
TIME REVERSAL AND CHARGE CONJUGATION

the decay of E+,

(A6)

E+~e +m++t, (AS)

into the two different final parity states are proportional
to pfi+qgi* and pf2 qg—2*, respectively, while the cor-
responding elements for

E+.ate++sr + t

I
Pfi+qgi*l'+

I Pf2 qg2—*1'
r=

I Pgi+qfi*l'+ I Pg2 qf—2*I'
(A7)

are proportional to pgi+qf, *and pg2 —qf2* T. he branch-
ing ratio r for the decay of E+ into e +sr++i and e+

+sr +f is, therefore,
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The explicit form for the spin projection operators introduced by Fronsdal is calculated for arbitrary
spin and applied to erst-order processes involving four fermions. The matrix element for the most general
nonderivative interaction is found for the special case in which two of the particles have spin —,. The method
of relating matrix elements written in different orders is extended to this case.

The theory is applied to the decay of the mu meson, extending the work of Caianiello. It is found that
the experimental decay spectrum can be equally well 6tted by an assignment of spin -', or —,'. The method
is then applied to the Fermi decay of hyperons. Lifetimes are calculated for decays in which the initial
particle has a spin of —,

' or $, and the Anal particles all have spin —,'. All the lifetimes are less than 2 orders of
magnitude longer than the corresponding observed lifetimes for the normal mode of decay.

The hypothesis of a universal Fermi interaction is extended to include fermions of arbitary spin. Under
this hypothesis, the experimental muon spectrum is most closely reproduced with spin —,. The results also
indicate that the muon has the same particle-antiparticle character as an electron of the same charge.

INTRODUCTION

ECENT experimental evidence has indicated the
possibility that the "strange" particles may have

spins larger than unity. Ruderman and Karplus' have
found, by an analysis of mesonic and nonmesonic decay
of hyperfragments, that the spin of the A' is either -',

or ~3. Walker and Shephard' analyzed the angular cor-
relations between the planes of production and decay
of the Z and the h.' and found the spins to be —,', —,', or —,'.
In addition to the strange particles, the long-known
mu meson may conceivably have spin higher than —,'.

When considering the possibility that some of the
hyperons might be fermions with spin higher than -'„

we meet a difficulty in that some of them are charged,
and so interact with the electromagnetic 6eld. A gauge-
invariant way of describing this interaction has been
given, by Fierz and Pauli. ' Only very few calculations
have been carried out on the electromagnetic properties
of particles described by the Fierz-Pauli equation, and
th, e only result of interest to us is that of Mathews, '
who calculated the Compton scattering cross section
and the bremsstrahlung in the case of spin —', . His result

*This work was supported in part by the National Science
Foundation.

' M. Ruderman and R. Karplus, Phys. Rev. 102, 247 (1956).
2 W. Walker and W. Shephard, Phys. Rev. 101, 1810 (1956).
'M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211

(1939).
4 J. Mathews, Phys. Rev. 102, 270 (1956).

de6nitely rules out the possibility that the muon is
such a particle, while the conclusions that can be made
with regard to hyperons are less definite.

In the present paper we have calculated the lifetimes
and spectra of Fermi decays of higher spin particles to
first order, i.e., using the 6eld-free wave functions.
This calculation has been applied to the hyperons, the
heavy mesons, ' and the muon. We have included the
muon on the basis that the electromagnetic properties
of higher spin particles might be diferent than those
predicted by Fierz and Pauli and calculated by
Mathews.

FREE FIELDS

The wave function appropriate for describing a free
particle of integral spin s is a tensor of rank s, and
satisfies the wave equation

(p +rrt )Cay aq= 0& (1a)

and the subsidiary conditions

~ t g s ~ ~ o g2 ~ ~ ~ (p o ~ t ns ~ ~ o m ~ ~ ~ ~4 2

p ~Cay . a~=0&

g ~&1&2 ' '&s —u&
cx1A9rK

where g&" is the metric tensor

(1b)

(Ic)

(1d)

5 Results for the heavy mesons will be given in a separate
publication.
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(p+ie)Ca) aa=0) (1a')

and there is the additional subsidiary condition

4al ~ ~ an0!lc& (1e)

For half-odd-integral spin s= rs+rs, the wave function
is a tensor of rank e, each component of which is a
Dirac 4-spinor. Equation (la) is replaced by

tensor and, in the case of half-odd integral spin, the
p matrices. By going to the center-of-mass system
Eq. (2b) simply reduces OH to a three-dimensional
tensor, Eq. (2a) is taken into account by symmetriza-
tion, and Eq. (2d) amounts to 6xing a constant. Thus,
only Eqs. (2c) and (2e) remain to be accounted for.
As an illustration, we shall calculate 0' for the spin —,

'
case.

In the rest system we must have
where the y" are the Dirac matrices, and p —=y"p„.

Following Fronsdal, ' we now introduce an orthogonal
projection operator 0' with the following properties

0) "=
ga "+&V)'Y")

Pl ~ ~ ~

0H ~ ~ ~ V ~ ~ ~ V ~ ~ ~La $ 2ag

Pl ~ ~ ~

0 ~ ~ VQ ~ ~ VvH V ~ ~LC f

where the indices run from 1 to 3, while all components
of 0"„"with either )t2 or r or both equal to 4, are zero. We

(2a) determine the constant a by means of Eq. (2e):

Pl"0.," =0
yv+3ayv= 0

(2b)
Thus, in the rest system

pl ~ ~ ~

20a)as ~ =0 (2c) QH
V —

g
V 7 yV

Pl ~ ~ ~ pl 2 ~ ~ $] ~ ~ ~

8-)" HP) "=0 )".
7

The generalization to an arbitrary frame is found by
(2d) noting that in. the rest system

and for half-integral spin

pj ~ ~ ~

'r 'OHa) ~ ~ =0. (2e)

( p~p"'t
(V,0) =

i g."—,iv. ;

Pl v ~ ~

In addition OHa)" commutes with p.
This projection operator derives its importance from

the fact that if C)a)" is any solution of (1a) or (1'a),
then the wave function 0,

=i g"—P)PV)

p] ~ ~ ~

a) .= Oa). C'p) (3) so that the covariant form of OH is (with i2, r running
from 1 to 4)

satisfies all the subsidiary conditions as well as the wave
equation, i.e., is that part of C," that describes a 0 .—i . "

i ! g
.

) C~
particle of unique spin. It is now possible to show' that ' ( p' ) 3 & p' )

p] ~ ~ ~ Pl v ~ ~

Va) O'P) ' ' ' = OHa) h.+=A+OHa) ~

spin
(4)

P P")
(7a)

E s)

(w,p "+P,v "p).
3 2

where the A.+ are the usual energy projection operators (7b)
of the spin- —,

' theory.
=gy" 37p7"

Explicit construction of the 0 operator is carried out
as follows. First note that 0 must be expressed solely The general expressions for 0 for arbitrary spin have
in terms of the momentum four-vector, the metric been calculated in the Appendix. For integral spin

(1)'
cl'' 0

E S!) P(a)
I'(P)

av~sOHa, a)OH»» ~ 0'. . .OHP'-'P', for even s
O.P'+arO. ..,O»P2 g O.P~+ +

gi r)~sOHa)a2. . . OHPV 2Pv 10Ha Pv -for-odd s

where the sum is over all permutations of rr and P, and

sI
g (2) ( 2)v QH P gP—

r!(s—2r)! (2s—1)(2s—3) ~ ~ (2s—2r+1) p'

' C. Fronsdal (to be published).
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For half-odd integral spin reproduced here for convenience:

Pr Pe 1 &+S' PPi Pe. I-
Oai aa I($) = 7 ppOaai ~ ' 'aa-I($+s) ~ (1O)

2s+2

MATRIX ELEMENTS

We now consider the decay of a fermion of mass m~,
spin s~, into 3 other fermions of masses m2, nt3, m4 and
spins s~, s3, s4. If any one of the decay products is a
neutrino we can only consider the spin value —',. If the
neutrino mass is zero, the above theory for higher spins
does not apply, and the assumption of a small but finite
mass m leads to lifetimes~ which are proportional to
m' '. Because most decays involve the emission of
either two neutrinos or an electron and a neutrino,
we shall limit ourselves to the case sa=s4 ———',. The
extension of the following discussion to the most
general case is quite straightforward. We further assume

only direct coupling, which limits the value of
~
si —ss~

to Oor i.
Case 1, si=ss=s. There are two possible sets of

invariants'

F (s,s)=(u . „(2)I' e ''' "(1))(u(4)1"e(3)), (11a)

F"(s,s) = (u~, "~.(2)I"li~~"& "~ (1))

X( (4)1"~-~-, (3)). (1»)

—1I~

—4 —6 4
—2 0 —2 1

0 —2 0
—2 0 —2
—4 6 —4

(12)

By virtue of the relation

we have, for example, Q= —1 for the scalar interaction.
In this manner the explicit representation of Q is found
to be (when the subsidiary conditions are taken into
account):

In order to deal with the invariants of the form (11b)
we introduce an additional operator, defined as follows:

Q(ua, " a. (2)1"N~ ' '"(1))(u(4)1"y"yap N(3))

=(I," „(2)I"sr, '" .(1))(u(4)y C 'I' y, 'N(3)).

where N=s —-,'. Invariants with more than two 7 's are
zero or reduce to (11a) or (11b) by the subsidiary
condition (1e). No new invariants are obtained by
changing the order of the wave functions, or by shifting
the 7 ' and y i in (11b). Consider erst (11a). We
introduce the notation

(13)

F =F (abed)=(aC 'I"b)(cC 'I' d),

where C is the charge conjugation operator, and study
the effect of permuting two of the variables u, b, c, d.
The general method' developed for the case s= —'„may
be applied with no modification. Therefore, the F form
a basis for a representation of the permutation group
on 4 objects. For example:

P„F '(abed) = (P„), 'F'(abed).

The explicit form of the permutation matrices" are

r S. Kusaka, Phys. Rev. 60, 61 (1941).
s We define I'=1, F'=y„, I's=s(y„y„y„y„)/2v2, I'=—ip~y„,

F4=ps, where y;t=y;, i =1 ~ ~ 5.
s M. Fierz, Z. Physik 104, 553 (1937); E. R. Caianiello, Nuovo

cimento 10, 43 (1953); R. J. Finkelstein, Nuovo cimento 1, 1104
(1955).' See for example, R. Finkelstein and P. Kaus, Phys. Rev. 92,
1316 (1953).

By the definitions of P,s and of Q, or by actual multi-
plication, we verify that

QP~Q= P~.

The fact that Q as well as P~ and P~ are nonsingular
proves that no additional invariants may be obtained
from (11b) by a different ordering of factors.

Applying the operator —P~Q to (11b), one obtains

F'"(s,s) = (u(3)y, I"I i' s" (1))

This is readily seen to be zero or to reduce to invariants
of the form (11a), except when o.= 2, in which case we
obtain an invariant that we shall designate F'(s,s):

F'(, )=( (3h" ""*"'"(1))
)( (sI (4)pat'Nar a~(2)). (11c)
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p2 ~ ~ Op~

lMl'= Q g,' Tr(ps —ims)Oa, " a„(ps)

The complete set of matrix elements for this case is over the energy and spin states, obtaining
thus F'(s,s), 0=o 5, as given by (11a) and (11c).

Case Z, s'=ss+1=s. The possible invariants are

F'(, s—1)=(u ".„(2)t"u" ".(1))

X(u(4)~ y- u(3)). (14)

Invariants with more than one y reduce to zero or
(14) by the subsidiary condition (1e). Applying P~,—
we obtain

F'(s, s—1)=(u(3)y, I' u~&" "(1))
X(u(4)F'u, „(2)). (15)

0 01,4

at .a"
X~'(p~ —~m') Oe " e.(pi)F'~ {Trp4F y ipse'F'}.

The 0's appearing here correspond to the half-odd-
integer spin values s and s—1. We may now use Eq.
(10) to express these 0's in terms of the 0's corre-
sponding to the integral spin values s+-,'=x+1 and
s——,

' =n. In terms of the latter,

The subsidiary conditions give

Fo=F4=O, Fs=2Q-'P~QFI',

F'=2Q 'P~QF" F'= 2Q'P"Q—F'4. - (16)

4$ 1 p p2 p„ aat . .a"
l&l'= Z g.' o--2" -.(Ps)oee~" e.(p]).~,i, 4 16s(s+1)

X {Tr(ps—ims)y 'ye ~'(pg —imp)yegg"}

The complete set of matrix elements for this case is thus

F= P g.(ua, " a.(2)F'u~&"'~"(1))
o =0,1,4

X(u(4) t'.v-,u(3)). (14')

We emphasize that the preference for one representation
over any other is one of convenience in deducing
identities and calculating matrix elements, since the
corresponding results in any other representation may
be easily obtained with the help of the permutation
matrices.

TRANSITION PROBABILITIES

X{Trp4F y.,pete'I"}. (17)

The traces may now be evaluated separately from
the product of the 0's. We have listed, in the Appendix,
those formulas which are useful in calculating this
product, and which lead to a straightforward but
tedious evaluation of lMl' for arbitrary spin s. We
have completed this calculation for s=-,' with the fol-
lowing result for the diGerential transition probability

mymsd ps
5'd'Ps= {(E''cosh8+Es')

3(2m)'EgEs

In this section, we shall again restrict ourselves to
the special cases for which the matrix elements have
been discussed in detail above, s3——s4——~. If m3 ——m4= 0,
the di6erential transition probability may be written

where

X(coshco —cosh8+xse "sinh'8)

+sEs'(1+-,'e "cosh8) sinh'8}, (18)

dPs
(Pd'Ps=

16(2m)'mgE, (2s+1)

Qg g,FF.,t
P4 (Ps—P')

E1 ge'+gl'+g4rl E2 glq E3 ge g4~

cosh8= —
Pg Ps/mgms, &u=ln(mg/ms).

This agrees with the result of Caianiello. " It may be
compared with the expression given by Michel, "who
considered the case s= ~. Michel's formula may be
written

+sEs sinh'8}, (19)
where

where F, is givenby (11a) and (11c)in the cases'=s2 ——s
and by (14') in the case s'=ss+1=s. mPms'd'ps

As an illustration of the calculational advantage (Pd'Ps= {(E'cosh8+Es)(cosh' —cosh8)
gained in choosing a certain representation, we shall 2(2~)'REs
discuss the case s'=ss+1=s. tf we write the matrix
element in the form of (14'), then

l~l'=Z Zg.g-F.F.'=Z Z g.'IF-I',
spin o=o spin o=P

~ 1,4

i.e., there are no cross terms between tensors of dif-
ferent ranks, and we see that the 0. sum runs over the
simplest of the tensors. By using Eq. (4), we may sum

El= ge+2(gl+gs+gs')+g4
E2=gl+2gs+gs &

Es= go —2gP+2gs' —g4.

"E.R. Caianiello, Phys. Rev. 83, 735 (1951)."L.Michel, Proc. Phys. Soc. (London) A63, 514 (1949).
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P= v =—lifetime=
Et+2Es

6(2s.)s

(Es „)s(Et+ 2Es)

E2 2EQ

&2 max

MUON DECAY

It is generally assumed that the mu meson decays,
through weak coupling, in the following manner:

p,~e+v+ v.

Depending on the value of the spin assigned to the
muon, —', or 2, the spectrum of the emitted electron is
given by either Eq. (19) or (18). However, the mass
of the electron is so small compared with the energies
involved over most of the spectrum, that we may,
advantageously, introduce the approximation of ne-
glecting terms proportional to the electron mass. The
resulting spin —, transition probability is given by

r(P. (n)dn—-4~'dnP(1 —~)+2p(sn —1)i, (20)

where

.6-
es

O
CL

4

a
s4
K p

s o25

gs .50
y's .64

UNIVERSAL FERMI INTERACTION

As a criterion for choosing some combinations of
coupling constants, we shall investigate the conse-
quences of accepting the validity of the hypothesis of
the universal Fermi interaction. In the case of 4
interacting spin- —, particles the most general matrix
element may be written

l I t 1 I I I 1 l I

0 .I .2 .3 .4 .5 .6 .7 .e
Relotive energy

Fro. 2. The energy spectra measured by Lederman eE cl.
(v=0.64) and by Crowe et al (v=0..50), and the spectrum (Pt
predicted by the hypothesis of a universal Fermi interaction
(v'=0 25).

For the spin 2 case, we have

,'(p,, (&)d&-10&'d&$1—&+—,', &'+ p'(-;~ —1)], (21)

F(abed) =g g.(al' b)(cI"d)

=gss+gtV+gsT+gsA+g4P. (22)

where

Et'+Es'' (»/2)(2 )'

(Es ) '(Et'+Et')

The hypothesis of a universal Fermi interaction may
be expressed in the form suggested by Finkelstein and
Kaus, "by (i) replacing Eq. (22) by

LO—

.6—
O

O
CL

A

S
a

l

Qp
I I

,e .9 t.p

Relative energy

FIG. 1. The energy spectrum (P~ for extremal values of p'.

We emphasize that these are the only two possible spin
assignments for the muon, namely —,

' or —'„since all the
decay products have spin —',.

In Fig. 1, we have plotted (P;(rl) for the extremal
P' values 0 and rs. In Fig. 2, the sPectra given by (20)
is shown for the experimental value of Lederman et al. ,

"
p=0.64, and for that of Crowe et al. ,

"p=0.50, as well as
the spectrum given by (21) for p'=0. 25. We thus see
that by properly choosing the coupling constants g„
the experimental results can be equally well reproduced
by a spin assignment of either ~ or ~.

F= P F(abed),
abed

(22')

where the sum is over all modes of all spin--,' particles;
and (ii) by imposing the Jordan-Wigner anticommuta-
tion relations on all creation and absorption operators,
whether belonging to different fermions or to different
modes of the same fermion. The latter requirement is
based on the assumption that all fermions are modes
of one fundamental 6eld. This effectively replaces
F(abed) in (22) by

-', (1—P)F(abed), (23)

where I' is the permutation operator that interchanges
the wave functions of either the two particles or the
two antiparticles in F(abed). If the order of wave
function in F(abed) has been so chosen that a and c
have the same particle-antiparticle character (pac),
one finds that the most general matrix element of the
form (23) may be written

a(S—T+P)+b(V A)+c(S A P)—. (24)— —

If, on the other hand, c and d have the same pac, one
obtains

' Sargent, Rinehart, Lederman, and Rogers, Phys. Rev. 99,
88S (1955).

~4 Crowe, Helm, and Tautfest, Phys. Rev. 99, 872 (1955).
We propose that the hypothesis of the universal

Fermi interaction be extended to encompass fermions of
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di6'erent spins, assuming ah/ fermions to be modes of
the same fundamental field.

We shall again con6ne our attention to the inter-
action of two higher spin and two spin- —, particles, as
given by the matrix elements (11a), (11c), and (14').
Four cases must be considered:

Case la, si=so ——s, and the particles 1 and Z have the
same pac.—The most general matrix element consistent
with the hypothesis of the universal Fermi interaction

Case Za, si=so+1=s, and particles I and Z have the
same pac.—The matrix elements may be written in the
form (15):

F=P g.—',(1—P,e)(u(3)y~, F u &" ~ (1))
0

X (n(4) I"u," „(2))
o' 0, 8,4

ls:

o,o' 0

g"-'(1—P ) (n(4)F ""'"(1))
By (16) this reduces to the unique matrix element

P=g, ( (3)y "' '"(1))( (4)yy- - "-.(2)) (28)

X(u.,".„(2)F'u(3))+P g. -,'(1—P, ')o"
o'=0

where

X(n(4)y~&u~&'~& ~~(1))(n~, . ~„(2)y~i~u(3)))

P.e'(n- -.("2)y- u(3)) = (u(—3)y- 'u- -.("2))

=Q 'P"(u- ."-.(2)y- 'n(3))

(P.d')o"= (Q 'P.~)o"=&o",

so that (1—P,q') o"=0 and there remains

Written in the representation (14), this is the Wigner-
Critchfield interaction S'—A' —P'. The relations F'= F'
=0 becomes S' T'+P'=—V' —2'=0, in that repre-
sentation.

Case Zb, si ——so+1=s, and particles 1 and Z have
opposite particle antipart-icle character. In this ca—se we
write

X(n(4)F u(3)),

g (n(4)F u ' ' "(1))(n i (2)F'u(3)). (25) which reduces to the unique matrix element
~~.g 4

P go(ua2' ' 'eke(2)you~& ~"(1))( n( 4) yoy~, u( 3)) (29)Thus of the six invariants, only three remain.

EFFECT OF THE UNIVERSAL FERMI INTERACTION
opposite pac. We now ha—ve ON MUON-DECAY

4

p= P g. , (1—P,„) (n.. .„(2)F.u- " --(1))

X(u(4)F u(3))+ P g, &(1—P,s')o"
o'=0

X (n- " --(2)u"' '"(1))(u(4)y"y-i'u(3)) (26)

where

P~'(u(4)y"y-i™(3))—=(n(3)y"y- 'u(4))

=(n(3)y 'y. , C 'u(4))= —P,g(n(4)y 'y i u(3))

+2', '(u(4)u(3))

The first term gives zero as in case 1a, while the second
term is contained in the first part of (26). Therefore, in
this case as well, only three invariants consistent with
the hypothesis of the universal Fermi interaction exist:

F= g g, (n, " „(2)I"u ' '"(1))(n(4)t"u(3)). (27)
o =0,3,4

Note that if (27) is expressed in terms of the invariants
used in (25), and vice versa, one obtains the familiar
forms (24). From a computational viewpoint, (25) and
(27) are the most convenient representations in the
respective cases.

These results may be applied to the decay of a muon.
With reference to the spin and pac of the mu meson,
the folIowing four possibilities exist:

(i) Spin o, same particle antiparticle c-haracter as
electron. —The matrix elements (25) written in charge-
retention order will have the form S—T+P, V—3,
and S—A —P, corresponding, respectively, to p=0.75,
0.75, and 0.50. The results of neutron decay seem to
favor S—T+P, which, when electromagnetic cor-
rections are included, " is consistent with the experi-
mental result of Lederman. The experiment of Crowe,
on the other hand, seems to favor S A P. — —

(ii) Spin —„opposite particle antiparticle c-haracter to
electron. —The matrix elements have the form SAP
and S—A —P, corresponding, respectively to p=0,
0.50. The value p=0 is in definite disagreement with
both experimental results.

(iii) Spin o, same particle antiparticle charac-ter as
electron The matrix .—element (28), written in charge-
retention order has the unique form S—A —P cor-
responding to p'=0.25. The spectrum is plotted in
Fig. 2 for this value.

(iv) Spin o, opposite particle antiparticle chara-cter to
electron. The matrix elem—ent (29) has the unique form

5 BehreIIds, Finkelstein, and Sirlia, Phys. Rev. 100, 1809(A)
(1955).
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(29) corresponding to p'=0. This is in disagreement
with both experimental results.

We note that in cases (i) and (ii) Crowe's results
contradict the assumption that the muon and neutron
decay by the same interaction. On the other hand, there
is no basis for such an assumption if the muon is
assigned the spin-value ~3. If there is no systematic
error in either experimental result, we are led to favor
(iii). The experimental lifetime gives a value of g' of
the same order of magnitude as the spin- —', theory.

in addition to its usual mode

cV~X+m

By drawing an analogy to pion decay through a
virtual nucleon-antinucleon state, Costa and Dalla-
porta'~ have shown that some of the branching ratios
for the various modes of E-meson decay might possibly
be explained by a virtual A.'-antinucleon state. An
actual experimental indication of the beta decay of the
5 is reported by Hornbostel an.d Salant, "who interpret
their event 4 as

Z~X+e+ v.

It is apparent that these examples are special cases
of what is to be expected if the hypothesis of the uni-
versal Fermi interaction is correct. We again state the
general rule: Under the hypothesis of the universal
Fermi interaction, all spinor particles should decay by
(22'), provided the usual conservation laws are fulfilled. "
The experimental observation of the allowed- processes,
of course, will depend upon their lifetimes. We list here
the decay schemes to be expected according to various
spin assignments, and then calculate some of the
lifetimes

h;+X+ v+v, s= is, ss,

Z8 +X+ + vqsv= s q sf

(30a)

(30b)

FERMI-DECAY OF HYPERONS

It has been suggested" that by considering the A' as
an excited state of the neutron, one should expect the
A.' to have an analogous mode of decay, i.e.,

As—+X+e+ v

where X is a nucleon, and v is a lepton. Any new
hyperons will be connected by the proposed generaliza-
tion of the decay interaction (22') to the, Z, A, and X.

We have calculated the lifetimes in the special case
in which the heavier hyperon has spin —', or ~ and all
the decay products have spin —,'. When two of the latter
are leptons we may, to a very good approximation,
neglect their masses. The differential transition prob-
abilities (18) and (19) are then readily integrated to
give

1 2mgm2

(s (Er'+Es'+-,'Es'e ")
rl 3(2s.) s

)&I -', gs(2tls' —5) (rlos —1)&+cosh 'go

+(&/13)e "(ns' —1)'3+sEs'Ls(no'+2)(ns' —1)'
—

res cosh 'tie —(1/30)e '"(gs' —1)'j}, (31)

m]m2
{s (Er+2Es) Lans(2ns' —5) (ns' —1)'*

rl (2s.)'

+cosh 'qs]+-', EsL-'s (tie'+2) (ris' —1)&

—tie cosh 'tlat). (32)

The coupling constant is a matter of some uncertainty.
We have used the value g= 1.374&10 "erg cm', which
is the experimentally determined value of the Gamow-
Teller coupling constant in neutron decay. " Justified
only on the basis of simplicity, we have assumed that
the coupling constant is independent of the spins of
the various particles.

The inverse lifetimes of the decays to which (31) or
(32) could apply have been calculated, and given in
Table I, for each of the 8 possible interactions. In
Table II we have given the lifetimes that would be
predicted on the basis of the hypothesis of a universal
Fermi interaction for the various assignments of spin.
Because of the law of conservation of heavy particles,
the hyperons must have the same particle-antiparticle
character. The values of the masses used are as follows:

m~= 1836 m„
my=2181m "

Zs]~Aas+ v+ v,

Z,~X+v+ v,

Zsi +Ass+ v+ v,

~~ar~Zss+ v+ v,

Is,—s,
l
=0, 1

3
2& 2)

isi-ssi =0, 1,

)sq —ss[ =0, 1,

(30c) m-. = 2582 m, ."
(30d) Processes involving a muon (in place of one of the

leptons) give differential transition-probabilities which
are considerably more complex than (18) or (19),which

(30f) are valid when ms ——m4 ——0. We have completed the
calculation for the decay Ai—+X+pl+v with scalar

"R.J. Finkelstein, Phys. Rev. 88, 555 (1952); M. Markov and
V. Stakhanov, J. Exptl. Theoret. Phys. U.S.S.R. 28, '140 (1955)
LSoviet Phys. JETP.l, 593 (1956)g.

'~ G. Costa and N. Dallaporta, Nuovo cimento 2, 519 (1955).' J. Hornbostel and E. Salant, Phys. Rev. 102, 502 (1956).
'9 We include the law of conservation of heavy particles in the

word "usual. "

2' J. Gerhart, Phys. Rev. 95, 288 (1954).
' Friedlander, Keefe, Menon, and Merlin, Phil. Mag. 45, 533

(1954).
s' Fry, Schneps, Snow, and Swami, Phys. Rev. 103, 226 (1956).
~' Proceedings of the International Conference on Elementary

Particles, Pisa, 1955, Nuovo cjmento (to be published).
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TABLE I. Calculated values of reciprocal lifetime for some Fermi modes of decay of hyperons for the 8 interactions
possible with spin assignments of —,'or —,'.

Spin
Interaction

A.,o—+X+v+v
Z,+—+X+v+v
Z,+~A/+ v+ v

Z ~K+v+v
~~s~A$ +v+v
gg~Z) +V+ V

0.134Xios
0.716X10'
0.209X106
0.501X10'
0.287 X10s
0.327X10'

0.136X10'
0-728 X 10s
0.233X ips
0 519X10'
0.289X 1Ps
0.330X10'

1/2

0.404Xips
0.215X10'
0.635X106
0 151X10io
0 861X10s
0.983X107

0.405 X10s
0.216X10'
0 651X106
P 152X1010

0.863X ips
0.985X10'

0.437X 10'
0-428 X ips
0.807X 104
0 623X107
0.910X105
0.773X10'

0 128X10'
0 668X10s
0.207 X10'
0.456X 10'
0.2/3 X10'
0 31/X 107

3/2
V

0.128X10s
0.673X 10s
0.212X 10s
0.463X 10'
0.274X 10s
0.318X 107

0.492 X10'
p.477 X10'
0.492 X104
0.668X10'
0.102X106
0.685 X10'

TABLE II. Calculated values of reciprocal lifetimes for some Fermi modes of decay of hyperons for the interactions predicted by the
hypothesis of a universal Fermi interaction with spin assignments of —', or $.

Spin
Interaction S—T+P

1/2
v —A S—A —P

3/2
S—V —P

A..0~X+v+ v

Z,+—+X+v+ v

Z +—&A.) +v+v
~s +++v+v
Eg~Ag +V+V
,—+Kg++ v+ v

0.540X1Ps
0.288 X109
0.868X10'
0.203X10'
0.115X10'
0.131X10s

0 540X1Ps
0 288X10'
0 866X10'
0.203X 101o

0.115X10'
0 131X10s

0.539X10s
0.287 X10'
0.852 X10'
0.202 X10"
0 115X10'
0.131X10'

0.256X 10s
0.135X10'
0.423 X10'
0.926X10'
0.547 X10'
0.635X107

interaction. The lifetime was found to be 5 times longer
than for the decay A~~X+v+ v with the same inter-
action. This may be expected to be typical, because of
the smaller amount of energy liberated in the former
process. The lifetimes for processes involving two par-
ticles with higher spin, such as .;—+h;+ a+v may be
calculated in a straightforward way from Eq. (17) or
the similar one that holds when s1= s2. Decays in which
3 or even 4 particles have higher spins may also be
considered, but at present the calculations would be
quite tedious.

We shall now discuss some of the branching ratios
(i.e., the ratio between observed lifetimes for normal
decay, and the calculated lifetimes for Fermi decay)
for some of the processes listed above. In general, for
decays involving the same emitted particles, the
branching ratio increases with an increase of the initial
hyperon mass, and decreases for any one hyperon as
the mass of the 6nal particles increases. As an explicit
example we consider the branching ratios for the
universal Fermi interaction. The results may easily be
obtained for any other combination of coupling con-
stants. The following experimental lifetimes for the
normal modes of decay have been used:

A—+X+~, r2.8&&10 "sec '4

X~X+K T 3X10 ~ sec 5

Z,~X+v+v.—For a Z spin assignment of 2, the
branching ratio 8-~', ; for 3~, 8 1/25; for greater
than —,', 8=0.

Z,—&31+v+ v.—For A and Z spin assignment of —,',
the branching ratio 8 1/4000.

",—+X+v+v.—For " spin assignment of —',, the
branching ratio 8 —,'; for 2, 8 1/11; and for spin
greater than —,', 8=0.

These branching ratios indicate that the Fermi
decays for all the hyperons are within the range of
experimental detection. If more massive hyperons
exist, say ns&3000 m„which have lifetimes for the
emission of a heavy particle and a pion of the same
order as the presently known hyperons, and they have
spins of —,

' or —,', the dominant mode of decay will be the
Fermi mode. Even for the known hyperon, the, the
Fermi mode would become an appreciable fraction of
the normal mode.
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M. A. Melkano8 for assistance in the numerical work.
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the Norwegian Government and to Chr. Michelsen's
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APPENDIX

In the rest system the conditions deining O~ are
"~A+s., r 10 "sec"

A,~X+v+v.—For a A spin assignment of —,', the
branching ratio 8 1/66; for ~3, 8 1/140; for greater
than ~3, 8=0.

(a)

~ ~ ~

0H ~. . .~ ~

O~2 Qe O~t

AA~ Qj 0 ~ 0 O 1 ~ egj ~ ~ 'IQs

'4Blumenfeld, Booth, Lederman, and Chinowsky, Phys. Rev.
102, 1194 (1956).

2~H. Bethe and F. de HO@mann, 3Eesons and Fields (Row,
Peterson and Company, Evanston, 1955), Vol. II, p. 374.

(c)

(d)

~ ~ ~

0;;...=0

~ ~ ~

O~ 4
—0
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1 ~ ~ ~

c'—2 (rp gp" )"VpV-V"V.o-'-, ".(~)
e!P(&)

PI . Pe
Oa] ~ ~ a,t a;t Pt'= 1, 2, 3.

The adjoint here means the transposed. Because of (a) The only remaining part of the right-hand side of (e) is
and (d), 0 reduces to a three-dimensional matrix:

The most general matrix of this type, that satisfies
conditions (a) and (b), is the expression (8). The
constants a„&' are easily determined by imposing con-
dition (c). Setting i=j and summing, we obtain

(s—2r) (s—2r 1)g (—')+(3 2(r+1)+2(r+1)2r
+2 2(r+1) (s 2r 2)f—a,~i—(') =0,

which gives (9) immediately.
In order to prove Eq. (10), giving 0" for half-odd-

integer spin in terms of those for integer spin, we use
the theorem proved in the paper referred to above that
the conditions (2) uniquely determine 0. It is then
sufhcient to prove that the right-hand side of (10)
satisfies (2). But this is quite obvious except for con-
dition (2d). The latter yields the factor (s+—',)/(2s+2)
as follows. Consider

( 1) vtv2
=c —+2i 1——

i Op, p, (22 —-')
22

where 22= s+ —,'. This fixes the constant in Eq. (10).
In a very similar way, we may prove that

PI ~ ~ ~ 2s+1 p2

pi"8-~" (s) =- o'-2" (s-1)
2s—1

while Eq. (8) gives

1 PI. Ps

(g) Pp
—
Pp P" P"0-~" - (P')

p
2 It

= (—)' sinh'HP (2,(')

where cosh'0 (P P')'-/P'P" and a0(') —= 1. Using (f) and

(g), we findPIP2 V172'

~] ~ ~ 0 / p, .p, '—2~ (s—2r)
(h) Op~" p (P) o-~" - (P') =2 & "Z I

r=0 tt=0 (
Since the traces of the 0~ are all zero, the only con-

p t ~ ~

tributing part of the 0 ...(22) are the first two terms of
the expansion (8). Of this the second also drops out,
because

2s+1
X (sinhg)2(8 —n) P + (tt e)—

(2s—2N+1) 0

(e) 0., 2 "(22—-', ) Optp2 (22——,')
PP1 VV1' ' '

=c'v vpv'vvO- (~) op'p "(~)"

~ ~ ~ ~ ~ ~

p y 'y, g- 0 -, (N)=r 'y 'y, O.;, "(22)=0.
These various formulas are useful for the evaluation of
transition probabilities.


