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Interrelations between the nonconservation properties of parity, time reversal, and charge conjugation
are discussed. The results are stated in two theorems. The experimental implications for the E—g complex
are discussed in the last section.

'N a recent paper' the question has been raised as
- ~ to whether the weak interactions are invariant
under a space inversion. It was also pointed out there
that similar to the situation for space inversion there
exists at present no experimental proof that weak inter-
actions are invariant under charge conjugation. Conse-
quently the absolute invariance under charge conju-
gation is also an open question.

The present note is devoted to a study of questions
concerning the invariance under charge conjugation C,
and under time reversal T (which is defined to be the
Wigner time' reversal. It does rot switch a particle into
its antiparticle; nor does it change the sign of the
spatial coordinates).

1. CPT THEOREM

For the discussion of the experimental consequences
of possible nonconservation of P, C, and/or T, a
theorem' which we shall call the CPT theorem proves
very important.

To understand the Ineaning of the theorem one recalls
first that the operations P and C in any many-particle
system (with possibilities of creation and annihilation)
are represented by unitary operators that operate on
the state vectors. The operation T, on the other hand,
is represented' by the operator of complex conjugation
tttttltiplied by a unitary operator. In the Schrodinger
representation the transformation of a second quantized
spin 0 field described by io(r) and 7r(r) under these
operations4 can be brought into the following form:

*Note added in proof.—This paper was written in December,
1956, before parity nonconservation was experimentally estab-
lished.' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

s E P. Wigner, G. ott. Nachr. , Math. Naturw. Kl. (1932),p. 546.' See W. Pauli's article in Niets Bohr and the Desetopraertt of
Physics (Pergamon Press, London, 1955). G. Luders, Kgl. Danske
Videnskab. Selskab, Mat. -fys. Medd. 28, No. 5 (1954). J.
Schwinger, Phys. Rev. 91, 720, 723 (1953);94, 1366, formula (54)
and p. 1576, discussions after formula (208). We are indebted to
Professor Pauli for informing us of the work of Schwinger.

4 We discuss here only the usual "type" of fields. The possi-
bility of the existence of unusual "types" has been pointed out
by Wigner. [An account of these unusual types has been given
by L. Michel and A. S. Wightman, Princeton University lecture
notes (unpublished). j An examination of these unusual "types"
would be an important task if space-time conservation laws should
indeed be found to break down for the weak interactions.
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P4(r)P'=q y-( r), P~—(r)P-'=q * ( «), —
C4 (.)C '=~ay (r), C~(r)C i=&,*-t(,),
T4 (t')T '=g,4(~), T~(t)T-'= q,*~(r),—

where j' means Hermitian conjugate and the phases itt,
p&, and p& have absolute values equal to 1. For the spin
is field iP(t), the transformations are

PP(r)P '=v~74( «), —
C~(~)c '=.~t(~)
TiP(t )T '= rtr7i7s7—siP(t.),

where the y matrices are so chosen that y1, y2, and y3
are real and y4 is pure imaginary. The phases q~, q~,
and pz also have absolute values equal to unity. The
transformation properties of fields of higher spin are
similar.

From the CPT theorem one concludes that for any
local Hermitian Hamiltonian H which is invariant under
proper Lorentz transformations (i.e., Lorentz transfor-
mations that involve neither space nor time inversions),
there always exists a choice of the phases qq, g~, and qz
for the various fields (usually in more than one way)
with the following properties: (a) H commutes with the
product of the operators P, C, and T taken in any order;
and (b) if this choice of phases does not make H com-
mute with P, then no other choice does, and the theory
is not invariant under space inversion. (Of course, if
this choice of phases makes H commute with P, then
the theory is invariant under space inversion. ) The same
holds for C and T.

We shall illustrate this theorem by an example where
II is invariant under proper Lorentz transformations.
Let P„,P„,P„and P„be the fields describing the proton,
the neutron, the electron, and the neutrino. The neu-
trino is assumed to be a non-Majorana particle with a
nonvanishing mass. Consider

H= Hfree+J~ jgl(fy 74/m) (Pe 74iPv)

+gs(0u'74k ) (4'747s4")

+g (C.t7 7 O.)(a.'7 7 O.)
+g4(4 y'7475lt -)Q'74lt. )

+Hermitian conjugate) rp(r), (3)
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where 75=y~y2yg 4. This example is a special case of an
example considered by Pauli. '

Writing H as
H= H(g&~g2g&)g&)~

one easily proves that

PHP '=H(gin~) g2~—~) g~n~, g4n—~),

CHC '=H(g iIc, —
g qc, g iI, —

g g ), (5)
THT —H(gi 'QT) g2 QT) g3 AT) gs ''gT) ~ (6)

In deriving these formulas, use has been made of the
fact that TgT—'=g* and Tv;T '=y;*. The phases gP,
qq, and- gz are products of the respective phases of the
four interacting 6elds. They are given by

n~= ~~*(p)n~(~)n~*(~)n~(~),

nc= ~c*(p)nc(~)ac*(~)nc(~),

nr= ~r*(p)n~(~)nr'(e)~r(~)

Using (4), (5), and (6), one can calculate the commu-
tation relation between H and the six operators TCP,
TPC, , PCT. It is found that with suitable choices
of the phases g, the Hamiltonian H commutes with all
of the six, as required by the CPT theorem. In fact the
conditions on the phases q are simply

Qp='gcQF= +~

It follows from the CP T theorem that, if one of the
three operators P, C, and T is not conserved, at least
one other. must also be not conserved. It is of course
also possible that all three are separately not conserved.
In the example above, by assigning suitable values to
the coupling constants g, one can construct examples
for all the Ave possibilities of conservation or noncon-
servation of P, C, and T. These examples are displayed
in Table I.

2. LIFETIME OF CHARGE CONJUGATE
PARTICLES AGAINST WEAK DECAY

For a spinless system,

Hence
(1O)

(aIH„...IA)*=~(aIc-H„,,cIA)
=~(caIH„.„IcA)=~(8IH„.„IA).

(11)

This shows that the lifetimes of A and A are the same.
If II„„i,does not commute with P, we write

arbitrary factors) by this invariance; i.e., by the re-
quirements that

CII strongC IIstrongy

On the other hand, the weak interactions may violate
the invariance of C, P, and T. One can prove the fol-
lowing theorem.

Theorem 1.—If a particle A decays through the
interaction Il„„g,and if the particle and its antiparticle
A do not decay into the same final products (as e.g.
when A is charged), then to the lowest order of H„„k
the lifetimes of A and A are the same, even if H, ~ is
rot invariant under charge conjugation.

Proof.—Consider the case that particle A has spin
zero. LThe proof for the general case follows along the
same lines. ) Then the final states 8 and 8 in the decays

A ~B, A~8
also have spin zero. Using the identity

(~t i I It 2)*=(T'~t i I PA),
one obtains

(&IH- klA)*=P'&I&H-"2' 'I2'A)
=(raIciPiH„-, kP-cI rA),

by the CPT theorem. Consider 6rst the case that H„,„~
commutes (or anticommutes) with P. Then

(a(H„,, I
A)*=~(rj3Ic H„,,cI rA).-

Consider now a Hamiltonian Hweak Hi+H2q (12)
whereH =Hssseng+ Hweak& Hi= 2 LHweak+PHweakP

H2 =
g LH weak PHweakP j. (13)

PHgP—'= Bg,

PB2P '= —B2.TABLE I. Examples of theories with various possible
nonconservation properties. The decays of A through H& and through H2 lead to

states 8& and 8& with opposite parities. They are
orthogonal to the order considered, and hence they
contribute independently without interference to the
decay rate of A. The lifetimes of A and A are therefore
again the same.

A consequence of this theorem has already been
mentioned in a previous paper'. The identity of the
experimental lifetimes of g+ and of p,+ does not cog,-

Conserved
operators

Noneonserved
operatorsValue of coupling constants

gI = real,
g1 =real,
g1 ——real,
g1 =real
g1 =real

P, C, T
P, CT, TC
C, PT, TP
T, CP, PC
PCT, and per-

mutations

g3= real, g2=g4=0
g3=complex, g2=g4=0
g2=imaginary, g3 —g4 —0
g.-=real, gs=g4=0
go=complex, g3=g4=0

~ ~ ~

C, T
P T
C, P
P, C, T

where both terms are invariant under a proper Lorentz
transformation. In all subsequent discussions we shall
assume that H,&„g is invariant under C, P, and T. The Then
phases iI of the 6elds are defined (up to, possibly, some
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stitute a proof that charge conjugation invariance holds
for the weak interactions.

For a discussion of a case where A and 2 may decay
into the same final channels, see Sec. 4.

3. DEPENDENCE OF INTERFERENCE EFFECTS
ON CONSERVATION OF C AND T

One would like to ask what are the experimentally
detectable manifestations of a weak nonconservation of
I', C, or T? For the nonconservation of parity, the
answer is clearly to be sought in experiments to diGer-
entiate the right-handed screw from the left-handed.
Some such experiments have been discussed before. '

If parity is indeed not strictly conserved, some of
these experiments could also reveal whether C arid/or 2'

are or are not conserved. To illustrate this let us consider
the experiment of the angular distribution of P decay
from oriented nuclei. The degree of asymmetry was
given in the appendix of reference 1 as proportional to

Ze2
Re CrCr'* CgCg'*—+i (CgCr'*+Ca'Cr*) . (16)

Ac

Applying the arguments of Sec. 1 we recognize that the
two terms in (16) are present or absent depending on
whether C or T are not conserved. To be more specific:
The 6rst term vanishes if C is strictly conserved, the
second term vanishes if T is strictly conserved. If this
experiment shows any asymmetry, the p dependence
and the Z dependence of the asymmetry could therefore
reveal whether C and/or T are nonconserved. (The
existence of any asymmetry rules out the possibility
that both C and T are conserved, a conclusion we
already drew on general grounds in Sec. 1.)

We notice that if C is strictly conserved, the asym-
metry discussed above vanishes in the absence of the
Coulomb distortion of the electron wave function. In
fact, when C is conserved the asymmetry is directly
dependent on the. existence of a diBerence of the
Coulomb phase shifts for opposite parities. It turns out
that this is a consequence of a general theorem which
we state and prove below:

Theorem Z.—If, in addition to the assumptions stated
in Sec. 2 concerning H,~„„gand H„„~,we assume that
H is strictly invariant under charge conjugation, (i.e.,
$H,Cj=0) and if the decay products in the final state
8 are free particles, then to the lowest order of B„„q
there is no interference between the parity-conserving
and the parity-nonconserving parts of B in the decay
of A, provided the interference is sought for in experi-
ments measuring a term of the form e p'.

Proof. We again illus—trate the proof by considering
the case that A is spinless. The general proof follows
along the same lines. We perform the decomposition of
II „oas in Eqs. (12)—(15).The final state 8 consists of
two states 8» and 82 of opposite parities reached from
A through H» and H2, respectively. Clearly H»commutes
with C, and also, by the CP T theorem, commutes with
CPT. Hence using identity (9) and Eq (10) one o.btains

(a, j a, (
a)*=(2a, ( rII,rii -rW)

=(&il»i2 'I~)
=(a, (P- C- e,CP(~)
=(a, )P- e,P[x)=(~,[a,[x).

Thus (Bi~H&~A) is real. Similarly one easily proves
that (Bo~Ho~A) is pure imaginary.

In the above the states 8» and 82 are taken as sta-
tionary states of Ir,t„,consisting of standing waves.
LOtherwise Eq. (10) does not hold. f Transition ampli-
tudes into them have a relative phase factor which is,
according to the above, pure imaginary. The observed
final states are equal to these amplitudes multiplied by
the oltgoieg part of the stationary states 8» and 82.
Such outgoing parts always have real relative ampli-
tudes if the stationary states 8» and 82 represent free
particles. The theorem now follows immediately.

Using this theorem, one concludes that if any left-
right asymmetry of the form e p is found, the part of
this asymmetry that is independent of -the distortion of
the 6nal-state wave functions can arise only if charge
conjugation symmetry breaks down for the weak inter-
actions. In particular, in decays where there is no
strong final-state interactions, as, e.g., in or~p+v and
ti~e+v+v decays, the detection' of parity noncon-
servation through the observation of e y becomes im-
possible if C is strictly conserved.

4. K', X' DECAY MODES

The existence of the particle X' and some properties
of its decay were predicted' and discussed under the
assumption that charge conjugation is strictly con-
served. We wish to discuss in this section the decay of
E' and E' under the assumption that C, I', and T are
conserved for the strong interactions, but are not neces-
sarily conserved in the weak decay interactions.

In the 6rst place, the conservation of strangeness with
respect to the strong interactions still requires that two
particles E' and X' with opposite strangeness exist.
To understand their decay processes it is interesting to
consider the charge conjugation symmetrical and anti-
symmetrical combinations introduced in reference 5
(compare, however, footnote 11):

E, (Eo+Eo) E, (Eo Eo)
V2 V2

(17)

Unlike the situation in reference 5, if C is now not
invariant in the decay process, E» and E2 can decay
into the same 6nal states:

Ei-os++or
Eo~++m,
Ei-o~++e++ v,

Eo—o~++e++ v,

Xi~++or +oro,
Eo-- I++or +7ro.

' M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).
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db
i =P H—b;(o)F;(&a)e '"',

dt
(19)

r)F;(ro)
i =e'"'PH;. (o))a+H;b(ro)b j, (20)

where H; =H„.* are the matrix elements. The Weiss-
kopf-Wigner treatment consists of first assuming an
exponential time dependence for e and b, and then in

sums over ~ neglecting the variation of the matrix
elements with co in the interval Irol &uncertainty of

energy of the original state. Using this treatment, one

obtains

Interference eGects would therefore set in in these decay
processes. The questions that one would like to ask are
then: what the the lifetimes of the particles E' and
E'P What are the branching ratios into various decay
modes?

These questions can be answered by using a Weiss-
kopf-Wigner type of treatment' of the time-dependent
Schrodinger equation. We write the time-dependent
amplitudes of the particles' Eo and Eo as a(i) and b(t).
The various channels of decay are denoted by j.
F, (co)e '"' represents the amplitude of the decay
product in the channel jwith the energy co.s I We choose
units such that k=1.) The zero of energy is taken to
be the rest energy of E. The Schrodinger equations are
then

In the foregoing derivation, use has been made of
Eq. (11) which leads to

where j' is the charge conjugate channel of j (which
may or may not be the same as j). It is important to
notice that this equation is a consequence of the
CPT theorem.

The two eigenvalues X+, X of (22) correspond to the
two decay lifetimes. The general solution is a linear
superposition of two solutions P~ of the form (21), each
of which is characterized by a pure exponential decay.
Since the 2&(2 matrix l' is Hermitian, the two solutions
represent linear orthogonal combinations of the states
g and X.

In writing down Eqs. (18) and (19) we did not
include a slight difference of mass in the form of a mass
operation M for the states of the E particle. This re-
striction can be easily removed by adding to the right-
hand sides of (18) and (19) the terms rs(Mrru+Mrsb)
and -', (Mora+Mesh), respectively. The mathematical
treatment is very similar to the above simple case
except that we have now

—@/ai= (F+iM)y, (26)

where I' is the same Hermitian matrix given by Eq.
(23). (iM) is an anti-Hermitian matrix representing the
effects of the mass shifts, By using Eq. (11) one can
show that, similar to Eq. (23), M is a Hermitian matrix
with

Mgg ——3f22.

(21) Equation (26) can now be readily solved. Its eigen-
states, de6ned by

The amplitude P and the decay constant 'A are given

by the eigenequation are
(F+iMg, =)t,y„

F»—P(F.,F„) & =F»*,
(23)

(22)

I' is a 2)(2 Hermitian matrix with matrix elements

given by
Frt ——I ss=P F„=PFs&,

i

I(lpl'+lvl') '(p)
L~q)

with the corresponding time constants

Xg=Frr+iMrt& (pg);

where p an.d q are two complex numbers given by

(28)

(29)

where

F„.=2 lHor„I' (density of states per unit ka) o,
(24)

Fo;=2or I Ho; Is (density of states per unit dM)~=o,

and

p'=Frs+iMrs, q'=Fst+iMsr=Frs*+iMgs*. (30)

If at t,=0 a E particle is produced, then at a later
time the state function P can be expressed in terms of
these two eigenstates f+ as

e"~'= (phase of H.;Ho;
—')„o. (25)

0(&)= I

—1(l pl'+
I
el')'t0+s '""+0-s *'" 'j (31)

&2p)

=y +2ih&

' V. F. Weisskopf and E. P. Wigner, Z. Physik 63, 54 (1930);
65, 18 (1930).

In this PaPer we assume that the E Particie (strangeness It is convenient to separate the real and imaginary
=+1) is a single state.

s Each channei J represents a possiMe decay state that is an Parts of X~. Without loss of generahty, we may wrtte
eigeIJstate of B,t,, g. Thus it has a definite spin, charge, and
parity. 32
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where y+, y are two real numbers representing the
reciprocal lifetimes of the short-lived ones and the
long-lived ones respectively and 6 is the mass difference
between these two eigenstates. One notices that these
two et'genstates ip+ and ip do eat te general represent the

states Ei arid E2 introduced in (17). IN fact they etiett

may not be orthogomal 10 each other (see footnote 11).
A general discussion of the decay processes is rather

involved. We shall make only the following remarks:
(A) The fractional number of E mesons that decay

at time t after its production is given by

N(~)d~= dory—th)

Using (26), one easily shows that

By using (28)-(31), Kq. (33) becomes

N(t) = '(1/a) -'(p+.e 't+'+. y e i' '+ne l-&i'++~

Xf(y++y ) cosh/ —2A sinhtj), (34)

where

is a real number representing the nonorthogonality of
these two eigenstates. The four real numbers y+, y, 5,
and a characterize the decay of the E particle. They
satisfy the inequalities

(36)

which follow from the fact that I' is a positive Hermitian
matrix. These conditions also insure that N(t) ~0 for
all t.

Experimentally N(t) is measurable. From N(t) one
can in principle determine all four constants y+, y, 5,
and n. Indications from presently existing experiments'
show that probably 7+/7 )100. Equation (36) then
shows that n'(47 /y+(0. 04.

(8) The above discussion also leads easily to a deter-
mination of the branching ratio of the long-lived com-
ponent (and the short-lived component) into the various
decay modes. If charge conjugation is conserved, the
long-lived component is an eigenstate of charge con-
jugation. ' Consequently its decay into charge conjugate
channels such as ~+e—v and m e+s must be equally
probable, as is well known. If charge conjugation is
not strictly conserved, decays into m+e v and m. e+s may
have different probabilities for the long-lived com-
ponent.

A more complete discussion of the charge asymmetry
of the decay of the long-lived E will be given in the

' K. Lande e$ a/. , Phys. Rev. 103, 1901 (1956).

appendix. We mention here only that Lederman" has
kindly informed us that experimental work in this
direction is in progress. It is important to notice that
if the experiments should yield a large asymmetry, and
a small tt (as mentioned above), Kq. (A7) would impose
very strict conditions on the relative magnitudes of the
amplitudes fi, gi, f2 and g2. (To see this roughly we need
only examine the limiting case n=0 discussed below. )

(C) If n =0, the two eigenstates are orthogonal. "Also

[p( = )i7[. /See (35).g This is the case if the mass
matrix is negligible. In this case g~ are both 1:1 super-
positions of the particle E' and X'. The fraction of
particles decaying in d1, namely N(t)dt, becomes the
sum of two pure exponentials by (34). Furthermore
(A7) shows that the decays of the long-lived component
into charge conjugate channels such as ir++e +i and
m. +e++i are equally probable.

One of us (Reinhard Oehme) would like to express
his gratitude to Professor Robert Oppenheimer for his
kind hospitality at the Institute for Advanced Study.

E~e +rt++ v. (A1)

The 6nal product may be in states with either parity
=+1or parity= —1.Let us denote the matrix elements
for the decay process into these two types of states by
fi and f2. Similarly, we denote the matrix elements for

E +e++7t +i, — (A2)

with the final state having parity=+1 and parity
~, by gy and g2.

By using the CI'1 theorem and Kq. (11), the corre-
sponding matrix elements for the decay of E,

E~e++ir + i, (A3)

are related to that of (A1). These elements are ft* and
—f~*. Similarly the matrix elements for

E~e +m++v

are gi* and —g2*. Let iP+ represent the long-lived com-
ponent E+ of the E particle. The matrix elements for

"L. Lederman (private communication).
"We recall that since the strangeness 5 is conserved in the

strong interaction, the phase g. of a E particle (S=+1) under
charge conjugation is not fixed by the strong interactions. If the
weak interaction is not invariant under charge conjugation, the
phase q, is defined only up to a factor e' '. If P+ is orthogonal to
p, there exists however a most convenient choice which makes
it „identical with the It i, lt 2 defined in (17).

APPENDIX

In this appendix we shall show the interrelationship
between the parameters p, q and the branching ratio
for the decay of, say, the long-lived component of
E particle into various charge conjugate states.

Consider first the following decay channel of the E
particle
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the decay of E+,

(A6)

E+~e +m++t, (AS)

into the two different final parity states are proportional
to pfi+qgi* and pf2 qg—2*, respectively, while the cor-
responding elements for

E+.ate++sr + t

I
Pfi+qgi*l'+

I Pf2 qg2—*1'
r=

I Pgi+qfi*l'+ I Pg2 qf—2*I'
(A7)

are proportional to pgi+qf, *and pg2 —qf2* T. he branch-
ing ratio r for the decay of E+ into e +sr++i and e+

+sr +f is, therefore,
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Feraii Decay of Higher Spin Particles*

R. E. BEHRENDs AND C. FRoNsDAL
Department of Physics, University of California, Los Angeles, California

(Received November 26, 1956)

The explicit form for the spin projection operators introduced by Fronsdal is calculated for arbitrary
spin and applied to erst-order processes involving four fermions. The matrix element for the most general
nonderivative interaction is found for the special case in which two of the particles have spin —,. The method
of relating matrix elements written in different orders is extended to this case.

The theory is applied to the decay of the mu meson, extending the work of Caianiello. It is found that
the experimental decay spectrum can be equally well 6tted by an assignment of spin -', or —,'. The method
is then applied to the Fermi decay of hyperons. Lifetimes are calculated for decays in which the initial
particle has a spin of —,

' or $, and the Anal particles all have spin —,'. All the lifetimes are less than 2 orders of
magnitude longer than the corresponding observed lifetimes for the normal mode of decay.

The hypothesis of a universal Fermi interaction is extended to include fermions of arbitary spin. Under
this hypothesis, the experimental muon spectrum is most closely reproduced with spin —,. The results also
indicate that the muon has the same particle-antiparticle character as an electron of the same charge.

INTRODUCTION

ECENT experimental evidence has indicated the
possibility that the "strange" particles may have

spins larger than unity. Ruderman and Karplus' have
found, by an analysis of mesonic and nonmesonic decay
of hyperfragments, that the spin of the A' is either -',

or ~3. Walker and Shephard' analyzed the angular cor-
relations between the planes of production and decay
of the Z and the h.' and found the spins to be —,', —,', or —,'.
In addition to the strange particles, the long-known
mu meson may conceivably have spin higher than —,'.

When considering the possibility that some of the
hyperons might be fermions with spin higher than -'„

we meet a difficulty in that some of them are charged,
and so interact with the electromagnetic 6eld. A gauge-
invariant way of describing this interaction has been
given, by Fierz and Pauli. ' Only very few calculations
have been carried out on the electromagnetic properties
of particles described by the Fierz-Pauli equation, and
th, e only result of interest to us is that of Mathews, '
who calculated the Compton scattering cross section
and the bremsstrahlung in the case of spin —', . His result

*This work was supported in part by the National Science
Foundation.

' M. Ruderman and R. Karplus, Phys. Rev. 102, 247 (1956).
2 W. Walker and W. Shephard, Phys. Rev. 101, 1810 (1956).
'M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211

(1939).
4 J. Mathews, Phys. Rev. 102, 270 (1956).

de6nitely rules out the possibility that the muon is
such a particle, while the conclusions that can be made
with regard to hyperons are less definite.

In the present paper we have calculated the lifetimes
and spectra of Fermi decays of higher spin particles to
first order, i.e., using the 6eld-free wave functions.
This calculation has been applied to the hyperons, the
heavy mesons, ' and the muon. We have included the
muon on the basis that the electromagnetic properties
of higher spin particles might be diferent than those
predicted by Fierz and Pauli and calculated by
Mathews.

FREE FIELDS

The wave function appropriate for describing a free
particle of integral spin s is a tensor of rank s, and
satisfies the wave equation

(p +rrt )Cay aq= 0& (1a)

and the subsidiary conditions

~ t g s ~ ~ o g2 ~ ~ ~ (p o ~ t ns ~ ~ o m ~ ~ ~ ~4 2

p ~Cay . a~=0&

g ~&1&2 ' '&s —u&
cx1A9rK

where g&" is the metric tensor

(1b)

(Ic)

(1d)

5 Results for the heavy mesons will be given in a separate
publication.


