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Parity Doublets and Hyperfragment Binding*
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Northwestern University, Evanston, I/linois

(Received December 26, 1956)

The Thomas variation-iteration method is applied to a model of a hypernucleus in which the binding
arises from a potential which mixes orbital states of opposite parity, a situation which may prevail if the
Ao has the parity doublet structure suggested by Lee and Yang. The P-state part of the ground state increases
with the mass of the hyperfragment and may have a probability as large as 20'Po for mass number 8, with
correspondingly large e8ect upon the decay rate of the fragment and upon the ratio of mesonic to nonmesonic
decay.

I. INTRODUCTION

EE and Yang' have suggested that the apparent
~ mass degeneracy of the 0 and r mesons may be an

instance of a new symmetry principle for strong
interactions called "parity conjugation invariance. "
Their theory postulates the existence of parity doublets
of particles of odd "strangeness", including the A'.
The members of this doublet (At, As) would then be
bound in nuclei with equal strength. As a consequence
(as noted by Treiman') a given species of hypernucleus,
with definite spin and mass number, will have
degenerate ground states of opposite parity:

f.=« t(~t)+&9 s(~s) ~

N. =~s t(~s)+&s s(~t).

The ratio of the amplitudes a and 6 measures the parity
mixing which influences such properties of the hyper-
nucleus as its decay rate' (in terms of the free At and
hs decay rates) and the ratio of mesonic to nonmesonic
decay' 4

While previous authors' " have considered the
problem of hypernuclear binding from the points of
view of coupling schemes, charge independence, range
and spin dependence of A —S forces, our chief concern
here will be the parity mixing of orbital states. To this
end we consider a potential of the form

A', assumed to be of spin ~, C~ is an operator' which
changes At into As and vice versa, and Vt(r), Vs(r) are
central scalar attractive potentials. The coeKcient of
C& is the only odd-parity term which can be constructed
of the vectors r and e. There is no reason, other than
simplicity, for excluding forces which depend also on
the spins of the nucleons, such as tensor forces. We may
therefore expect the present model to apply best to
hypernuclei having spherical cores, such as He', and
to require modification in other cases.

Following other authors, we shall assume that the
A—X force has a range short compared to the nuclear
force range and shall consider Vt(r) and Vs(r) to be
proportional to the nucleon density. Evidence concern-
ing the consistency of this assumption will be considered
in Sec. III. We shall be content to approximate the
potential functions by square wells, whose depths wi11

be determined from the observed binding energies by a
variation-iteration procedure.

The potential (2) can also represent a particle of
zero spin interacting with a core of spin -„e.g., a
E meson bound in a nucleus. For this case, Schwinger's
recent suggestion" of a direct (Et7rEs) interaction,
which has the parity exchange property, leads in the
static limit of weak coupling" to precisely the second
term of (2). While the evidence for such E fragments is
scant, some observed decays of heavy hyperfragments
can be interpreted in this way. '4

V= Vt(r)+(o" r)CpVs(r), (2) II. CALCULATION

where i is the unit vector of the A relative to the center
of mass of the "nuclear core, "o is the spin vector of the

In this section we will apply the variation-iteration
method" to obtain an approximation to the ground

~ ~ ~

state solution of the Schrodinger equation with potential* This work was begun in the summer of 1956 at the University
of isconsin while the author was employed on a 11. S. Atomic (2), letting Vt(r) = cVs(r) where c is a dimensionless
Energy Commission contract.

' T. D. Lee and C. N. Yang, Phys. Rev. 102, 290 (1956). "J. Schwinger, Phys. Rev. 104, 1164 (1956); R. Arnowitt
s S. B.Treiman, Phys. Rev. 104, 1475 (1956). and B. Teutsch have considered the decay of charged E mesons

H. Primako8 and W. B.Cheston, Phys. Rev. 92, 1537 (1953). assuming a weak parity-mixing interaction.
'M. Ruderman and R. Karplus, Phys. Rev. 102, 247 (1956); "S.B. Treiman and the author have obtained in this limit

T. K. Fowler, Phys. Rev. 102, 844 (1956). the potential' R. H. Dalitz, Phys. Rev. 99, 1475 (1955).
6 K. Nishijima, Progr. Theoret. Phys. Japan 14, 527 (1955). F= (2 ') '(fgf1)(e e )—(~" V)U(r),
r J. T. Jones and J. K. Knipp, Nuovo cimento 2, 857 (1955). where f and g are the coupling constants of nucleon and E meson
R. Gatto, Nuovo cimento 1, 372 (1955). respectively to the pion field and U(r) is the Yukawa potential.
G. Wentzel, Phys. Rev. 101, 835 (1956). While this potential is singular at the origin, it can be cut of'f,

' R. H. Dalitz, Proceedings of the Sixth Annual Rochester for example, by use of an extended nucleon source.
Conference on High-Energy Physics, Rochester, 1956 (Interscience "Fry, Schneps, and Swami, Phys. Rev. 99, 1561 (1955).
Publishers, Inc. , New York), p. V-40. "H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951);"D.B.Lichtenberg and M. Ross, Phys. Rev. 103, 1131 (1956). L. H. Thomas, Phys. Rev. 51, 202 (1937).
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(y,Ay)
Xp=Ext

(y,By)where m is the reduced mass of Ap and nuclear core,
—8 is the binding energy of the hypernucleus, and Vp

is the depth of the parity-mixing potential; that is,
Vp(x) = VpS(x) where S(x) is dimensionless. The corre-
sponding Schrodinger equation is

(y,By)
Xp= Ext-

(y,BA—'By)
(12)

where "Ext" means extremum.
We use Eqs. (11)and (12) in the following way: With

trial functions fp and gp, we use (11) to determine p&p&,

the best value of p, and a corresponding Xp~p&. We use
the same trial functions and carry out the same pro-
cedure in evaluating a Pi&&, and lip&&& from (12).Equation
(12) will provide a better, i.e. smaller, value of lip than
Eq. (11) since it contains the iterated matrix"

(4)$V,'+X(c+C e x)S(x) g']—&/(x) =0

For the ground state of this system, having a definite
parity m=&1 and @&~=2, we may write

W(x) =f(*~)Vp(e y)x'*

+Pg(*,—)3 '[V'(~, )x' —2'V'(~ y)x '] (5)

parameter. Introducing the length u, we define x=r/a Equations (9) and (10) can now be expressed as
(and corresponding unit vector z), and additional variational principles for the smallest value lip of the
dimensionless parameters well depth parameter ):

X= (2m''/&&&, ') Vp) q'= (2ma'/A')! E!, (3)

CI operates on the arguments &pr in Eq. (5), which
refer to the intrinsic parity of the AP. Thus Cpa. a
changes the S-state part of (5) into a I' state of the
same over-all parity, as

( f (*) & , p f.(x) y

EPgi(x) i (Pgp(x) i
(13)

(1) ( cosy i
~0i &sinye'~)

(6)

It must then change the I' state into an S state of the
same parity, as the square of C&e z is unity. Similarly
for m&= ——,', parity x, we have

Comparison of the two results will provide an indication
of the degree of convergence. We may point out that
in our case the convergence is more regular than in the
tensor force problem treated by Feshbach and
Schwinger since

Det!B!= (c'—1)S'(x)

~(x) f( ) V —$ is definite for given c.
The Green's functions for A, used in obtaining the

with the Condon and Shortley definition" of the angular
functions. After separation of the radial part of Eq. (4),
we can suppress the variable m.

The aesa/s (5) gives the radial equations
1(

Ld'/dx'+l~cS(x) —»']f(x) =—l~S(x)Pg(x), G (x,x') =-! cosh»x&-

[2'/dx' —2/x'+l~cS(x) —»']Pg(x) = —XS(x)f(x).
(8)

G„(x,x') =—sinh»x& exp( —»x&), for /=0,

s1nh&&x& )
!

gx, )

X! 1+ ! exp( —»x&), for /=1, (14)
»x&i

1
The constant P has been introduced for later
convenience as a measure of the mixing of S and I'
states.

Following Feshbach and Schwinger, " we introduce where x~ is the smaller and x& the larger of x, x'.
Ke let

(—d'/dx'+vP 0

—d'/dx'+2/x'+»'i (15)

pcS(x) S(x) i i f(x) ~

E S(x) cS(x) ) Epg(x) )

and write (8) as

OI

Ay= lI.By,

y= l~A-'B y.

(9)

(10)
'6E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Macmillan Company, New York, 1935), p. 52.

and choose as trial functions in the interior region
(x&1):

fp(x) =x exp( —yx/2),

gp(x) =x' exp( —8x/2).
(16)

'7 Note that X is absorbed in the definitions of f1 and g1. For a
complete discussion of the variation-iteration method see P. M.
Morse and H. Feshbach, Methods of Theoretica/ Physics (McGraw-
Hill Book Company, inc. , New York, l953). The significance of
the notations ) 0(') and X0(&& is there made clear.
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Fro. 1. "E8ective" well depth parameter {c+1)XO(&) as a
function of binding energy parameter p for various values of the
ratio c of ordinary to parity-mixing potential. The curves labeled
c= ~ (S) and c= ~ (E) correspond to pure S and I' states, respec-
tively, bound in an ordinary potential.

with «=rr(1+rr) '.
Evaluation of the matrix elements (rr, Aq), etc. , as

explicit functions of P is then a straightforward job.
Each matrix element is a quadratic function of P with
coefFicients which are elementary functions of g. The
quantity P is obtained finally as a solution of a quadratic
equation, the appropriate branch of the solution being
6xed by the requirement that A, p be positive. For all
the cases studied this yields a positive value for p.
Values of Xp&" and )«(:& obtained in this way are given
in Table I as a function of g and may be compared for

p and 8 are determined by matching the logarithmic
derivatives at x= 1 to the exact S and P functions for
the exterior region. Matching amplitudes as well, we
obtain

fo(x) =x expI —(1+rr)x$, x&1

=expL —(1+/x) j, x) 1,

go(x) =x' expL —(3+«rr)x$, x&1
(1s)

=«(1+1/rrx) expI —(3—«+rrx)), x) 1,

Fro. 2. Probability of the A to occupy a I' state, expressed in
percent. Dashed curves: lowest approximation. Solid curves:
first iteration.

convergence. A more intuitively valuable quantity,
namely (c+1)XO"', is plotted in Fig. 1.

To obtain the fraction of I' state present, let P= KP',
where K (real and positive) is chosen such that

(19)

Then the fraction of P state is

p 2~2 g2«
dp

" (f'+p"x'g')ch
4p

=P' (1+P")-'. (2O)

I:fo'+(p"')'go'j«
0

and for the latter,

J Efofi+ (p"')'gogi j«.
0

This fraction, expressed as a percentage, is plotted for
various values of c and g in Fig. 2. It is given for both
the (0) and (-,') approximations. For the former, we use
for normalization

TABLE I. Depth parameter )«as a function of binding energy parameter g for various ratios c of ordinary to parity-mixing potential.
Results are given for the original trial functions and for the first iteration to enable comparison for convergence.

0
0.25
0.5
1
1.5
2

5.80
6.55
7.73

10.3
13.8
18.3

C=O

5.05
5.75
6.23
8.39

111
14.7

3.32
3.91
4.65
6.53
8.92

12.2

)«p 0/2)

2.98
3.46
3.99
5.29

~ ~ ~

9.24

yo(0)

2.20
2.67
3.23
4.66
6.50
8.96

2.01
2.38
2.79
3.79

~ ~

6.79

/r, p(0)

1.26
1.56
1.93
2.88
4,11
5.68

C=2
),0 (1!2)

1.16
1.40
1.67
2.34

~ ~ ~

4.32

2.67
3.38
4.25
6.54
9.70

13.8

C= re

c)r„(1/2)

2.49
3.05
3.71
5.36
7.57

10.4

C'Aoa

2.48
3.00
3.63
5.25
6.95
9.25

a Exact solution.
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TABI E II. Values oi v = (2mos/0') &
~
8

~

& and effective well depth
(c+1)Vs for observed binding energy

~

E ~, assuming two different
values for the nuclear radius. Vo and ~Z

~
are given in Mev.

a =1.2(A —1)1~3)(10»cm
A ]Et q cVp(c = ) Vp(c =0)

3 0.20 0.128 33 65
0.60 0.222 36 67

4 1.45 0.419 28 50
5 2.50 0.630 25 43
6 3.50 0.823 24 40
7 4.50 1.01 24 38
8 5.45 1.18 24 37
9 6.35 1.35 24 37

a =
t 1.2 (A —1)1~3+0.7j

)&10» cm
cVp(c = ~) Vp(c 0)

0.193 15 29
0.333 17 31
0.591 16 28
0.865 16 26
1.10 17 26
1 33 17 26
1 55 18 27
1.74 18 27

8-

7-

5-

4-

'6
n

'

'I ~

Be8, t

A comparison here gives directly a measure of the
convergence of the wave function, which is of course
not as good as for Xo,. but it is reasonable, especially for
q&1.5, corresponding to the range of binding energies
which have been observed.

2 „He4

III. DISCUSSION

We shall con6ne our observations mainly to the
dependence of orbital mixing on the binding energy of
hyperfragments. The eRects which an admixture of
P state would have on the theory of the ratio of mesonic
to nonmesonic decay rates and on the hyperfragment
lifetimes have been previously discussed by Treiman. '

While the binding energy appears to be a smooth
function of the mass number (see Fig. 3) within the
rather large experimental error, one can reasonably
expect that further refinement of the measurements
will show deviations from this smooth behavior depend-
ing on the structure of the nuclear core, including its
spin. In view of the experimental and theoretical
uncertainties, we have thought it best to use a smoothed

. nuclear core radius in attempting a comparison with
experiment.

In Table II are given values of g calculated from the
observed binding energies for the various hypernuclei,
assuming two different radii for the nuclear core. Any
apparent dependence of the data on charge of the core
has been ignored. We have also tabulated the eRective
well depth (c+1)Vs in Mev for the cases of pure
ordinary (c= oo) and pure parity-mixing (c=0)
potentials.

Certain conclusions can now be drawn:
(a) Since the calculated values of rl cover the range.

q&1.5, it will be seen, referring to Fig. 2, that a rather
large admixture of P state results even for c= 2,
corresponding to "twice as much" ordinary as parity-
mixing potential. The admixture increases rapidly with
binding energy, so that a hyperfragment would have to
be light to exhibit the lifetime of the hypothetical
long-lived A'.

(b) From Fig. 1 it can be seen that our parity-mixing
potential is less eRective in binding than the ordinary
potential (as would be expected from the introduction
of a centrifugal barrier). For small binding energies,
pure parity-mixing requires a well depth about twice

I I I I I

t 2 3 4 5 6 7 8 9

FrG. 3. Binding energy of hyperfragments as a function of mass
number. The data in this table represent by no means a complete
survey on the part of the author. The data are obtained from the
following sources: The crosses represent the data of J. Schneps
LPh. D. Dissertation, University of Wisconsin, 1956 (un-
published) j and oi Slater, Silverstein, Levi-Setti, and Telegdi
[Bull. Am. Phys. Soc. Ser. II, 1, 319 (1956)] combined with
weights reflecting the probable errors assigned by the investi-
gators. The solid circles are the data of Gilbert, Violet, and White
/Phys. Rev. 1P3, 248 (1956)g. The squares are the result of a
"world average" prepared at the University of Chicago, and very
kindly supplied to the author by Professor Telegdi. It will be seen
that these points suKciently determine the curve for our present
purposes.

the depth to bind the first S state and about one-half
the depth to bind the erst P state in an ordinary
potential of the same range. "

(c) One might expect that c and Vs would charac-
terize the A.—X force and thus be relatively constant
as a function of mass number. If we choose a value of
c, it can be seen from Table II that Vo is nearly constant
for A&~6, especially for the larger radius a. Between
A =3 and A =6 there appears to be a definite decrease
in Vo. We shall not attempt here an interpretation of
this apparent decrease. It should be noted that Vou' is
relatively insensitive to a, as is well known for short-
range potentials, and consequently Vo is sensitive.
For the lightest hyperfragments, it is probably not
suKciently accurate to use the square well. Instead one
should use a potential determined by the nucleon
density distribution, as was done by Dalitz. "

It is a pleasure to thank the Physics Department of
the University of Wisconsin, W. F. Fry, G. Snow, W. D.
Walker, and especially R. G. Sachs for a very enjoyable
and stimulating summer during which this work was
begun. The author has profited greatly from discussions
with S. B. Treiman.

' There is no necessity for the ordinary potential to be attrac-
tive. The case of a repulsive ordinary potential (c&0) is being
studied.


