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and D in Eq. (11), the result:

t'dS'~ 2 2 mdiv

+( dp) s t u'r, srnr, t 2(1—x)

4nr,

2 (1—x).

where the expansion is valid at high densities. Inserting
numerical values, we have

C/Ce ——L1+0.083r, (—lnr, —0.203)+ . ) ' (22)

This is to be compared with the approximate result of
Pines, ' who finds

(19)
C/Cr ——L1+0.083r, (—lnr, +1.47)+ $ '. (23)

or

At low temperature, then, the specific heat of a free
electron gas is modified through Coulomb interactions
by the factor

ACKNOWLEDGMENTS

The author would like to thank Dr. Richard Latter
and Dr. W. J. Karzas of the RAND Corporation and
Dr. Keith A. Brueckner of the University of Pennsyl-
vania for many interesting discussions.

nr,
C/C, = 1+—(—lnr, +ln(~/n) —2j+ ".

2'

dW) 2 1 The method given here permits the computation of
+ (1n(a/ur, )—2)+ . . (20) higher terms in the series, and the next correction is
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slag now being calculated. Applications to the specific heats
of metals are also being studied.
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The co~relation energy of an electron gas at high density is evaluated up to terms of orders (r,)' and
]ogp . $t js shown that the correlation energy to this order can be evaluated without using perturbation
treatment. The result obtained. coincides with the result of formal summation of apparently divergent series
arising from small momentum transfer processes which has been discussed fully by Gell-Mann and Brueck-
ner. The method to treat the small momentum transfer eGect exactly is given by following the analogy of
processes with well-known treatment of systems with Hamiltonians which are bilinear in creation and anni-
hilation operators such as the neutral scalar pair theory. Some simple interpretations of the correlation
energy to this order are also given.

KCENTLV, it was shown by Gell-Mann and
Brueckner' that the correlation energy of an

electron gas at high density can be evaluated exactly
to order of the constant term (r,)' and the term of logr„
where r, is the ratio of the radius of a volume within
which one electron exists to the Bohr radius and energy
is measured in terms of Rydbergs. (The kinetic energy
is 2.21/r s, and the exchange energy is —0.916/r, per
electron. ) Their result was obtained by a selected sum-

mation of the formally divergent power series expan-
sion of Rayleigh-Schrodinger perturbation theory. This
procedure introduces some uncertainties into the final

result; in fact, it can be seen that the constant term in
the energy contains very curious divergences when the
sum is taken in a straightforward manner. Regarding
these terms as unphysical, the aforementioned authors
discarded them and were able to obtain a unique result.

*On leave of absence from the Tokyo University of Education,
Tokyo, Japan.

'M. Gell-Mann and K. A. Brueckner, this issue Phys. Rev.
106, 364 (1957), hereafter referred to as G-B.
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Frc. 1. Typical diagram of a process contributing to the correla-
tion energy terms of order (r,)' and lnr, .

The simple structure of the diagrams summed by
G-B. suggests that it may be possible to find a more
rigorous way to get their answer without using a per-
turbation procedure. In Fig. 1 we give a typical diagram
which contributes to the terms of order (r,)v and lnr, .
Formally, only the second-order iterated Coulomb
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interaction energy is of e' and hence of order (r,)' when
measured in rydbergs. Namely, in the notations given
in reference 1, the e'-correlation energy becomes

32m'A4e4 1
Z.—,Z.E.—,

q' q' p' p" (p+q)' (p+q)'

2m 2m 2m

16m'k4e4 1 1
e s u
q' (q+ p+ p')'

X = &( )"'+&(t)"',
p' p" (p+q)' (p'+q)'

2m

' D. Bohm and D. Pines, Phys. Rev. 92, 626 (19$3l.

corresponding to the processes in which electrons in
the Fermi sea with momentum p and —p'(~p~,

~

p'~

(Fermi momentum I') are excited by mutual Coulomb
interaction into states with momentum p+ q and
—p' —q()y+q~, ~p'+q~)P), and then return to their
original positions in the sea (s(,)(s), first term) or ex-
changed positions (s(&,)('), second term) on the second
action of the mutual Coulomb interaction (P~,P~
above do not include a spin sum). However, since s(,)(s)

contains an infrared divergence arising from low mo-
mentum transfers, terms of formally higher order in e'

also must be taken into account because they remove
the divergence (since the theory must give a finite
energy of correlation). The necessary subset of higher
order contributions were selected by G-B from the
following considerations. First, the work of Bohm and
Pines' on the plasma oscillation of an electron cloud
suggests that the Coulomb field of an electron is elec-
tively screened at the range r(&la*' (where a=Bohr
radius) which in turn means the momentum transfer
between electrons is cut o6 at the order of a minimum
momentum q;„~r,'. The terms in a given perturbation
order which can contribute to this cuto6 can easily
be selected by inspection of the perturbation series.
In each order the term which diverges most strongly
for small momentum transfers (measured in Rydbergs)
is proportional to

(r.iq--')",
and hence, if q;„'~r„will contribute to the constant
term in the energy. In the same order, terms appear
proportional to higher powers of r„which will not
contribute to the energy in the desired approximation.
These remarks are, of course, based on the assumed
character of the low-momentum cutoG; this will be
veri&ed in the following.

The processes which contribute to the energy in this

approximation all depend on the/same factor e'/q' in
each interaction, and so come from processes with the
same momentum transfer q in each interaction. Other

terms which are less singular in each power of e' need
not be considered in higher order than e4. For example,
when an exchange interaction takes place between elec-
trons with momentum p and —p', there appears in-
stead of e'/q'

"/(q+ p+ p')',

as a matrix element, and since this factor is regular as
q~O (then ~p~, ~p'~=Fermi momentum) and is of
order r„ the term which contains one exchange inter-
action leads to a contribution of higher power in r, .
Hence, we need not consider exchange interaction, or
other processes which do not carry momentum transfer
e'/q' as a matrix element in the higher orders e', e',

A typical diagram of higher order of thy-kind re-
quired is drawn in Fig. 1, where x indicates a' Coulomb
interaction, and the diagram is to be read in time se-
quence from the bottom upwards, p (—p") pair, etc.
represents an excited electron with momentum p+q
(—p"—q) and a hole in the Fermi sea with momentum
—p (y"). From the consideration stated above, at each
interaction points the momentum transfer is hp=q.
(The cross point has a factor 4ir&&tse'/Qq', Q being the
normalization volume, except for the one point lying
lowest which carries 2s.h'e'/Qq', because we count the
diagrams which are mirror conjugate as to the vertical
axis as different diagrams. ) Reading the diagram from
the bottom up, supplying a factor 4&rA'e'/Qq' at each
cross-point and the energy denominator between each
cross-point (as indicated in Fig. 1 for one case, E„
=p'/2m), we can get a part of the interaction energy
from this one diagram (of order e"), then arranging the
cross-points in all possible time orders, summing all of
these contributions, and performing the summation
over the momentum transfer q, we get the correlation
energy to this order which contributes to the (r,)' and
lnr, terms.

From the close correspondence of this diagram to the
Feynman diagram in field theory, 0-B showed that
we can use a propagator for pairs between interactions.
The pair created with momentum transfer q propagates
from one interaction to the next, interacting with
momentum transfer hp=q and changing itself into
another pair (but with the same momentum difference
between excited electron and hole). In other words, the
pair propagates as if it were a single particle.

Observing these facts, we can compare our inter-
action diagrams with that of the well-known and exactly
solved problem of the interaction energy of an infinitely
heavy particle interacting with, for example, a neutral
scalar meson field, through the product potential (core
interaction), which can be represented by the following
typical Hamiltonian:

+total +D++intq +0 pko&ktf4 ps&

1 1 (C)K.t=—Z. (4.*+94) Zs (es *+(ts )
2Q (2M')& (2o&s )i
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where po is the annihilation operator of meson with
momentum k, s»= (Ii'+k')' is the energy of the meson,

is the coupling constant, and 0 the normalization
volume. If we evaluate the energy of this system for the
ground state (no meson present as q—&0) in perturbation
series, we encounter the same type of diagrams as in
Fig. 1. Figure 2 gives the analogous diagram for this
interaction. In this figure each cross-point carries a
factor

1 1

0 (2&so) & (2coo )&

(for the k~k' cross-point), and the construction of the
perturbation series can be made completely in the same
way as in Fig. 1. We can also speak of propagation of
created mesons. Thus, the summation of G-8 has the
same character as the summation of perturbation series
in this core interaction case. Since the latter problem
can be solved exactly without a power series expansion
by using a normal coordinate transformation [because
H~&, & of (C) is a bilinear form7 and was solved by
Wentzel, ' our problem concerning the interaction se-
lected as in Fig. 1 must also be soluble exactly without
power series expansion. In our case, however, a com-
plication arises in the definition of the normal coordi-
nates, because the Hamiltonian of our system is not
bilinear form, and so we shall develop an alternative
method to obtain electively the same answer as one
gets using the normal coordinate transformation in the
case of a neutral scalar meson interaction. The result
which we finally obtain is identical with the result of
formal summation of G-B, showing that the summing of
series of powers in e' is allowed and that the divergences
are in fact spurious and may be neglected.

-+& +&u

FIG. 2. Typical diagram of the energy of the ground state in the
core interaction of neutral scalar mesons. (The denominator of
the fraction should read —coI,—coy,".)

where u„, b„are the annihilation operators of excited
particle and hole in the Fermi sea with momentum y
and —p, respectively, and I' is the Fermi momentum.

Now to get the interaction energy whose power series
expansion is represented by the series in G-3 and
schematically drawn in Fig. 1, it is sufficient to treat the
problem with an interaction Hamiltonian which does
not contain exchange interactions of excited electrons,
exchange interactions of holes, or interactions with odd
numbers of creation operators. These do not occur in
our diagrams, where there appear only interactions
which create or annihilate two pairs simultaneously or
represent scattering of one pair to another pair. Hence,
in (1) we can omit these terms from the Coulomb
interaction energy.

We can further rewrite this simplified Coulomb inter-
action to emphasize the suggested analogy with the
case of the neutral scalar meson interacting through a
product potential with an infinitely heavy particle (C):

2''e'
1. FUNDAMENTAL FORMULAS

To evaluate the contribution of small-momentum-
transfer effects, we first write the total Hamiltonian of
the system by means of second-quantized operators as
follows: + Z. ho*b.—

i p—el&&
Z. 7 (2)

lp—el&& lpl&&

Q „.(a„. ,*b„.*+b„,a, )—P„a„*a„
l p—el&&

H~otsi=Ho+He, Ho= Qy ay*ay

apl�

&& 2m

p2 p'
b„*b„+P,

l pl && 2m l pl && 2m

+t"=+Coulomb

2''e' 1
c u u
gIR

&& (a~o*bn oa'bn*+b~a' .'-b'*a. -
+a~.*a' .*4*4*+b~.bo o-a'a. -

+ exchange interaction of electrons excited
and that of holes, and terms of odd number

of creation operator),
~ G, Wentzel, Helv. Phys. Acta 15, 111 (1942).

where the last three terms in this expression may be
neglected, because the first two of these represent the
diGerence of the numbers of excited particles and holes
and is a constant of the motion in our case, its eigen-
value being zero, and the last term is merely'a constant
(which we need to take into account only when finally

(1) computing expectation value of Ho). All the sums
include spin sums. The simplified interaction

(2) still contains interaction leading to o~b~
&o' and

higher exchange interactions between holes and excited
electrons, but since we need only maintain e(&)

(') among
these exchange interactions, we take account of these
interactions only in determining the final total correla-
tion energy.

Then, looking at the effect of interaction (2) on the
motion of a pair, we see from the diagram drawn by
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2mb'e'
[~~a*4*,Hc7-= Z.—

Q q"

X[(,*,—b, ,b.*)

Xg„(a, p *b„*+b;,a„)
+2'(~"+'*b"*+bn+ "a')

X(,*,-b,—,b,*)7. (3)

To the desired approximation this may be taken to be

4''e'
,*b,*,H,7 = — P„.( „. ,*b„.*+b„. ~„),

Qq'

where we have omitted the influence of pairs with dif-
ferent momentum transfers q'Wq. To get (3), we have
also omitted the number operators referring to a par-
ticular particle, N~, (=a~,*a o) and N„P, because
these lead to one factor 1/0 higher in the energy (and
hence independent of the number of electrons). This
can be seen, for example, by operating the second ex-
pression of (3) on the ground state of H p. (One summa-
tion p„which carries 0 in the form p„=[0/(2orh)s7

G-B that the motion of the pair is affected only by
other pairs with the same momentum transfer (a y pair
transmutes into a p" pair with momentum transfer
dp=q in I'ig. 1). Hence, putting aside the exchange
interaction of order (r,)', et»t", we only consider the
equation of motion of pairs interacting through inter-
actions which lead to our interaction diagram Fig. 1.
The commutator between a„,*b„*,is

XJ'dy' drops out for the term containing N~p or
N„'.)

Similarly, in our approximation,

4+5'e'[b,a„,Hc7. = Q„(a„-,*b„*+b,—,a„) (4)
Qq2

[Of course, to get the correlation energy to order (r,)'
and In(r, ), we must add s&b~

t@ to our correlation energy
obtained from our commutators (3) and (4).7

These simple commutators derived from our con-
sideration based upon the eGect of interaction in our
diagram [together with our simplified interaction en-

ergy (2)7, just correspond to the case of neutral scalar
meson interaction with product potential. In the latter
case, the commutator between pk* or pk with H;„p can
be seen from (C) to be

1 1
[4k yHint7 Qk' (re' +re') y

0 (2pok)i (2cok )i
1

[A,H. k7= — — Zk (q4 *+A),
0 (2(ok)i (2(ok )i

and thus to be of the same form as (3) and (4). We can
now proceed in the same way as in the core interaction
case by using our Hamiltonian and commutation rela-
tions. But, one diGerence is that since our Hamiltonian
is not of bilinear form it is hard to de6ne normal co-
ordinates. Nevertheless, from the interaction diagram,
we expect the energy of these two systems to have the
same structure, and hence we may obtain some clue
to the solution by proceeding in a parallel way.

2. EIGENVALUE OF ENERGY OF ONE-PAIR STATE

Corresponding to the equation which determines the normal frequencies in the neutral meson case, we construct
an eigenvalue equation for the one-pair state. To construct the eigenvalue equation, we write the equation of mo-

tion of the variable representing a pair, a~,*b„*and b~,a„, in the Schrodinger representation. We take for +
some eigenstate of the total Hamiltonian Hz (=Hp+Hct &) of our simplified problem with eigenvalue E, and for
%p the exact ground state (no pairs when the interaction vanishes) with energy Ep. Then, using our commutators

(3) and (4), we get

(4, (E—Hr) a,*b Wp) = (E Ep E,'+E„') (%—,u—,*b„*Op)

4n-k'e'

P„(4,(u,*b„*+b a .)%o)=0, IpI &P, Ip —qI &P, p'/2rts=E„', (5)
Qq'

and

(+, (E Hr) b~pao+P) = (E—EP E~pe+Eoo) (+—,b~ p—~o+P)

4''e'
+ 2„(+,(tt '—*b *+b '—tt ')+p)=0 IPI&P IP til &P (6)

Eliminating the amplitude (4',b„ptt~ +p) from (5) by using (6), we reach the eigenvalue equations'

4prIi'e'

I 1+ ( Z. — Z. ) IZ. (+, ( ,—.a'b'*+b'-. )+ao)=0.
fiq' tel &p lyl &t' Ep E+E~, E„)— —

i v —el » !u —al &&

$ Pote added irt Proof. It has been pointed out by D—r. R. Brout that the eigenvalue equation (7) has a bound state solution corre-
sponding to the plasma oscillation discussed by Bohm and Pines. ' A detailed discussion of the effects of this state on the wave function
and energy will be published shortly by Brueckner, Fukuda, and the author. The inclusion of the plasma mode decreases the large nega-
tive constant term in (24), and preliminary evaluation shows that the correlation energy due to plasma mode is constant and about
+0.13 rydberg per electron at high density limit, and so the final anpwcI p|;prps to coincide with the value obtained by G-B.
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To determine the eigenvalue E, we consider a finite (but very large) normalization volume Q. The energies
Es,o, E„p then form a discrete set of eigenvalues with a level spacing of order 1/Q'. Then, the root of (7) exists
between Ei=Ep+Er p op —E—r pp (where pp is some discrete momentum restricted by ) yo ( &P, ) yo —q ) )P) and the
neighboring discrete energy Ep Eo—+—E&p —o Er—o', because if one takes E between Ei and Ep and if one makes E
approach Ei one obtains +~ (or —~) for the quantity in the bracket of (7) and by making E approach Ep one
obtains —~ (or +oo). Hence a zero point of (7) must exist between Ei and E&. Namely, the energy eigenvalue is
(with po an arbitrary momentum restricted by

~
pp

~
&P,

~ pp —q ~
)P)

(1yE=Eo+Evo o' E-no'—+0( —(.
(Q&)

(8)

Then, if, and only if, E is given by (8), P~ (%z, (a„o*b~*+b~ pa~ ), 0'p) does not vanish. The energy (8) goes
over to the energy of the one-pair state if the interaction vanishes, and so the state +z [Egiven by (8)$ belongs to
the one-pair exact solution.

We thus know from Eq. (7) that the energy eigenvalue of the one-pair state (excited electron with momentum

pp
—q and hole —pp) is Eo+Epp —o'—Ei po in the limit of infinite normalization volume and so our pairs have no

self-energies in our approximation. Moreover the following expansion is possible:

P„(a,*b„*+b ~,)Oo=+„C„@ (9)

where @~,„indicates the exact eigenstate with pair y —q (a) and y (b). Equation (9) follows from the fact that if
we take the inner product with an eigenstate which does not belong to the one-pair solution, then, because the
energy eigenvalue of such a state does not make the quantity inside the square brackets of (7) vanish, the left
hand side of (9) vanishes. The expansion of the "packet" g„(a„o*b„*+b~,a~)%'p into an eigenstate of Hr, thus,
contains only one-pair states.

The expansion (9) enables us to evaluate (+p,Hc@p)[Hc being given by Eq. (2)] immediately if we know the
expansion coefficient C„, because (4'p, Ho%'p) is the overlap integral of the "packet. "To evaluate C~, we 6rst write
the state with one pair %~, „with operators operating on 0'0. Since we now know that our pairs have no self-
energies, we can write [we add the superscript (+) to indicate the outgoing-wave solution]

+r s o
+ =an phd*+ p+Xss—n+-

Turning to the continuous spectrum treatment, and using

(Ep+E —E p Hr)+ (+)—()—

and (3), we find the equation determining X&+& to be

4~(Pe& $

(Eo+E,' E,o Hr)+~, , „—'+i= —— —P„(a; oeb„*+b oa„)%'P+(Eo+E~ o E„' H&)X,, „—&+&=0—.
0 q'

Thus, taking the outgoing-wave solution for I,
1 krAV

+~o, ,'+' =a~o*b,~o+ &. (an-o*4*+4-oar)+p
Eo+E~oo E„' Hr+ie Qq'— —

where c is positive infinitesimal number. To get the coeKcient C„, we must add to (11) a term b„,a„%'p, but this
can be represented by the analogous equation to (11);

4m.k'e'
0=b~,u„%'o— P„(a„,'b +b;,a„)q o,

Ep+E~,o E„' Hr Qg'— —

[which is an identity, because the denominator has no pole since p )P, p —q (P, and because of the com-
mutator (4)$. Combining (11) and (12), remembering in (11) that y &P, p —q )P and in (12) that ~p~)P,
~p

—
q~ (P, we obtain for the expansion (10):

2"(as p*b'*+4 W.)+o--
4wI'ape'

Z
Eo+Er oo Er' Hr Iol &p Eo+—E~o'—Er' Hr+ie l—sl &&-

f y-gf &P fx —af» fx —
q. f »

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1950); G. C. Wick, Revs. Modern Phys. 27, 339 (1955).
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or, in view of (8) (Q~~),

Zy (ay-o*fy*+fy-oay)+o= Zn +~..'+'
I I I &&

fu —ql &&

4m%'e'

X

Using expression (14), we can evaluate (+o,H,%'o) immediately.

pf yf
Qq' )y') &z E '—E '—E '+E„' ] '~ z E„,' E„'—E,—o+E„o+C

II' —al && II' —al »
(14)

3. TOTAL ENERGY

By using (14) and Ha in the form (2), omitting the term E'+¹—, we have for the expectation value of the
Coulomb energy (4'o,H,+o) in our approximation:

2' AV 1 2xk~e 1
(+o,&c+o)= —P; Zy + 2; Z.

0 q' lyl && 0 q' Ipl &&
I ~ —al » Ix —af»

X 1— u I Iy
Qqo (y'(» E„. oo Ey o E~—oo+E„—o (y'( (& E„oo E„' E—~oo+E—„o+ie

I
~' —a I && I I ' —a I »

To get the total energy, we use the following procedure. If the system is composed of Hz ——Ho+gal; t, g being e'

in our case, the total energy of the ground state is (writing the g dependence explicitly);

Eo(g) = (%(g) (IIo+gK t)+o(g)).
Since

I

—(e o( g),;(a o+ga;.,)eo(g') I
=O,

owing to the stationary character of the eigenvalue, we And

Hence, integrating

8
g
—Eo(g) = (+o(g) g&. ~+o(g)).
Bg

g 1
Eo(g) = (+o(g')—,g'&;.s+o(g'))&g'+ (4 o,IIobo),

gI

qbo being ground-state wave function without interaction. Then, by using a simple integral,

pg dg (1+g(a++)) 1 ( g& '|
in/

/

=- tan —'/
~o D+g'( + P)X1+g'( —P)j 2 P &1+g( —'P)& P &1+g )

2xAV 1 2xAV
a n c u

0 q' 0 q' 4~5'e~
Q nr8(E ' E ~ '+E ' E')— —

Qq'

(4~&'~/~V')Z. ~&(Ey o E"+'+E~ '—E ')— !, ()
4mb'e' 1 p

QV' &Ey +o' Ey'+E~' Ey' Ey—' Ey+o'+E—~o' Ey'& . — —

where we have used the relation
p

lim =——ish(a),' 'a+oe a

we can get from (15) and (17), for the correlation energy arising from our simplified problem Lsmall momentum
transfer contribution to terms (r,)o and lnr, ),
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and I' stands for the principal value. LWe made q~ —q in (16), and in the first term of the denominator we further
transformed p'-+ —y" and p"~p"'+q.]All P„P,. are restricted by

~ y ~, )
y'

~
&I' and

~
y+ q ~, )

p'+ q ~
)I' and

include spin sums.
To get the correlation energy terms of order (r,)' and inr„we must add, of course, e«,i &'& arising from the second

order exchange interactions. We can interpret (19) as a sum of one-pair to one-pair scattering phase shifts, the
proof being given in the Appendix A.'

4. COMPARISON WITH PERTURBATION METHOD

To compare our result with the power series expansion in G-B, it is convenient to expand DE in powers of e

by means of the alternative logarithmic representation. Denoting by d, (p) the quantity

4m.k'e' 1

QU' EE„~q' E„'+Em—q' —E~' E„' E„.~,—'+E~,' E„'+—i~I

we can write AE in the following form, by using the second expression of (18);

(20)

2~jPe2 1 1 r 1+6,(p) p
in[

q' Lh, (p) —i1,*(p)] E1yaq (p))
(21)

Since 6 and 6* are of order e', if we cut oG the momentum transfer g at a suitable magnitude, we may expand the
logarithm and obtain:

(22)
J

Owing to the systematic presence of +is in the denominator, in spite of the presence of integration over p (P„),
we can perform a partial fraction decomposition of product denominators without meeting new singularities and
can transform them into positive-de6nite denominators, Consequently, we can demonstrate the correspondence
with perturbation theory. We shall show an example in the Appendix B.

Now, regarding the form of the expansion, each expansion term is just that of the perturbation expansion, so
that if one uses a plausible lower cutoff of the momentum transfer q, the series summed by G-B has the same value
as our sum (21), and if one wants to extend the meaning of the summand to smaller momentum transfers, then it
now becomes clear that one should sum them up in the form suggested by (22) to (21).

S. INTEGRATION

First, we transform the expression (19) into the dimensionless form as in G-3. The momenta, q, p, p are meas-
ured in units of the Fermi-momentum I'= h/nro, Q. = (4/9n. )', ro ——radius of the volume in which one electron exists,
and 0=normalization volume=-, pro')&number of electrons in the Fermi-sea. Energy is measured by rydbergs
=e'm/2', and instead of e', r, =ro/rsoh appears (where rs, h, ——5'/nze').

In these units, we have for the correlation energy, arising from the interaction represented by the diagram in
G-B, per electron Ldividing hE of Eq. (19) by the number of electronsj:

pQ &2'
Pv 0

tan ' 2 '(I q/PV)(1/~') —1, (23)

whe~e p, y' are restricted by ~p~, ~p'~ &1 and ~p+q~, ~p'+q~)1.
If we denote the term of order (r,) in the (formal) expansion of (23) about r, with the integration taken over

large momentum transfer q) 1 as e&,&
following G-8 (namely, e&, &

is the expression e&,i"' in the introduction with
q) 1), the contribution of the q integration in the expression e—e&, &

is seen to come from small momentum transfers

5 If one uses the procedure given here for the case of a neutral scalar meson, one can furnish a direct proof of the derivation of the
many-particle forces from the eigenphase shift of scattering due to many particles; the relation was used to derive Wentzel's result by
K. Hasegawa and S. Azuma, Progr. Theoret. Phys. Japan 13, 360 (1955).
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q&(1. Hence, writing

e(e)+e ~ e(e) =
3 p"dq p p 1

dp i dp ,q'» q'+ (q. p'+ p)

Lin the expansion of (23), the (r,) term do not contain a principal value integral owing to its disappearance due to
symmetric integrations over p and O'J, e' can be evaluated in the limit of small q and by introducing a cutoff at
q= 1 as was done in G-B. The restriction

~

p'
~
& 1,

~

p'+ q ~
)1 implies that, if we denote cos8„,as x', then 0&x'&1,

the integration over p' gives 1—qx'—+1, and in the integrand p' may be replaced by 1.Hence in the limit of small q,
neglecting q', we find

1

(q p'+O)
( O' q q+O' q1

=2iri 1— log
q pq i

r 1 )r pq q
—pq')

I'J dp' . =2irl 1+ log
(q'p p) ( q p'q

putting for J'dp also Jdp~2rrq J'0'xdx(x= cos8~,) and p= 1 in the integrand, we have for e':

edq f—2wq ~ xdx-
8&3"o q2 ~o nr, 2nr, x

2Qr ax
tan —

'~

(q'+ (4nr, /~) [1—2x ln
~
(1+x)/(1 —x)

~ ]&

Then, integrating q over the range 0 to 1 and neglecting terms of order r, and higher, we And

4nr, 1 r' ( x 1+x)1 (( x 1+x~' m'

6 =—(1—ln2) ln ——+. x( 1——ln
(
—ln~

(
1——ln ( +—x' ~dx

7r2 2 ~o ( 2 1—x)2 (( 2 1—x& 4 )

where

('1~ p x 1+x''
+ ~ -~ ] 1—-ln

~

——x2 ~tan-i
2 1—x& 4 ) x 1+x

1——ln
2 1 x~

x 1+x'
Cx x~ 1—-ln ~dx

~0 E 2 1—x&
(24)

x 1+x )
x~ 1——ln ~dx=-', (1—ln2).

2 1—x)
The correlation energy of order (r,)' and lnr, is the sum

ecorrel((r, )', lnr, )=e'+ e(,)+e(b) (25)

where e(&~(" is the second-order exchange interaction energy as given in the introduction; and in dimensionless
units,

3 fdq f f 1 1
dp dp

(q+ p+ p')' q'+(q —p'+O)

The last expression in (24) when combined with the contribution from the plasma zero point energy (see Note
added i)b Proof) seems to correspond to G-B's f„"deR' lnR/ J'„"deR2, where R=1—I tan '(1/I). We have not
been able to transform this last term into G-S s term, but the value obtained by numerical integration agrees
with their result.

In conclusion, I would like to express my deep gratitude to Professor K. A. Brueckner for his kind introduction
and guidance on this problem and for many helpful discussions. I also would like to thank the members of the
Department for their hospitality.

APPENDIX A

To show that DE (19) can be represented as a sum of eigenphases of one-pair to one-pair scattering, we first
construct the W'matrix for this scattering; just as in (11), we can construct the incoming-wave solution

1 4mk'e'

P,-(a,-,*b;.*+5„-,a,-)q, .
Ep+E~,'—E„'—Pr —i e Qq'
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Then, elixninating an, *bne%'0 from (11) by using (A-1), we can write

4n.k'e'
,, ,&+&=e, ,& & -2~—2b(E,+E,' E,—' e—,) P„-(a„-,'b„-*+b„-,a;.)e,

Qq'

Taking the inner product with 0'~, „& ), we obtain the 5 matrix:

(A-2)

4''e'S„,, „. ..=B„.„22r28(E— ,0—E„' E„,'—+E ) p„"(4„,, „&-&, (u,",'b„"*+b; ~„")%0).
Oq'

Further, using the expansion of p„"(un",*bn"*+bn",an-)+0 into incoming-wave solutions pin (14), 20 & —ie-
and%'&+& —+4& &j, we find

~n' —0. n';n an=4—'. n 2~2'(En0En -En' 0+En' )—

4+IV 4''e' 1
X

Ogm

yt I ~l t

Qq2 )0"()P E „0 E „0 E i +0E, 0 (n &(P E „0 E „0 E, 0+E,0

l
"—

t t
"—

t

Hence, the 7' matrix is

42rfPec 42rfPe' 1 1

, 1+
Qq' Qq' &En-~,0 En '+E—;+,' En' E„—-' En-+,0+—En ~00 En'+20—I

q bc=+AfbA q AfaA

(Note that we fix g here. ) We define the matrix element of 52 as

(q )ba Zcqbcb(Ec E)qca(=QAfbAqA faA )y (E=Ea=Eb),
/

and get the following relation (where F means function)

ZAF(&A) =ZAE.Z~f.Ab(E. E)I:~(&)J.bb—(Eb E)fbA*

=p.b(E.-E)p'(q') )..
Thus, the sum of the eigenphases becomes )since SA = 1—22ri q'A ——exp( —2ibA) );

t' 1 ) 1
dE QAbA(E) = dE~ ~QA»g(gA) =—Q.Dn(1 —22rb&)$.„

2i

Qow, following the notation of Lippmann arid Schwinger, we can diagonalize V" by using a suitable transformation
f,A (a refers to p+q, p; A is the diagonal index),

where 8~ are the eigenphases. Now,

&)'+..;;~0,.=Z' & +0,' +..n-b(E'+. —-n- —-'+.+-'). '+0.n-;~...

but, from (A-3), V'n+, „,„+,, „does not depend on P", and 9'n +, n, ~, „depends on p" only through En +,0—E„-', so that owing to the presence of the 5 function, we get

In the same way,
(q )'+0.n'. ~e.n=(&n+0. ';~0.n)'Z' "0(E'+' E" E'+'+En'—)—
(&")~0.n;~0. n= (&~..;~0.n) "(Z;b(E;+0' E.' E~,'+—E.'))—"-'. (A-6)

Since q is not singular, we can expand Lln(1 —22riq'))„and use (A-6). The result is

1 1
I diE QAbA(0-fixed&(E)—

2i Q„b(En+0 En En+0 +En )
Xl L1—2 q, „;,+„8(E„—E '—E '+E ')J.

' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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Here, using (A-3) for 1', we finally 6nd,

(»-fixed) (E)—P P„S(E„„o—E„.o—E,o+ E,o)

)&tan ' (inh'e'/Qq')Q zr5(E + ' E„'—E~,—'+E„')
4zrk'e' ( p

& En+»' En'+—E~»' En' —En' E~+»'+—E~»' En'&—

(A-7)

comparing with (19), we 6nd

(A-8)

The erst term is, so to speak, the diagonal element of the potential, and the second term is due to the one-pair to
one-pair scattering eigenphases.

APPENDIX B

We take as an example the e' term (see Fig. 3),

2858 1
&» (4 ZPL~Q-'(p)+~»'(p)~»*(p)+~a(p)~»*'(p)+~q*'(p) 1).

0 q'

Pirst, inside the curly brackets there are denominators all with Hie in such combinations as the following:

4
W' W+—i» W W' —+i» W W i—»—

+ E", . Zy, +'P„
W' W+i—. W.

' —W —z. ~i W' W z—, , —(8-1)

where W=E~q Ey W' =Ey+q EI and all e)0. The ~'s should not be of the same magnitude because the
limit &

—+0 is arbitrarily taken. However, it is convenient to establish some ordering among the &'s. We take the
first product in (8-1) as follows:

1 1

~ Ii ~ iII ~ 'W' —W+3i» W" W+2z» W—"' W+i»—

and performing partial fractions, we And that it is equal to

~ ~ ~ p f f

W' W+3i» —W" W' i » W"'—W' —2z» —W' —W"+i» W"—W+2i» —W'" W" i»— —

W' W"'+2i—» W" W"'+i»—W"' W+i» ~—
Fxo. 3. Diagrams of order e'.
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Relabeling the variables, we have that it is equal to

~ ~ ~ fII
W' —W—3z» W" —W i—» W"'—W—2i» W' —W+z» W"—W —2i» W'" —W —z»

1 1

W' W+—2i» W" W+—z» W'" W— i—»

Hence, in the limit »~0, the first term of (8-1) cancels with others and the equation

(8-1)=0

1 1 ' - 1 1 1
.4 Z', + Zu, Z', . + Z. , (8-2)

W' W—+i» W' W—+z» W' W—z» — W' W—i»—lZ. Z. W'+ W

Again, we set up partial fractions for the first +z» term in (8-2):
1 1

follows. The result is independent of our choice of the magnitude of infinitesimal quantities. Next, consider a
product denominator with two &i& s and one positive-definite. This term is contained in the curly bracket of
DE&8) in the following way:

W'+W W"—W+2i» W"' W+—z»

1 1 1
~ ~ ~

, W'+W W"+W' W'"+W' W'+W" W"—W+2i» W"' W" —i»—

W/+W/// W// W///y ' W/// W+ '

~ ~ ~ I pI

W'+W W"+W W"'+W

e ~ ~ f//

W'+ W W" W 2i ». W'"—W—i » W"—W—+i—» W"' W z—» . —

When we neglect &z» in the positive definite denominators, the last two terms cancel with the remainder in (8-2),
leaving a positive definite denominator only:

(8-2)=Z." Z.-
W'+W W"+W W"'+W

and this contribution is to be added to the term which contains no &i& in the denominator appearing in hE(".
Finally we consider terms with one Hie ..

6 p„ + Q„W'+ W W' W+i» — W' W i»— —
The first term can be changed successively as follows:

(8-3)

balll W'+W W"+W W"'—W+i»

1 ) 1
~ ~ +

W'+W ( W"+W W"'—W+z») W"+W"'

1 1

1 1 1
~ ~ ~ III

W'+W W"+W W"+W'" W'+W W"+W W"'—W—z»

1
t

1 1 q 1 1
~ ~ ~ I/I +I +

.W'+W W"+W W"+W'" &W'+W W"'—W+z. & W'+W'" W"+W"'
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The last term cancels with the remainder in (8-3). Hence

1
(8-3)=3K~" Zy-

W'+W W"+W W"+W"'

1 1 1 ( 1 1 y 1 1
+p&' ' 'p&iiI +

W'+W W"+W W"+W"' 4W'+W W"+W"'J W+W'+W"+W"' W"+W

=2 Z. . Zn-
W'+ W W'+ W W"+W'"

+2 P&' ' 'P&i~i
W'+W W+W'+W"+W'" W"+W

Collecting (8-1), (8-2), (8-3), and all positive-definite terms of hE "&, we And that

p4mfiV~4 1 1 1
gg(s)— ~ ~ ~ pip

( Qq' ) W'+W W"+W W"'+W

i (8-4)
W'iW W"iw W"iW"' W'iW Wiw'iW"iW"' W"iW

where the Q~'s include the sum over spins. These terms correspond to diagrams of the eighth order We ca.n con-
tinue the partial fraction decomposition in an analogous way up to any desired order.


