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General Relativistic Red Shift and the Artificial Satellite
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Singer's formula for the general relativistic red shift on an earth satellite is modi6ed to take account of
the diurnal rotation of the earth and the lack of spherical symmetry of its gravitational 6eld. It is shown
that the Singer rates of the earth and satellite clocks need slight modi6cations, but that these modifJcations
tend to cancel each other except at large distances from the earth, so that when one uses a mean radius of
the earth in Singer's formula the formula is adequate for present purposes.
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~INGER' has shown that, according to the general
theory of relativity, there should be a measurable

diBerence between the rate of a clock on the earth and
the rate of a similar clock on an artificial satellite.
Denoting the times indicated by these clocks respec-
tively by tE, t„t,, the mass and radius of the earth by
ME, EE, the Newtonian gravitational constant by 6,
the radius of the satellite orbit by R~+hh, and the
velocity of light by c, we may write his result as

6 —= (dh„g dh~)/dt@-
= (GME/c'Rsr)(1. 5 (1+ /hR~) ' 1}——

~6.96X10 ro(1 5(1+&/Rz) r —1}. (1)

Singer points out' that atomic clocks are said to be
accurate to better than 1 part in 10".In his derivation
he does not take account of the diurnal rotation of the
earth. Because this involves a term of the magnitude
1.24&(10 " in 5, it seemed worth while to study the
situation more closely.

The Schwarzschild line element for the gravitational
field of the earth is

ds'= (1 2GM~/—c'r) c'dts dr'/(1 —2GM~/—c'r)
—r'( d'8+sin' 8' ') (2)

For large r this is not only Rat but "nonrotating. "
Observationally this means that relative to the coor-
dinate system involved in (2) the stars will exhibit no
significant resultant angular momentum. Thus in using
(2) one must regard the earth as rotating at the
approximate rate of 2x radians per day. So, for a clock
on the earth at colatitude 8, we have

c '(ds/dt~)'=1 —c 'R~' sin'8(dye/dt)s
2GM~/csR~. (3—)

Singer omits the second term on the right of (3). When
it is taken into account, one obtains, for a satellite in
the plane' 8= —,'x
6= (GMs/c'R~)(1. 5(1+8/R~) —'—1}

—-'c 'Rats sin'8(dhh ~/dt)-'. (4)
' S. F. Singer, Phys. Rev. 104, 11 (1956).
~ See footnote 6 of reference 1.
'This is here the equatorial plane of the earth, though in

Singer's case it could be any plane through the earth's center. Ke
consider this special case here for simplicity and easy comparison,
though the orbit of the actual satellite will not lie in the earth' s
equatorial plane.

The first term on the right coincides with the 6 obtained
by Singer. The second term is numerically —1.24&10 "
&sin'8, and this is —1.24&(10—"when the clock is at
the equator.

However, the situation is not as simple as this.
Where such small eAects are concerned, the oblateness
of the earth may not be neglected. It shows itself in
two ways: (a) the value of Rs depends on latitude, and

(b) the gravitational potential of the earth is not
spherically symmetric. Because of (b), the Schwarz-
schild line element is, st.rictly speaking, inapplicable;
but the deviation from spherical symmetry is so slight
that it can be treated as a linear perturbation despite
the nonlinearity of the field equations. We may therefore
replace GMz/c'r in (3) by c ' times the Newtonian ex-
pression4 for the gravitational potential of the oblate
earth, namely

GM~/c'r+ (EGMg/2c'r') (1—3 cos'8)+, (5)

where E is a constant having the value 4.47)&10".At
the equator the second term is of magnitude 3.8)&10 ";
at a pole it is —7.7X10 ". The difference is of the
order 10 ".

For an earth clock at the equator we now obtain,
instead of (3), taking the approximate square root,

c 'ds/dh~=1 ——',c 'R '(dye~/dh)' GMsr/c'R, —
EGM~/2c'R ',—(6)

where E, is the equatorial radius of the earth.
Because of the variation of R~ with latitude, ds/dtrr

turns out to be substantially independent of latitude.
The reason for this is that the second term on the right
of (6), which can be thought of as a second-order rela-

tivistic Doppler term, can also be regarded as the con-
tribution of the centrifugal acceleration to 1/c' times

the gravitational potential, this contribution, by the
principle of equivalence, being equivalent to 1/c' times
a gravitational contribution. The geoid is an equipo-
tential surface of this combined gravitational and
centrifugal potential; and it is the facts that the geoid

4 The fact that r is not a geodetic interval but a radial coor-
dinate makes negligible difference here.
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is a very close approximation to the figure of the earth,
and local e8ects such as surface irregularities and
isostasy are small, that make (6) substantially inde-

pendent of latitude.
We therefore may use (6) for all latitudes. If we

wish to avoid the term involving dqrz/dt, we may take
a clock at a pole. In this case, because of the cose in (5),
we have

c 'ds/dtE ——1 GM—~/—c'R +KGM~/c'R ' (7)

where R„is the polar radius of the earth. Here the
third term on the right is of magnitude 7.7)&10 ".

The values of GME/c'Rz at a pole and at the equator
de'er by approximately 2.35)&10 ".But the value of
c 'ds/dt~ can be approximated to within 8.4X10 "
by the Singer expression 1—GMss/c'Rs, despite the
absence of the dpE/dt term, if one takes Rs to be a
mean radius of the earth, as Singer does.

From now on we shall use the equatorial expression

(6), and express the radius of the orbit of the satellite
as R,+h . Since we are taking this orbit in the equatorial
plane of the earth, we may still assume a circular orbit.
If p, is the mass of the satellite, we have, using the
negative derivative of the expression (5) with respect
to r,

{GtsMz/(R, +h')'} {1+3K/2(R,+h')'}
=t (R.+h')(dv-i/«)' (8)

From this and the modified form of (2) we find that

c 'ds/dt„~ = 1—3G3II~/2c'(R. +h')

SKGME/4c'(—R.+h')', (9)

which, apart from the use of R, instead of R~ and h'

instead of h, di6ers from the corresponding Singer
expression in the presence of the last term, , which is
numerically —9.6X 10 "(1+h'/R. ) o.

The value of 8, comes out to be

9.5X10—"(1+h'/R, )
—'—8.4X10 " (12)

and while each term is close to 10—", the two terms
pull in opposite directions, so that, except for large h',
their combined effect is negligible. For a satellite in an
elongated orbit, such as Singer recommends, the 6rst
term in (12) would become less important, but even for
infinite h' the quantity (12) does not quite reach the
order of magnitude 10—".Thus the Singer formula is
adequate for present purposes when one takes R~ to be
a mean radius.

Although the deviations from the Singer formula are
numerically unimportant at present, they do have
theoretical significance, and they show the need for
defining the height of the satellite above the earth in
terms of an appropriate radius of the earth. Measure-
ments of 5 to within even 1 part in 10" would be
impossible under the foreseeable conditions of early
satellite experiments. But greater experience with
satellites coupled with an improvement in the accuracy
of clocks might bring deviations of the sort discussed
above within the range of measurement.

I am indebted to Professor C. H. Townes for an
interesting discussion.

6= (GM~/c'R, ){1.5 (1+h'/R, ) ' 1—}
—(R '/2c') (d q ~/dt)'+ (KGM~/2c'R, ')

X {(2.5(1+h'/R. ) '—1}
=6.9535X10 "{1.5(1+h'/R ) '—1}—1.24X10—"

+3.8X10 "{2.5(1+h'/R. ) '—1}
=6.9535X10 "{1.5(1+h'/R ) '}

+9.5X10 "(1+h'/R. ) '—6.9697X10 ". (10)

If one uses the mean radius R~——6.3712)&10' cm in
Singer's formula, one obtains

6.9613X10 'o{1.5(1+h/R~) ' —1}
=6 9535X10 io{15(1+h'/R ) i}

—6.9613X 10 ". (11)

We have used five signi6cant 6gures chiefly for purposes
of comparison.

The diGerence between these two formulas for 8 is


