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Specific Heat of a Degenerate Electron Gas at High Density
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The methods of the preceding paper of Gell-Mann and Brueckner are generalized so that not only the
ground state but also the low excited states of an electron gas can be discussed. The energy levels relative
to the ground state are the same as those of a gas of independent particles where the energy of each particle
{in rydbergs) is a certain function W(P) of its momentum (expressed in units of the Fermi momentum).
The speci6c heat of the gas at low temperature is proportional to the density of single particle levels at the
surface of the Fermi sea, or inversely proportional to (d8'/dP)„=&. This last quantity is calculated for high
density (small r„where density is proportional to r, ) and compared to the corresponding quantity for a
free electron gas. The ratio is found to be 1+0.083r,[—lnr, —0.203]+higher terms in r, . The expansion is
exact and may be compared with the approximate result of Pines, who 6nds 1+0.083r,[—1nr, +1.47]+

' 'N the preceding paper, ' to be referred to as I, the
~ ~ energy of the ground state of an electron gas is
computed at high density. Bere we shall treat the
energies of low excited states by the same method and
thus calculate the low-temperature speci6c heat at
high density

We may label the states by referring them to corre-
sponding states of a free-electron gas. The familiar
methods of perturbation theory (suitably modi6ed to
fit the problem) will convert a given energy eigenstate
C„of the system of free electrons into an energy eigen-
state C„of the system with Coulomb interactions
among the electrons. We shall be concerned, of course,
with the perturbed energy E„associated with 4„, and
not with the unperturbed (purely kinetic) energy
associated with C . Nevertheless, we shall refer to the
nth state by describing the ttrtpertttrbed state C„.

Thus we shall speak of the ground state as that in
which all one-particle momentum states inside the
Fermi sphere are occupied and all those outside are
unoccupied. This is, of course, a description of the
unperturbed ground state Co. But when we speak of
the energy Eo of the ground state, we shall mean the
perturbed energy associated with the exact eigenstate
0'0 of the interacting system.

Similarly, we shall specify an excited state by listing
the momenta and spins ip;,s;) (with j=1, t) of the
vacated one-particle states inside the Fermi sphere and
the momenta (k;) of the occupied one-particle states
outside the sphere. (The momenta are expressed in
units of the Fermi momentum P.) Again we are de-

scribing an unperturbed state; and again, in speaking
of the energy, we shall mean the energy E of the
perturbed state.

As in I, we consider a macroscopic sample of gas;
the number X of electrons is very large, say ~1023. We
now restrict ourselves to treating those states of the
gas in which the number v of excited particles is small

This can be done because the interaction energy of the
excited particles among themselves is of order o/1V

compared to their interaction energy with the rest of
the gas. Under our assumptions the term of order t/X
can be neglected, and the specific heat at low tempera-
tures depends only on the form of the function W(p).

Thus, for the computation of the specific heat at
low temperatures, we are justified in treating the inter-
acting electron gas as a system of independent particles
obeying Fermi-Dirac statistics and with the energy (in
rydbergs) of each given as a function of momentum
(in units of P) by W(p). It is well known' that under
these conditions the specific heat C per electron at
constant volume is proportional to the density of
"one-particle energy levels" at the surface of the
Fermi sphere, that is, proportional to L(dW/dP) s tj '.

For a free-electron gas, we have j

and

p'P' e4nt

W (p)=, =p'/''
2m 2A2

[(dWt /dP)~t] '=n'r s/2,

(2)

(3)

where, as in I, (4/3)srr, s is the volume per electron (in
units of the Bohr radius cubed) and n is (4/9sr)&. The
speci6c heat of a free-electron gas at low temperature
is given by a familiar formula, ' which we write as
follows:

Ct (T r,) =rrt 'h'e 4E'T n'res

where T is temperature and E is Boltzmann's constant.
Evidently the formula for the low-temperature spe-

compared to N. At low temperatures, only such states
will be important. For these states of the electron gas,
the energy E (in units of the rydberg) may be written
in the form

V

&=&o+p W(ks) —W(pt))+O(t/Ã).
i=1

* This study was performed by the author as consultant to the
RAND Corporation, Santa Monica, California, and was spon-
sored entirely by the U. S. Atomic Energy Commission.
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ci6c heat of an electron gas with interactions is

C(T r,) =m 'k'e 'K'T 2[(dW/dp), j '.

and in (4) we have the special case of free electrons,
for which W=S'p. Our remaining task is to calculate
W(p) (or at least d W/dp at p= 1) at high density for an
electron gas with Coulomb interactions.

We may think of W(p) in the following way: We
consider the ground state of the gas, in which the filled
one-particle states are those inside the Fermi sphere.
We now examine the change in the energy (exact or
perturbed energy) of the system when one electron,
with momentum p, is annihilated. (Clearly p &1 here. )
Then W(p) is the energy lost in the annihilation, to
within any additive constant. Similarly, if we start
with the gas in its ground state and create an electron
of momentum k (k & 1), then W(k) is the energy gained
in the creation. This interpretation of the quantity 8'
is evidently consistent with Eq. (1).

Now in I we have treated the perturbation series for
the ground state energy per particle, e (in rydbergs).
The fact that the terms of the series diverge is of no
importance, since we have shown how to cure the
divergence. In each term of the series for the ground
state energy, there are sums over occupied one-particle
states with momenta p; such that p, &1 and over un-

occupied states with momenta k; (equal, say, to p;+q)
such that k,)1.For example, see Eqs. (9), (10), and (11)
of reference 1. (We shall refer to these as I-9, I-10, etc.)

If a particle with momentum p and spin s is annihi-
lated, the only change in the perturbation series for the
ground state energy consists in amending the condition
"p;&1"for an occupied state by inserting the exception
"p,/p if s,=s" and amending the condition "k,)1"
for an occupied state by allowing k, to equal p if s,= s.
The number of occupied states is decreased by one and
that of unoccupied ones correspondingly increased. The
resulting energy change can best be discussed by means
of an example.

One term in the series for the ground state energy
per particle is given in Eq. (I-S):

3 t &~/ f
e (2) — I I d~p dap

8 " q ~p&t ~p&i
l p~+al » I u~+al »

(I-S)
q'+a (p~+p2)

If we multiply e (" by Ã, the number of electrons, we

obtain the corresponding term in the total energy of
the ground state, at least to order 37. We may write
X as 20(2m. ) '4/3~, where 0 is the volume of the gas in
units of A3P ' and the factor of 2 comes from the two

spin states. Furthermore, we may replace the integral
over p~, say, by 0 '(2m)' times a sum over p~. We have,
then, for the part of the total ground state energy

corresponding to e ~2' ..

3 ) t'dq

&Sm' )" q4 p &s "p, &t
l yi+ql && lP2+ql &&

We have, then, for the contribution 8', &'& of this
process to the total energy removed, the expression

Sx' ~ lP+fij )1 g ~P2&i
lu2+al »

dp

1 e dq

q+q'(p+p2) "Ip —al &i q p~«
I~2+el »

d3

x , (~)
a (p+p2)

where the factor 2 in front is really the product of
three factors: 2 from the two spin states as in (6);
-', from the selection of spin up only; and 2 from the
existence of (c) and (d) in addition to (a) and (b).

By an obvious generalization of this method, we can
compute the contribution to W(p) corresponding to
each term in t. that we investigated in I. The contribu-
tion W~(p) corresponding to the Fermi energy er is
already given by (2). We must take up next the term
W, (p) corresponding to e„ the exchange energy. The
expression (I-2) for e, comes from the more explicit
formula

P P 1
d'p~ ~ d'p2; (8)

S~'nr& p «& p, &i (p+p2)'

The method outlined above then gives at once

3 1 f 1
W, (p) = —2 -', m" — d'p,

8~' ur, ~ p, &i (p+p2)'
(9)

X (6)
q+6 (pi+p2)

Now let us remove from the gas a particle with spin
up and momentum p. There are four contributions to
the loss of energy:

(a) For om of the spin states, the term p~ ——p is
dropped from the sum. (The one-particle state with
momentum p and spin up is no longer occupied. )

(b) For owe of the spin states, a term p&+q=p is
added to the sum. (The one-particle state with mo-
mentum p and spin up is now among the unoccupied
ones. )

(c) and (d) Corresponding contributions from the
sum or integral over p~ rather than p~. These are evi-
dently equal to (a) and (b).
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Now let us attempt to compute (dW/dp)~i as a
series of ascending powers of r, . The leading term is of
course (dWr/dp) @=i 2/(n'r s) and the next one should
be (dW, /dp)~i, presumably of order 1/r, H. owever,
this comes out logarithmically divergent. 4 In fact, the
situation encountered in I is repeated here, a series of
increasing divergences but each occurring one order
earlier than in I. Corresponding to Eq. (I-7), we have

(dW) 2 1
+—(log divergence)

E dp) ~i n'rP r,

+—(quadratic div)+ . (10)
r.2

Again, as in I, we expect that the divergent integrals,
when summed, will cut themselves off at q;„~r,&, so
that in place of (10) we shall find

fdWi 2 1
+ (a in-r, +D)

&dp) „ i n'rs r,
+higher terms in r, (11).

In order to obtain this form, we must, as in I, sum the
leading divergence in each order. Moreover, the leading
divergence in each order beyond the first is supplied
by precisely the same process as in I, since the cause
of divergence is still the piling-up of factors 1/q coming
from successive Coulomb interactions with the same
momentum transfer. So from just the processes con-
sidered in I, we can obtain exact values of 8 and D.
Moreover, in all orders beyond the first, we may employ
the crudest approximation that preserves the leading
divergence. In particular, in second order, we may
ignore 8'~&'& compared to W &'& which alone has a
quadratic divergence in (dW/dp) ~i.

The series that we must examine, then, is W,+W, &'&

+W&"+W&4i+, where these terms correspond pre-
cisely to ~„e,&", ~&", t.'4', etc. , of I. We have already
calculated 8' and W' ~2&, and we may now study the
derivatives of these terms at p=1. For the first-order
term W, we have, from (9),

1 fdq
w.= — —~(1—

I p+ql),
Hnr, ~ q

where 41(x) is unity for positive x and zero for negative
x. The derivative is then

ment of solid angle dQ'. Then we have

I
dW) 1 t dQ'

( dp ) ~i 7r'nr, ~ (n' —n)'
2 I' xdx

(14)
~nr, & i 2 (1—x)

We have put x=n n'. Note that the result is indeed
logarithmically divergent.

We have treated (dW, /dp)~i without approxima-
tion. In the higher terms, however, we keep only the
leading divergence. Now in differentiating formula (7)
for lV, &", we keep the leading divergence if we dif-
ferentiate with respect to p only the limits of integra-
tion on q: "Ip+ql)1" and "lp—ql (1." We find,
in fact,

(dW @&) 2 1
d'p. d'q-

dp ) '" * "i.+i q'

X ~(1—In+ql)n (n+q), (»)
q'+q (n+ps)

where the factor of two comes from the existence of two
terms in (7), which make equal contributions to (15).
As before, we put n+q= n' and obtain

(dW, @' i 2
t

dQ'

dp ) ~i m4" [(n' —n)']'

d'p, , (16)
(n' —n) (n'+ps)p2 &1

(
n' —n+p2) )1

t de, &'&
q 8 ' xdx

dp ) n i 4r'~ iL2(1 —x)]'
(17)

Adding together the terms calculated so far in (3),
(14), and (17), we have

(dWq 2 2 I' xdx=, ,+E dp) ~i n'r, ' mnr, & i2(1—x)

We are still interested only in the leading divergence at
n'=n and so we may take the limit n' —n~0 in the
integral over y2. The limit is 2~. Thus we have

(dW ) 1 Id'q
i

—&(1—ln+ql)n (n+q), (»)
L dp ) ~i 74'nr, & q'

4nr,
X + (18)

2 (1—x)

where n is a unit vector in the direction of p. We may
put n+q equal to a unit vector n' pointed into the ele-

' J. Bardeen, Phys. Rev. SO, 1098 (1936).That the divergences
would disappear in a correct calculation was pointed out by E. P.
%'igner, Trans. Faraday Soc. B4, 678 (1938).

To complete this series to the desired accuracy, we must
look at formula (I-19) for e'"& and use it to calculate
5'&") for n&2. If we do that and compute the leading
divergence in (dW&"'/dp)~i, we find that the series in
(18) becomes simply a geometric series. We have, thus,
with sufhcient accuracy to obtain exact values of 8
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and D in Eq. (11), the result:

t'dS'~ 2 2 mdiv

+( dp) s t u'r, srnr, t 2(1—x)

4nr,

2 (1—x).

where the expansion is valid at high densities. Inserting
numerical values, we have

C/Ce ——L1+0.083r, (—lnr, —0.203)+ . ) ' (22)

This is to be compared with the approximate result of
Pines, ' who finds

(19)
C/Cr ——L1+0.083r, (—lnr, +1.47)+ $ '. (23)

or

At low temperature, then, the specific heat of a free
electron gas is modified through Coulomb interactions
by the factor
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nr,
C/C, = 1+—(—lnr, +ln(~/n) —2j+ ".

2'

dW) 2 1 The method given here permits the computation of
+ (1n(a/ur, )—2)+ . . (20) higher terms in the series, and the next correction is

( tEP ) v—t

Ctree

slag now being calculated. Applications to the specific heats
of metals are also being studied.
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The co~relation energy of an electron gas at high density is evaluated up to terms of orders (r,)' and
]ogp . $t js shown that the correlation energy to this order can be evaluated without using perturbation
treatment. The result obtained. coincides with the result of formal summation of apparently divergent series
arising from small momentum transfer processes which has been discussed fully by Gell-Mann and Brueck-
ner. The method to treat the small momentum transfer eGect exactly is given by following the analogy of
processes with well-known treatment of systems with Hamiltonians which are bilinear in creation and anni-
hilation operators such as the neutral scalar pair theory. Some simple interpretations of the correlation
energy to this order are also given.

KCENTLV, it was shown by Gell-Mann and
Brueckner' that the correlation energy of an

electron gas at high density can be evaluated exactly
to order of the constant term (r,)' and the term of logr„
where r, is the ratio of the radius of a volume within
which one electron exists to the Bohr radius and energy
is measured in terms of Rydbergs. (The kinetic energy
is 2.21/r s, and the exchange energy is —0.916/r, per
electron. ) Their result was obtained by a selected sum-

mation of the formally divergent power series expan-
sion of Rayleigh-Schrodinger perturbation theory. This
procedure introduces some uncertainties into the final

result; in fact, it can be seen that the constant term in
the energy contains very curious divergences when the
sum is taken in a straightforward manner. Regarding
these terms as unphysical, the aforementioned authors
discarded them and were able to obtain a unique result.

*On leave of absence from the Tokyo University of Education,
Tokyo, Japan.

'M. Gell-Mann and K. A. Brueckner, this issue Phys. Rev.
106, 364 (1957), hereafter referred to as G-B.
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Frc. 1. Typical diagram of a process contributing to the correla-
tion energy terms of order (r,)' and lnr, .

The simple structure of the diagrams summed by
G-B. suggests that it may be possible to find a more
rigorous way to get their answer without using a per-
turbation procedure. In Fig. 1 we give a typical diagram
which contributes to the terms of order (r,)v and lnr, .
Formally, only the second-order iterated Coulomb


