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where Bj; is the matrix tabulated by Penfeld and Leiss

n~1 1 n
=2 E1 X Bijyi+3En 2 Briyi
7

=1 =1

=2 E; > Byy;
=1 7
:Z Ty
7
Thus
Taj= > EB'i; (A.12)
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(A.12) is an explicit relation between the required
matrix T and the tabulated matrix B.

Error in the smoothed cross sections & —From (A.10),
we have

Fm=2_7 CmiSj
=225 2k ComiT kY
=25 25 CuiT1y8,

¢ A om) =2 k| X5 CniT | 2A%1.

(A.13)

(A.13) gives the error of o for given weighting factors
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Effects of wave function distortion by nuclear forces of nonelectromagnetic origin are qualitatively
" considered. It is found that the relativistic corrections to the Coulomb wave contain effects of wave function
distortion which may affect these corrections by reasonably large fractional amounts. The spin-orbit inter-
actions arising from the action of the electric field are found to be affected by wave function distortion.
Since these interactions affect the polarization of proton beams in double and triple scattering, the analysis
of high-energy data is affected. The theory of spin-orbit interactions is brought into relation with that of
atomic spectra. The unreliability of contact terms contained in the relativistic corrections is brought out.
A concise proof of the vanishing of first-order tensor force effects on the polarization applying independently
of the origin of the tensor force effects is supplied in an appendix.

I. INTRODUCTION AND NOTATION

ELATIVISTIC corrections for p-p scattering have
been discussed by Garren,! Breit,? Ebel and Hull,?
and again by Garren.* The corrections worked out in
these papers apply to Coulomb scattering. The view-
point taken? was that specifically nuclear forces intro-
duce phase shifts of their own which can be defined in
the center-of-mass system and which require no addi-
tional consideration regarding relativistic effects. Two
procedures were considered® for carrying through the
rigorous solution of the problem. Their discussion is
contained between Eq. (16.4) and Eq. (17) of the
above reference. As an approximation to ‘“‘procedure
(a)” the distortion of the wave function by specifically
nuclear interaction effects was neglected and the rela-
* This research was supported by the U. S. Air Force through
the Air Force Office of Scientific Research of the Air Research
and Development Command under Contract AF 18(600)-771
and by the U. S. Atomic Energy Commission under Contract
AT (30-1)-1807.
L A. Garren, Phys. Rev. 96, 1709 (1954).
2 G. Breit, Phys. Rev. 99, 1581 (1955).

s M. E. Ebel and M. H. Hull, Jr., Phys. Rev. 99, 1596 (1955).
4 A. Garren, Phys. Rev. 101, 419 (1956).

tivistic corrections to the undistorted Coulomb wave
were calculated. Garren’st* approach is equivalent to
this approximation. In some of the applications! it is
tacitly assumed that the approximation is good enough
although the question was left open for future con-
sideration in the other work referred to.? Further
examination shows that specifically nuclear interactions
may affect the relativistic corrections to Coulomb
scattering to an appreciable degree. This applies in
particular to the corrections which matter most for
polarization. The quantities involved are large enough
to make the application of these corrections to the
polarization questionable in any but a qualitative sense.
Improvements on the corrections can be made, as will
be described below, but a definite value even in the
first order of ¢ will be seen to require knowledge of
wave functions in the presence of nuclear interactions.
It will also be seen that the terms® caused by the
anomalous part of the proton magnetic moment which
have their origin in the divergence of the electric field
can be expected to be especially seriously modified.
Some of the most frequently occurring symbols used
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below are as follows:

e=proton charge,
M =nucleon mass,
f=scattering angle in the center-of-mass system,
0= (04,04,0,)=vector formed by Pauli’s spin matrices,
v=absolute value of relative velocity of the two
protons in the laboratory system,

k=Mv/(2%),
p= k?’,
n=¢/(hv),

oo=argl'(14-11).

II. SPIN-ORBIT INTERACTION

The understanding of the effects is helped by a
consideration of the relationship of the problem to that
of the ordinary spin-orbit interaction between two
charged particles.®® For Diracian particles the inter-
action energy, discarding the relatively small spin-spin
interaction, may be expressed as

he \e(l j ) 1 P2
H =— (———)—[—[51)(_] 171‘{“[52)(—] 02
2Mc/ ¢ 12 M 2 M

ri—rs: P2 Io—r: p1
—e[ X——]-m—e[ X“"]'O’g}. (1)
M M

73 73

Here r; and r, are the displacement vectors to the
positions of the charges from the origin; e is the charge
on each particle; p; and p; are the momenta ; 7= |r;—r.|
is the distance between the charges; ¢y and ¢ are
Pauli’s spin matrix vectors; M is the mass of each
particle; &; and &, are the electric fields at particles 1
and 2, respectively. The first two terms in Eq. (1)
contribute each the negative of the Thomas term to
the Hamiltonian. Their form applies whether &; and &,
have their origin exclusively in the field caused by the
two particles or not. They may be thought of as arising
through the combined effect of the energy of the electric
dipole caused by the motion of the magnetic moments
in the electric field and of the Thomas term. The
electric dipole effect is —2 times the Thomas term.
The third and fourth terms represent the interactions
of the spin magnetic moments with the magnetic fields
which are produced by the motion of the charge of each
particle. If the electric fields are caused entirely by the
two charges,

81=e(r1—r2)/73, 82':6(1’2-—1‘1)/7’3, (11)
then
H'= (ue?/lir®){[ (t1—12) X (2p2—p1) ] o
+L(ra—1) X 2p1—p2)]-02}, (1.2)
wo=eh/(2Mc). (1.3)

5 W. Heisenberg, Z. Physik 39, 499 (1926).
a GSG) Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 616
932). .
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It will be noted that in the combination 2p,— p; the
2p, arises from the magnetic effect while —p; comes
about partly through the dipole and partly through the
Thomas acceleration effects. This association of terms
will be helpful later on in obtaining the anomalous
moment effects.

Since the two particles are now supposed to interact
only with each other,

(pr+p2)y¥=0,

and hence from (1.2),

HY=— QBud®/tr®) (r1—1o) X p1]- (01t02)y.  (2)

Employing the method of Coulomb phase shifts? and
the consideration of Sec. 4 of the above-mentioned
paper, one justifies the inclusion of the effect of H' in
terms of its matrix element in momentum space. A brief
calculation gives then, on including the effects of the
¢*/r in the potential energy, the combination

(1.4)

e 3,1102
—1——[k'XK" ] (01+F02) (2.1)
k? €%

in the expression for the momentum space matrix
element. Here k’ and k'’ are respectively the final and
initial values of p/%, while p may be identified as
p1; k= |K'|=|k”|=Mv/2%, the formula being meant
for the center-of-mass system. Corrections to the main
term e?/k? are not discussed here since they are available
elsewhere.2* The effect of the spin-orbit term in (2.1)
is to add to S¢ the scattering matrix of the Coulomb
field,” a correction term, so that it becomes

n
S¢'=——— exp[i(®—y Ins?)
he pL- | ]

hZ

X { 1—|—3i4M?62[kf><ki] -(o1+09) }, (2.2)
where

$=p—n In2p-+ao. (2.3)

The replacements k’=k;, k'’ =k; have been made here
so as to indicate more clearly initial and final states,
and the abbreviation

s=sin(6/2) (2.4)

is used. For low energies the spin-orbit term of (2.2) is
the same as the effect of A’a;=A’a, of reference 2 and
it is essentially the same as the Dirac part of the spin-
orbit correction in! That Eq. (18.2) of reference 2
represents a spin-orbit interaction is clear from the
fact that it arose from J; of that reference which shows
directly its spin-orbit origin in Egs. (12.8) and (18).
The connection with the formulas of previous work
having been described, the effect of the anomalous part
of the proton magnetic moment will be considered,
making use of the interpretation of effects in (1.2)

7 G. Breit and M. H. Hull, Jr., Phys. Rev. 97, 1047 (1955).
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which has been mentioned immediately after that
equation. The anomalous part of the proton’s moment
will be written as

(eh/2M¢) e, 3)

so that u, is the anomalous moment expressed in units
of the nuclear Bohr magneton. Neglecting relativistic
corrections, the u, part of the moment is acted on by
the magnetic field of the other particle in the same
way as the Diracian part. The motion of the proton
produces an electric doublet associated with w, also in
the same way, this effect being a purely kinematical
one. There is no additional Thomas term effect to take
into account, however, because this effect is already
included in (1). Since in Eq. (1.2) the combination
2po— p1 contains the part — p; which was —2p; before
the Thomas correction reduced it to — p;, the anomalous
moment contributes

H"=2pq(ue?/ fir*){ [ (11— 12) X (p2— p1) ] - 01
+[(re—r)X (p1—p2)]-02}. (3.1)

Consequently
H'"=—4u,(u?/fir)[ (11— 12) X pr]- (01F+02)¢.  (3.2)

Comparing with Eq. (2), it is apparent that the anoma-
lous moment contributes

4#4/ 3

times as much as the Dirac moment and that the origin
of the factor 4/3= (2+2)/(2+1) is the absence of the
Thomas correction for the anomalous moment part.
Garren’s results!* are in agreement with the above in
the low-energy limit. As a matter of completeness, the
Coulomb part of the scattering matrix including the
effect of H'' may be written down:

(3.3)

n
S¢'' = ——— exp[4(®—7 Ins?) ]
2ks?

h2

(3.4)

X 1+(3+4Ma) [kkai]‘(01+02) .

7
4M3?c?

The spin-orbit terms in this formula are the only
significant ones giving direct effects on the polarization
for high-energy scattering. The spin-spin terms are
much smaller and the tensor-like terms described in
references 2-4 cannot give rise to polarization directly
although some modifications of the polarization effects
caused by the purely nuclear phase shifts are, of course,
possible. Since one of the primary points of interest in
connection with relativistic corrections to the Coulomb
wave is the effect of the spin-orbit terms on polarization,
the question of their reliability is a natural one. In the
present note the v2/¢? approximation is used throughout,
all the formulas becoming simplified as a result.
Spin-orbit effects are well understood in atomic
spectra. As is well known they have to be calculated by
employing the actual wave functions rather than free-
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particle approximations. One may suspect therefore
that in p-p scattering, insufficiently accurate results
will be obtained by neglecting the distortion of the wave
function by nuclear forces of nonelectromagnetic origin.
The fact that Coulomb scattering is important only for
small-angle deflections does not settle the question,
because the spin-orbit effects do not give the major
part of Coulomb scattering so that a relatively small
error in Coulomb scattering as a whole can conceivably
amount to a non-negligible effect on the spin-orbit
energy. It becomes necessary therefore to examine the
effect of wave function distortion on the relativistic
corrections.

III. WAVE FUNCTION DISTORTION

The general viewpoint will be the same as that used
previously.? The particles are viewed in the center-of-
mass system. The electromagnetic effects are considered
as a perturbation and the Coulomb phase shifts are
used to the first nonvanishing order in the electro-
magnetic interaction. Knowledge of phase shifts enables
the construction of the wave function outside the range
of nuclear forces. As has been shown,? the results of
such a wave construction agree in the nonrelativistic
limit, and to first order in ¢? with those of the standard
method for nonrelativistic problems. In the latter, one
starts with the Coulomb wave and calculates the
modification caused by phase shifts superposed on the
phases of the Coulomb radial wave functions. The
procedure of starting with the wave modified by nuclear
interactions is a natural one because the distortion of
the wave function caused by these effects is larger than
that caused by the Coulomb field. Experience® indicates
that even at low energies, in calculations of the 1S,
effects, the Coulomb effects inside potential wells are
quite well represented by first order approximations.
At low energies (i.e., at ~7 Mev) it would be a poor
approximation to use first order formulas outside the
potential wells, but the parameter 7 is in this case much
larger than at energies above 100 Mev. The very small
values of n make first-order formulas for I'(L-+141n)
and related quantities reasonably accurate and the
proposed method? of calculation is thus satisfactory.
It is also relevant that the spin-orbit effects can be
considered for their own sake independently of the
order in which the ¢?/7 and the nuclear potentials are
taken into account. In either case it is the phase shift
introduced by the spin-orbit interaction that matters
and the distortion of the wave function caused by the
nuclear potential cannot be neglected in estimates of
this phase shift.

Before considering the reliability of estimates of
spin-orbit effects with neglect of wave function distor-
tions, the analogous problem will be considered for the
main part of Coulomb scattering. The usual non-

8 Breit, Condon, and Present, Phys. Rev. 50, 825 (1936);
Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939).
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relativistic expression for the Coulomb-scattered wave
is

Yaot~ — exp{i[kr—n In(2p8?)+20¢]}
k(r—z
. oi®
= ——exp(—1n Ins?)—. (4)
2s? kr

The angle-dependent factor in this expression may be
expressed as

n
—— exp(—1in Ins?)
2s?
e2i(oL—00) — 1]
=3 1(2L+1)Pr(cosf)———.
(29)

(4.1)

This formula is essentially the same as Eq. (21) of
reference 2 with the difference that

(1/4)6(1—cost) =X .(2L-+1) P (cosh)/ (25) (4.2)

has been subtracted from the right side. Here 6(1—pu)
is used in the convention of giving unity rather than %
on integration over u in the limits from —1 to +1.
The subtraction does not affect the value at 80 and
is permissible therefore. It is convenient to make the
subtraction because the right-hand side is made thereby
to contain the factor 7 if the exponentials are expanded
in Taylor series. This expansion gives

n
——exp(—1n Ins?)
2s?

3P +5(143) Po+T(1434+3) Pat- -] (4.3)
The approximation to individual terms in the series
breaks down when 29(1+34- - - 4+1/2)=2n Inn=21. For
E=150 Mev the value of L at which this occurs is
L~10Y. The relative contributions of the Py to the
series may thus be estimated by means of (4.3). If
E=150 Mev then %=0.0129 and for 6=10° 7 Ins?
= —0.063, so that exp(—1in Ins?)=21, 1/(2s?)=265, while
3P+ (15/2) Po+7X1.83P3=223. The sum of the first
three terms is about 309, of the whole and the sum of
the first two terms is about half this amount. The main
nuclear force effects on the wave function are probably
confined to L<3 at this energy. Since  occurs on both
sides of (4.3), the estimate is affected by going to higher
energies mainly because of larger distortions at higher
L. For §=20° 1/(2s*) =16.6. The successive contribu-
tions to the square bracket in (4.3) are 2.84-6.24-8.5
+ - --. For the larger L the Py, change sign, making the
relatively small value of the sum possible. For §=20°
the contribution of L=1 and 2 amount to ~509%, of
the whole. An appreciable distortion effect thus has a
good opportunity of affecting the Coulomb scattering
amplitude.
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In the nonrelativistic approximation these distortion
effects are taken into account by the usual procedure
of calculating phase shifts which have to be superposed
on the Coulomb phase to obtain the complete asymp-
totic phase. It clearly does not matter whether the
latter phase is obtained by starting with the nuclear or
the purely Coulombian phase shifts. The calculation of
the relativistic corrections to Coulomb scattering is, on
the other hand, affected by the nuclear forces in an
additional way. That this should be the case is clear
intuitively from the fact that if the nuclear forces
increase the relative velocity of the two protons, the
relativistic corrections should be larger. In the calcu-
lations this effect enters through a change in the factors
connecting xr, x11, and ¢ with ¥ in the derivation? of
the relativistic effects. Since the calculation of the
value of the relativistic n brings in the successive L in
about the same proportions as obtain for the non-
relativistic effect, the value of the relativistic correction
to 7 is seen to be somewhat uncertain. The effect of
wave function distortion on this correction depends
on the assumed nuclear potential.

For the spin-orbit terms, the interaction has a shorter
range and closer collisions are therefore relatively more
important. The effect of wave distortion is accordingly
more serious. Both terms in (3.4) correspond according
to (2) to an interaction energy which is a multiple of

(L-8)/7*, L=[(1i—1)Xpi], ©)

so that L is the orbital angular momentum. The values
of (L-s) for the triplet system are (L, —1, —L—1).
On the other hand, for non-Coulombian functions one
has®

f F/P)dp=1/R2LI+1]. (5.1)

The contributions of the phase shifts for different L to
the scattered amplitude are therefore as in the series

2 QLA1)Pr(w)(L, —1, —L—1)/[L(L+1)],

u=cosf.

(5.2)
(5.3

In the three cases the coefficients of Pz have the form
2—1/(L+1), (1/L)+1/(L+1), —2—1/L. The least
rapid decrease of the contributions corresponds to the
2 and —2 in these coefficients. In these contributions
the smaller L may be expected to be emphasized the
least, and the correction for spin-orbit interaction
arising from such terms is likely to be the least sensitive
to wave function distortion. These contributions can
be discussed therefore by considering

® 1 )
£ Pul= - 201-1- (5;) “1 (54)

9 Gluckstern, Lazarus, and Breit, Phys. Rev. 101, 175 (1956).
Equation (6Q) of this reference gives the desired integral.
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The term in L=0 is not included because for L=0
there is no spin-orbit interaction, but its inclusion does
not make much difference in the present qualitative
considerations.

For 6=10° [1/(2s)]—1=4.7 while Py+Ps=1.94.
Thus the values L=1 and 2 contribute 0.41 of the
whole sum. For 6=20° [1/(2s)]—1=1.88 while
Pi+Py=1.76. If there is sufficient wave function
distortion to affect the value of Jo*°F2dp/p?, the spin-
orbit effects will be in error by roughly the same
percentage as the integral. The magnitude of the spin-
orbit effect arising from the Coulomb wave is therefore
questionable whenever the first few values of L are
subject to appreciable wave distortion.

The degree to which this is the case depends on the
energy. As the energy increases, the shorter wavelength
makes the first maximum of F; move toward shorter
distances and higher values of L become affected by
nuclear distortion. At E=150 Mev the first maxima
of Fr fall at 7=2.0X107% cm for L=1, at r=2.9X 101
cm for L=2, and at 3.7X10™2 c¢cm for L=3. For the
lower L the first maximum of Fy is seen to be well
within the range of nuclear forces and the wave function
distortion effects may be expected to be appreciable.
There is a chance that some compensation of effects
within the range of nuclear forces by effects outside
will take place, but no general reason for expecting
such a compensation. Examples to the contrary can be
found and wave function distortion is well known to
matter for spin-orbit interaction in optical spectra.

The presence of a phase shift indicates wave function
distortion. Some idea of the magnitude of the effects
involved can be obtained therefore from present indi-
cations regarding the phase shifts present. The analysis
of experimental data is not sufficiently definite to make
a clear-cut assignment possible. It appears probable!®
from polarization studies, however, that there exist °%F
phase shifts at 280 Mev of the order of 15° and the fits
obtained by Hull, Ehrman, Hatcher, and Durand"
indicate similar conditions. Some of the P-wave phase
shifts obtained by them are appreciably larger than 15°.
The first maximum of Fr? is displaced by the phase
shift. A crude estimate of the magnitude of the effects
dealt with may be obtained from this displacement,
which can be approximated by

eLg—aL/{[l—EU;—OTBJFﬁ(po)l.

Here po is the value of p at the maximum, §r, is the
phase shift, and ez, the displacement in the position of
the maximum. For L=1 this approximate equation
gives e;=—6;/0.83, so that for §;=30° the first maxi-

©B. D. Fried, Phys. Rev. 95, 851 (1954); Breit, Ehrman,
Saperstein, and Hull, Phys. Rev. 96, 807 (1954).

11 Hull, Ehrman, Hatcher, and Durand, Phys. Rev. 103, 1047
(1952); H. P. Stapp, University of California Radiation Labora-
tory Report UCRL-3098 (unpublished).
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mum is displaced from 2.75 to 2.75—0.63=2.12. The
value of p? at the maximum changes by a factor 0.46
and p? by 0.60. Such a change indicates an unreliability
in the value of the radial integral for spin-orbit inter-
action of perhaps 40%,. The §; used is on the large side
and there may be compensating effects in the interaction
region between nucleons. The error may be somewhat
smaller therefore, say 209, but there appears to be no
general reason for expecting the compensation.

The employment of the complete interaction for the
anomalous proton magnetic moment includes an effect
of the interaction of this moment with div§, where &
is the electric intensity at the proton. This effect is
contained in the diagonal terms of matrix L of Garren’s
second paper.t Its diagonal elements do not vanish at
low energies and give an angle-independent contribution
to the scattering matrix. This effect cannot be reliably
estimated without taking into account wave function
distortion because of the entrance of ¥2(0), the square
of ¢ for =0, in the expectation value of divé. An
extreme case of the effect of wave distortion occurs for
a hard-core interaction which makes ¥?(0)=0. The
value of y2(0) is also affected by the Coulomb field
and especially so at low energies.

The fact that Garren’s result contains a dominant
s-wave effect at low energies has been pointed out to
the writer by Mr. Loyal Durand, III, who has also
pointed out that in addition to Garren’s L his matrix
Y contains related terms.'? The nature of the latter is
readily understood since YV enters the scattering matrix
with a coefficient u.?. They arise from the interaction
of the two anomalous moments with each other. An
interaction of this type is well known to given an energy
proportional to ¥2(0), being very similar to that occur-
ring in the theory of hyperfine structure of atomic
energy levels.® Wave function distortion caused by
nuclear forces affects this interaction as well.

Garren’s matrix 2 contains a related angle-inde-
pendent effect on the cross section. Its presence is seen
in the trace Zii'+Zo'+Z_1_1!, which at low energies
becomes 3—16(e—1)s?, with eM¢? standing for the
energy of each proton in the center-of-mass system.
The term in s? becomes multiplied by 5/(2k), and since
7 is proportional to 1/k and e to k2 the contribution of
(e—1)s? approaches a constant at low energies. This
term is analogous to the y2(0) effect in hyperfine
structure and is subject to wave function distortion
corrections just as the other two terms. The same
applies to the analogous terms of the us-independent

12 The writer is very grateful to Mr. Durand for having drawn
his attention to the features of Garren’s results which have been
just mentioned.

18 G. Breit and F. W. Doermann, Phys. Rev. 36, 1732 (1930).
Terms of the type under discussion have been considered in that
paper in the discussion of the difference in the interaction of an
intrinsic magnetic moment as contrasted with the Diracian
moment of the electron when these moments interact with the
nuclear magnetic moment. A factor — 3 arises in their comparison.
A less formal consideration of this factor is found on pp. 159,
160 of G. Breit, Phys. Rev. 53, 153 (1938).
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contributions of the paper by the writer? as well as
that of Ebel and Hull.? A term of this type appeared
in a phenomenologic introduction of the electron’s
anomalous moment where it entered as an interaction
of the electron’s moment with the proton. Independ-
ently Foldy' used this type of contact interaction to
explain the major part of the electron-neutron inter-
action, and the relation of the two ways of calculating
the effect has also been discussed.!® Referring to the
latter presentation, the low-energy limit, after the
elimination of “small” components, in the absence of
an external magnetic field gives a contribution to the
Hamiltonian of the form

[u/(2Mc)J{— % divé+[pX ]-0—[EXp]-0}, (6)

where u is the anomalous part of the magnetic moment
in cgs units. This interaction energy is seen to include
the interaction of the electric field with the electric
dipole produced by the motion of the magnetic moment
in the same order of the calculation as the term in
divé. The inclusion of the latter term employing
undistorted wave functions is obviously unreliable at
high energies because of the strong short-range inter-
actions in S states. Thus a hard core can keep the
protons from making contact and can eliminate the
contact-type interaction if the latter is taken literally.
At low bombarding energies the effect of the Coulomb
field on the probability of the protons making contact
needs to be considered also unless a hard core suppresses
the effect. The fact that the hard core can produce a
serious effect on this term and its related sensitivity to
the potential in absence of a hard core may conceivably
make the term of interest in comparisons of p-p and
n-p data from the viewpoint of charge independence.

IV. CONCLUDING REMARKS

It is thus seen that the relativistic corrections to p-p
scattering made on the basis of corrections to the
Coulomb wave as though the Coulomb wave were not
affected by the nuclear interactions are of questionable
accuracy. It is true that at small angles the Coulomb
wave dominates the scattering and that in classical
analogy most of the collisions are distant ones. But the
Coulombian spin-orbit interaction originates in appreci-
ably closer collisions than the main part of the Coulomb-
scattered wave and the contributions of the smaller L
form an appreciable fraction of the whole effect. The
contributions of different L are not all of the same sign,
the Legendre functions for small L and 6 being nearly
1 but changing sign if L is large enough. This circum-
stance contributes to the relatively large importance
of the first few L. The alternation of signs is present
also for the spin-independent part of the scattered

14 G, Breit, Phys. Rev. 72, 984 (1948); 73, 1410 (1948); 74,
656 (1948).

15 1. Foldy, Phys. Rev. 83, 688 (1951).

16 G, Breit, Proc. Natl. Acad. Sci. U. S. 37, 837 (1951).
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amplitude and the contribution of the first few L was
seen not to be negligible. While the relativistic correc-
tions to the undistorted Coulomb wave give an approxi-
mation to the desired effects for small scattering angles
such as 10° at 150 Mev, the present considerations do
not exclude errors such as 20 or 409 in these estimates.
For an assumed nucleon-nucleon interaction potential,
a treatment substituting the wave function of that
interaction potential for the free-particle wave function
of previous work??® would provide the answer. In
principle such a calculation has to be made in terms of
states with definite J and, if there are two participating
L, in terms of the two eigenstates for these J. Since
the distortion effects are largest for the small L, a
practical arrangement would be to correct only the
first few L for the distortion effect, thus making it
feasible to have the relativistic corrections appear as a
sum of the correction for undistorted waves available
now and an additional term representing the difference
between employing the distorted and undistorted wave
functions. With such an arrangement there is no
difficulty in summing over the larger L and the problem
is largely a computational one.

The procedure just described is “arrangement (a)”
of page 1591 of the paper quoted.? The existence of the
errors discussed in the present note was brought out
there and the scattering matrix of that paper was
presented as an approximation corresponding to re-
placing distorted by undistorted wave functions. The
Coulomb interference effects obtained* from formulas
of this type may not be regarded as certain, however.
It is also not probable that obvious relativistic covari-
ance at this stage of the calculation is helpful since it
properly belongs to the stage in the theory in which
nuclear forces are derived.

If the potential energy description is inadequate, the
pion field and other fields responsible for the nucleon-
nucleon forces have to be brought into the considera-
tion. On account of the likelihood that the potential
energy between a pair of nucleons is not a wholly
applicable concept, the relativistic corrections may not
be sufficiently completely calculable for data analysis
without a thorough field-theoretic consideration.
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APPENDIX

A relatively large importance of (L-s) terms as
compared with the tensor force regarding their effect on
polarization has been referred to above. Since this
matter does not appear to have been clearly brought
out in the literature, the following consideration is
appended. It is of interest for other aspects of nucleon-
nucleon scattering as well. The Hamiltonian with
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central forces alone is called Ho. This Hamiltonian is
allowed to be quite general except for spherical sym-
metry and freedom from entrance of the particle spins.
The central potential may, e.g., be different for every
L. This generality, it will be observed, allows the
construction of a Green’s function since the latter may
be formed as

Z L, mYL, m (1/)* YL, m (I)GL (1’,7’) = G (rvrl) .

Here the vectors 1 and 1’ are abbreviations for the
polar angles of r and r/, the YV, are normalized
spherical harmonics, and the G are suitable radial
equation Green’s functions. The tensor force is supposed
to enter through a change in the Hamiltonian H, to

H=Hy+H' (A1)

H’=7\(1’)512, S12=3(0'1'l‘) (0’2'1‘)/72— (0’1‘0'2).
The wave function

Y=Yyt
so that
(HO—E)¢1= —>\(7’)Slz¢o.
One has
- f GO Su )W (K)dr.  (A2)

The expectation value of the spin component in the
triplet state caused by S1s is

<SZ>: (llllysz‘po)_i_ (¢0;32¢1)7

the inner product applying here to spin coordinates
only and s, standing for (o1.+02.)/2. The above
expectation value is

(s)=— f G )N () { (S 12( W0 (x) $°(x))
+ @0 (1),5:S12(r)Y0(r)) }dr'.
For a statistical mixture of states
¥'= exi

with equal probabilities for each triplet spin function
X;, the mean over the three j is next obtained from the
above s,. Under the integral one deals therefore with

S L(S@W ) L))+ @0(10),s.51(0)¢,° () ],
so that one is concerned with

Tr{s.S12(t")} =Tr{S12(r')s.}. (A3)

G. BREIT

Here

2 Tr{o1.(o1°1)(02°1)}

=Tr[alz,(01-r)(cz~r)]+=Tr{2z(02-r)}.
Similarly

2 Tro1.(01-02) =Tr[01,,(01-02) |=2 Tro,,
and hence
Tr{s.S12} =Tr{3z(s-1)—s.2}=0.

The first-order effect of .S1z on the polarization vanishes
therefore. The proof applies independently of the origin
of the tensor force.

On the other hand, an addition to the Hamiltonian of
the form

H'=\({)(L-s)
causes the appearance in place of (A3) of the quantity
Tr{s.(L-s)} =% Tr{L.}, (A4)

which does not vanish. Strong polarization effects are
thus more readily accounted for by (L-s) than by Si»
forces.

It may be noted that the absence of first-order effects
of S12 in the polarization may be generalized to a
modified Si» obtained from the usual one by the
replacement of r/7 by p/p. The only essential condition
is the structure of .S1s in terms of ¢; and o,.

In isotopic spin space a factor a+b(z1-72) may be
included with A(r) without affecting the conclusion,
such a factor behaving like a constant in all of the
operations. Thus A(r) may have one value for 3P, °F,
8H, - - - and another for 3S, 3D, 3G, - - - as is clear from
the fact that Sy, does not couple the two sets of states
to each other. .

The vanishing of first-order effects of Sys is essentially
implied by Wolfenstein’s analysis of nucleon-nucleon
scattering.!”

171.. Wolfenstein, Bull. Am. Phys. Soc. Ser. II, 1, 284 (1956).
The considerations of Wolfenstein [Phys. Rev. 76, 541 (1949);
82,308 (1951) ] also come very close to implying the same relation.
Wolfenstein’s presentation is put in terms of different orders of
the Born approximation which is often understood in the sense of
first order effects for the whole nucleon potential. In this sense
the earlier work of Wolfenstein does not prove the point under
discussion. The relations used by him apply, however, to the first
order effects of the tensor force to a central nuclear potential.
Thus essentially even the earlier work of Wolfenstein has implied
the relation referred to here. An independent verification supple-
mentary to Wolfenstein’s work and the consideration in the text
above has been given by M. S. Wertheim in a part of his Yale
dissertation. In this verification first-order effects of Si2 on the
phase shifts are worked out including the case of coupling of
states of the same J and different L and the effect on the polar-
ization is calculated by means of known formulas employing

Goldfarb-Feldman symbols [L. J. B. Goldfarb and D. Feldman,
Phys. Rev. 88, 1099 (1952)].



