing under what circum-
stances, as regards to boundary conditions, the varia-
tional argument holds. An alternative proof that is
more general in application is given below.

Consider the commutator of the operator P; r, v;"
with an operator

where U, , is the spin-orbit interaction and U, , the
spin-spin term.

If r,,=r;—r;, c is the velocity of light, and e;, m;, p;,
and y; are respectively the charge, mass, spin magnetic
moment operator, and momentum operator of the ith
particle,

c~u; r; ( p p; )
U. .=Z Z Xi ——

c r;;s Em; 2m, ) '

' Born, Heisenberg, and Jordan, Z. Physik BS, 557 ('1926).
~ B. ¹ Finkelstein, Z. Physik 50, 293 (1928).' V. Fock, Z. Physik 63, 855 (1930).
4 J. C. Slater, J. Chem. Phys, . I, 687 (1933).
~ T. L. Cottrell and S. Paterson, Phil. Mag. 42, 391 (1951).' M. E. Rose and T. A. Welton, Phys. Rev. 86, 432 (1952).
~ N. H. March, Phys. Rev. 92, 481 (1953}.
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where f~ is a homogeneous function of degree e+m in
the position coordinates of the Sparticles. The operator
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Il „is homogeneous of degree n, in the sense that

f + (Xxi,kyi, Xsr. . Xx~,hy~, hs~)
cl(Xx;)

t9

=) "f~ (~i,yi, si . ~N, y)r, sN)
8$s

Since by Euler's theorem, Pj r;.V, operating on f~
gives (js+m)f~, it follows that

p r,"V,F„=(js+m)F„+f~ Q r; V,
1 7 8$g

which, because of the Hermitian property of B, is
zero."

The case of an arbitrary Hamiltonian may be treated
in a similar manner by breaking it up into homogeneous
parts. 1he extension of the theorem to include an applied
electromagnetic Geld involves calculating the commu-
tator of +jr, V"j with the additional terms in the
Hamiltonian

e;
(y;.A;+A,"y,)

2m 'c
2

+Q A s—P u; curlA;+P e;rp, , (15)
2m, c2 i

= (jsym)F„+f~„r„"V,
l9$ s

8
+ (p -r; V,—r,"V,) .

and depends upon the manner in which the vector and
scalar potentials, A and y, vary with position. For
uniform static electric and magnetic fields, A and y are
homogeneous of degree one. Thus for this case of uni-

(10) form fields, to the right side of (12) must be added

Therefore, the commutator can be expressed
e,&

2P A s+Q eq;,
2m c

(16)

[p r; V;, F„]=(js+m)F„+f~„r,"V,, where A;=rs$CXr; and q, = 8 r;, R and 8 being the
magnetic and electric fields.

8 8
= (e+m)F„+f~„x,

8= (ts+m)F„f„+„m-
ug ~7$

=eIl„.

[pj rj V, IIj= 2T V—3U. — —(12)

It is worth noting that (12) is simply a relationship
among operators, and free, at this point, from the
criticism' of previous types of proof' 4 involving partial
integrations over wave functions.

To obtain (6) for a bound state, the mean value of
both sides of (12) is evaluated for an eigenfunction f of
II. The left hand side is

([Qj rj 'Vj ) Ii])sv=E(Q j rj Vg)Av''
—,' p*H Q, r; V,/dr, (13)

By the same kind of argument, this result also can be
proved for operators of the type (rj jjrjx;")f~„or
f~-.(~ I»'")f'

All the terms of the Hamiltonian of interest here can
be expressed as linear combinations in terms of the type
(8). It will be observed that T, V, and U are homogene-
ous of degree —2, —1, and —3, respectively.

Thus, for the Hamiltonian (3)

USE OF PERTURBATION THEORY

Both U of (4) and (5) and the field-dependent terms,
(15), in the Hamiltonian ordinarily may be treated as
small perturbations compared with T+ V. In the
following example consider the Hamiltonian (3) with U
the perturbing term. Let the wave function and energy
be written as

4=2 )tV

E =+„X"E„,

where ) =1 and the di8erent orders of approximation
are given, as usual, by the coefFicients of powers of ) .

In the standard Rayleigh-Schrodinger perturbation
treatment, results for E are given in terms of matrix
elements of U with eigenfunctions of the unperturbed
Hamiltonian. These results are obtained by starting
with the Schrodinger equation.

(T+V+AU)Q X"P =Q Q X"+ E„P„, (18)

and expanding each order, P;, in the unperturbed eigen-
functions. It is shown in the Appendix that the rather
complicated results of this treatment are expressed very

8 For states which are not bound, x; ~; becomes infinite as
r,~ to and (13) is not necessarily zero. The case of box normaliza-
tion, not considered here, is an example of an external constraint,
and leads to a term in (13) involving pressure.

s From (12), a relation also can be written for the off-diagonal
matrix elements. In a representation in which H is diagonal,

(E~ Ep)(Z;r; V;)~s=2T p+V jj+—3U~jj, (14)
which is obtained by replacing the commutator with the time
derivative of Z;x; ~;.
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simply in terms of the f,, before an expansion in
eigenfunctions is made: the relationship being'

1
E~t= Q &~*Up„„dr.

s 1 ~=o~
(19)

f o0 00

U= ' iJ*Ufdr= p (I+1)E~i——p NE„. (20)
n=o

It is observed from the right hand side of (20) that the
successive approximations for U do not converge as fast
as those for the energy, E=Q E„. It nevertheless is
assumed in the following that the perturbing term is
small enough so that g eE„converges.

By making use of (6) and (7)

or
E= —T—2U,

E= (V—U)/2.

(21)

(22)

A substitution of (17) for E, and (20) for U gives

T= —P (1+2m)E„,
V=P (2+m)E..

(23)

(24)

Finally (20), (23), and (24) may be rearranged to
give

U 1
E„=—PeE„, mW—O

m onym
(25)

E =— — P (1+2')E„,
1+2m 1+2m n~~

By summing both sides over all e, one obtains for the
mean value of U in the perturbed system,

If any of the three quantities U, T, or V can be ap-
proximated in some manner, E is obtained by one of
the above three equations. An approximate equality is
written in case higher order perturbations, E +,, also
contain the appropriate symmetry.

It readily may be verified that (28), (29), and (30)
satisfy the relation E ~T'+V'+ U' as they must; but
the three equations show in addition that T, V, and U
contribute in the ratio —(1+2m): (2+m): m, m&0.

Equation (30) is generally the most useful since in
order to approximate V (by an electrostatic calculation)
it is necessary to approximate only the physically
meaningful quantity ~lf ~' (or in fact the probability
density for two electrons). On the other hand, to calcu-
late E by usual perturbation methods, all the unper-
turbed eigenfunctions germane to the problem must be
known. In a many-body system, for high order per-
turbations, it is often simpler to approximate ~lt ~'of the
perturbed system than to approximate the complete
spectrum of eigenfunctions of the unperturbed state.

E= T+8+ur. (31)

As T, v, and m are respectively homogeneous of degree
—2, 2, and 1, it follows that

AN ELEMENTARY EXAMPLE

As a check on the preceding results, a simple example,
the Stark eGect in a linear oscillator, may be worked
out, since the exact results for this problem are known.
I'he example also illustrates the use of a diferent
Hamiltonian. If v is the potential energy, has/2, of the
oscillator, and m=@8 is the perturbing term of the
electric field 8, the energy is

or
V 1

E = — P (2+v)E..
2+m 2+m ~a~

0= 2T+28+ t8. —

(27) From (31) and (32)

v =—'E—-'w.2 4

(32)

(33)

or
E —T'/(1+2m),

E V'/(2+m).

(29)

(30)
' It is interesting to note that if 3„ is de6ned as

Z Op J'P~"Af„dr, then by multiplying both sides of (18) by
f~, integrating, and equating equal coefficients of X, one obtains
E~~&= (T+V)„+i+U . But with the help of (19), (T+V)„+&= —nU„/(e+1). Thus in higher orders, the contributions of the
perturbing and unperturbed parts of the Hamiltonian tend more
and more to cancel one another.

To demonstrate the usefulness of (25), (26), and (27),
let it be assumed that from ordinary perturbation theory
it is known through symmetry arguments that E is the
perturbed energy term of interest for a particular
problem. The second group of terms on the right in (25),
(26), and (27) therefore may be dismissed from con-
sideration. Thus if O', T', and V' are the parts of U, T,
and V of the desired symmetry,

E (U'/m)m/0, (28)
or

Making use of E=g E„and the perturbation ex-
pression (20) for t8, one obtains

v= 2(s —4~)E-. (34)

The problem is to find the term in the energy pro-
portional to 8 . From Rayleigh-Schrodinger perturba-
tion theory this term obviously comes from the second
order perturbation, which according to (34) is given by

E2~—8(P)

8 =Ep/2+ hs/2k, (36)
"E. U. Condon and P. M. Morse, Quantum Mechanics

(McGraw-Hill Book Company, New York, 1929), p. 122.

where 8(h') is the part of 8 depending on h'. Since the
exact wave functions for the Hamiltonian 2'+v+tv are
known, 8($') can be calculated precisely. " The result
for His



VI RIAL THEO RE M WITH P ERTURBAT ION THEORY 417

BE p BH
/dr= U.N, ~ N, (40)

But E=Q X"E„,so (20) immediately follows from (40)
when ) is set equal to unity.

2—el
fE„,(4) (37) LENNARD-JONES —BRILLOUIN —WIGNER THEORY

or 8(P)=hp/2k. This quantity substituted into (35) and thus
checks the results of perturbation theory, in this case
exactly.

It is not possible in this particular problem to 6nd E2
from T, for from (31), (32), and (20),

and therefore T does not contain E2, in agreement with
the exact calculation showing T does not involve an h'
term.

In a paper to appear later, a more useful calculation
is made of the fourth-order spin-orbit perturbation in a
ferromagnetic solid. The potential energy is approxi-
mated by a multipole expansion.

APPENDIX. RAYLEIGH-SCHRODINGER THEORY

One proof of (20) can be obtained by solving for the
various orders of f and E and substituting into (19).
The method of the following much simpler proof was
pointed out to the author by E. N. Adams and T. D.
Holstein.

The mean value of the Harniltonian H p+XU is given
by

E(X)= P*(X)(Hp+XU)f(X)dr,

With Lennard-Jones-Brillouin —Wigner perturbation
theory, Eq. (20) also holds. In this case, the direct proof
is simpler since the energy and wave function easily can
be written explicitly in the matrix elements U;; and
eigenvalues m, of the unperturbed functions, N;:

Up;U;p
E=wp+XUpp+X' Q'

(E—w,)

+92' 2' + (41)
(E—w,) (E—w, )

U;pu;
Q= Up+a P

E—R';
U,,U;pg;

+~' 2' 2' (42)
(E—w;) (E—w;)

By a direct calculation using (42)

Up;V;p
U= Upp+2X Q'

(E w~)—
+3K' Q' Q' +, (43)

i (E w, ) (E w;)——
t Bg* r Bg

Hgdr+ P*H dr =0, —(39)
which may be compared with (41).

where E(X) and P(X) are given by (17).From the fact P
is normalized and Hf=EP, it is easily established that


