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Experiments concerned with the measurement of viscous resistance in rotating liquid helium IT have
been analyzed on the basis of the stratification model for the superfluid motion. The onset of nonlinear
dissipation is attributed to the setting in of large-scale vorticity in the superfluid and it is proposed that
this would happen at a certain “critical” velocity corresponding to which the thickness of the layers becomes
of the order of the “correlation length.” The magnitude of this characteristic length turns out to be about
8% 10~5 cm. Further, the concept of stratified motion has also been applied to linear flow through the
supersurface film, leading thereby to a satisfactory explanation of the observations of Chandrasekhar

and Mendelssohn.

I. INTRODUCTION

T is well known! that liquid helium II, that is, liquid
helium below the lambda temperature, exhibits a
peculiar type of superfluid flow. Also, it has been found
that as the velocity of flow exceeds a certain critical
value the flow appears to become highly dissipative.
Whereas the behavior of liquid helium II in linear
motion has been investigated in great detail both theo-
retically and experimentally, it is only recently that
attention has been drawn to the behavior of the liquid
when in rotation. Experimental studies by Hollis-
Hallett and his collaborators? (and more recently by
Kolm and Herlin®) show that the rotating liquid exhibits
properties which indicate the onset of nonlinear dissipa-
tive forces at certain well-defined angular velocities.
However, no consistent theoretical study seems to have
emerged so far to account for these results.

At first sight, one may be tempted to suggest that
these effects may be due to the frictional forces between
the normal and the superfluid components or due to
the onset of turbulence in the normal (viscous) part of
the liquid helium II. However, firstly, as has also been
pointed out earlier by Atkins,* in a case of steady rota-
tion, the contribution due to the mutual frictional forces
obviously vanishes; and secondly, the anomalies appear
at such small velocities that the Reynolds number
corresponding to the viscosity of the normal component
is not high enough to account for the setting in of
turbulence (see also the detailed discussion in Sec. IT).
In this context, we feel that these abnormalities in the
motion may be explained if one considers the setting up
of vorticity in the superfluid component. Such a sug-
gestion also seems to have been recently made by
Feynman.? Consequently, in the present paper we have
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developed a model for the rofation of the superfluid
along the lines of the stratification model proposed by
London® combined with the concept of a correlation
distance™a distance within which particles exhibit
strong momentum correlations. It turns out that the
appearance of the observed abnormalities is closely
associated with the development of a ‘“macroscopic”
turbulence field in the superfluid. It is interesting to
note that the model, though essentially crude, provides
a fairly clear picture of the role of the two components
in liquid helium II, especially with respect to the
experiments under consideration. Also, it provides a
more or less direct method for fixing the magnitude of
the correlation length, a concept of great significance.

At this stage one may point out that in our considera-
tions two types of critical velocities seem to appear.
The first marks the beginning of circulation in the super-
fluid (see London®) and does not seem to be of much
practical importance since it has an exceedingly small
value. The second, on the other hand, is the velocity
at which dissipative effects may be expected to appear
and is hence of importance when comparison with
experiment is desired. The second velocity, it is pro-
posed, would correspond to the situation in which the
thickness of the layers (which progressively reduces as
the speed of rotation is increased) becomes of the order
of the correlation length insofar as the layer boundaries,
that is, the vortex sheets, come so close to each other
that the system acquires a macroscopic turbulence
field.

In the following sections, we have analyzed the
experiments of Hollis-Hallett and of Kolm and Herlin
on the basis of these concepts. Further, in Sec. IV we
have tried to apply the concept of the layer structure
to the flow of liquid helium through the supersurface
film. In this case we find that the rate of transfer would
become nearly constant as the heat input exceeds a
certain value. These results, at least qualitatively,
are in excellent agreement with the experiments of
Chandrasekhar and Mendelssohn.?
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II. ONSET OF NONLINEAR DISSIPATION
(EXPERIMENTAL)

In their experiments with the rotating cylinder vis-
cometer, Heikkila and Hollis-Hallett? observed that the
viscosity of liquid helium II determined from the
measurements of the torque, imparted to the inner non-
rotating cylinder because of the uniform rotation of the
outer one, remained constant up to a certain value v, of
the velocity of rotation of the latter. Beyond this
critical value, the coefficient of viscosity was observed
to increase with velocity, that is, the torque departed
from its usual linear dependence on velocity, marking
thereby the appearance of some sort of nonlinear effects.
In the experiment of Kolm and Herlin,® on the other
hand, the outer cylinder was kept fixed and the decelera-
tion of the inner cylinder, coasting freely, was observed.
In this case too it was found that the deceleration of the
rotor exhibited an abrupt change at a certain critical
speed of rotation. So once again it appears that some
new dissipative forces come into operation at a well-
defined velocity of the rotating wall.

First of all, one should note, as has been emphasized
by Hollis-Hallett (1953), that the presence of the
mutual frictional force between the normal and the
superfluid components of liquid helium IT is unable to
explain the observed dependence of the torque on the
speed of rotation. The reason is simple—under the
steady conditions of the experiments the mutual friction
terms disappear from the equations of motion of the
two components,* and one again expects the torque to
vary linearly with velocity, a conclusion which is not
upheld by observation.

The second possibility, which at first sight seems to
be somewhat plausible, is the setting in of turbulence
in the normal component. Taylor? has studied in detail,
both mathematically and experimentally, the problem
of the stability of a viscous liquid contained in con-
centric rotating cylinders. He concluded that against
disturbances symmetrical about the axis and periodic
along it, the flow was stable at all speeds of rotation
when the inner cylinder was at rest and the outer was
uniformly rotated (hereafter referred to as case 4).

On the other hand, when the outer cylinder was at
rest and the inner was in uniform rotation (case B),
the instability set in at some definite speed of rotation
determined by the geometry of the apparatus and the
kinematic viscosity » of the liquid. This sort of in-
stability, which we shall call the Taylor type, manifests
itself in the form of well-defined, stable, and repro-
ducible vortex patterns (Taylor® and Lewis!), and is
certainly different from the usual Reynolds type of
instability which marks the transition from laminar to
turbulent flow.

It would, consequently, be unjustified to conclude
from Taylor’s analysis, as has been done by Hollis-
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Hallett (1953), that the arrangement corresponding to
case A would be stable to fluctuations due to turbulence
at all speeds of rotation, however large. In fact, one
should expect that at some fairly high value of the
Reynolds number the flow will become turbulent even
though it is stable against the disturbances considered
by Taylor. This is precisely what Taylor observed in
his later experiments!! on the measurements of the
torque reaction between two concentric cylinders, of
which one was stationary and the other was in uniform
rotation. In case B the torque showed a departure from
its linear dependence on velocity at almost the same
speed of rotation at which the instability was expected
by Taylor’s analysis. In case 4 too, this sort of de-
parture invariably occurred at a fairly well-defined
speed of the rotating cylinder. Taylor has given a plot
of the critical Reynolds number N,(=w.at/v) as a func-
tion of #/a, where @ is the radius of the outer cylinder
and the width of the gap, ¢, is taken as the characteristic
length.

Applying the principle of dynamic similitude, we may
now utilize the above results in order to study the
possibility of turbulence in the normal component of
liquid helium IT in the experiments under consideration.
The design of the Hollis-Hallett experiments corre-
sponds to case A4, with logio(¢/a)=—1.3. The corre-
sponding critical Reynolds number X, is about 2500.
In actual experiments, however, the departure from
linear dissipation occurred at considerably different
values of the Reynolds number. For instance, at
T=2°K, the observed value of N.(=v:p./9,) was about
75, decreasing with temperature to about unity at
T=1.25°K. It is very significant to note that not only
are these values far below that required for the onset
of turbulence in a normal viscous liquid but also they
themselves extend over a fairly wide range. On the
other hand, the velocity at which the abnormality sets
in is, over a wide range, almost independent of tem-
perature, and consequently of p, (or of p./na). It is
evident, therefore, that something happens to the liquid
at a definite velocity of rotation and not at a definite
Reynolds number. Thus we conclude that the observed
behavior of liquid helium II in this case cannot be
attributed to the setting in of turbulence in the normal
component.

On the other hand, in the experiment of Kolm and
Herlin, which corresponds to the case B, one would
expect, from the Taylor criterion, that instability would
appear when the Reynolds number is about 80. In the
actual experiment, however, the Reynolds numbers
are, almost throughout, higher than this value. Hence,
in case the normal component were to exhibit instability
this would have been apparent throughout the range of
observation. No such behavior has, however, been
observed. It would not therefore be advisable to
attribute the abrupt change observed by them to the

11 G. I. Taylor, Proc. Roy. Soc. (London) 157, 546 (1936).
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appearance of turbulence in the normal component,
provided one is allowed to treat the normal component
as any ordinary viscous liquid.

Consequently, it seems reasonable to state that
neither the force of mutual friction between the two
components of liquid helium II nor the appearance
of turbulence in the normal component may be invoked
in order to account for the aforesaid observations.
Obviously, therefore, the superfluid is the proper mode
into which one should look for the cause of the reported
anomalies: probably the appearance of vorticity, on
a macroscopic scale, in the superfluid would provide the
requisite basis for the expected nonlinear dissipative
forces.

Being a fluid of apparently zero viscosity, the super-
fluid might be expected to be highly susceptible to
turbulence. London,® on the other hand, has suggested,
as emphasized by Landau!? also, that the behavior of
the superfluid component is described by the equation
of potential motion curlv,=0, which suggests reluctance
to become turbulent. It is natural, therefore, to look for
a model of the rotating superfluid consistent with the
requirement of irrotational flow for velocities less than
a certain critical value. The motion would remain non-
dissipative in this range of velocities and above that
would suffer a transition accompanied by a rupture of
the potential motion and the onset of nonlinear dis-
sipation.

III. THE “ROTATING” SUPERFLUID

We have based our considerations on the stratification
model proposed by London,® and recently adopted by
Landau and Lifshitz,®® for the motion of the rotating
superfluid. According to their picture, the superfluid
remains in a state of complete rest until the angular
speed of rotation exceeds a certain minimum value w;.
For speeds higher than w;, the superfluid is looked upon
as stratified into a number of coaxial layers charac-
terized by their bounding radii 7y, 7s, * * +, 7, ¥ap1, =+ *, 7y
in such a way that within each layer there is a curl-free
circulation with the velocity undergoing quantum
jumps at the interfaces (that is, the vortex sheets).
The quantized potential motion in the region 7x—#y1,
designated as the kth layer, is given by the tangential
velocity kk/(2zxmr) and the angular momentum k4/2r
per particle. As the speed of rotation increases, the
number of layers also increases. The layers go on be-
coming thinner and thinner and the vortex sheets come
closer and closer. It is expected that a critical stage will
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be reached when the layers become so thin that the
consecutive vortex sheets come too close to remain
independent of each other. The layer structure then
becomes virtually disrupted and the superfluid acquires
a macroscopic turbulence field. At this stage the system
experiences a macroscopic breach of superfluidity and
nonlinear dissipation sets in.

The critical layer thickness at which this transition
takes place must be something in the nature of a corre-
lation distance characteristic of the liquid under investi-
gation. A concept such as that has recently been de-
veloped by Blatt ez al.” in connection with their study
of the nature of the superfluid state. The correlation
distance A is a characteristic distance which marks the
limit of the range of momentum correlations between
two neighboring particles. Their estimate for its magni-
tude in the case of liquid helium IT is 10~*—1075 cm.18
We, therefore, expect that in the case of liquid helium IT
in rotation the superfluid component does not con-
tribute to the processes of dissipation for those velocities
of rotation which keep the layers thicker than A. As
soon as the layer thickness approaches this limit, dis-
sipative forces come into operation in the superfluid
component too. This stage is reached at the critical
velocity v*.

Clearly, in order to evaluate v* from these considera-
tions, it is required to obtain the relation between the
velocity of rotation and the layer thickness. In the
state of thermodynamic equilibrium, London obtains
the following expression for the radii of the layer inter-
faces:

k
Tk =_—(2k—1); k= 1) 2’ cec, N, (1)
4

M

where m is the mass of each (superfluid) particle and
w is the angular velocity of rotation of the cylindrical
container. Now, first of all, we have to establish the
expressions, corresponding to Eq. (1) above, for the
different geometrical arrangements of our present in-
terest.

Case 4 : The inner cylinder of radius b is at rest and
the outer cylinder of radius ¢ is rotating with a uniform
angular velocity w. In order to obtain the layer structure
in this case, we modify the one appropriate to the case
b=0, that is, the case represented by Eq. (1), by merely
restricting its total extension to the region between the
two cyclindrical walls. In this way the individuality of
the different layers is left intact except that they get
shrunk laterally and elongated axially so that the
incompressibility of the fluid is ensured. We denote the
new radii by #;’. Then, the whole of the fluid which was
previously occupying the region r=0 to r=¢ is now
confined to the region r=5 to r=a and further, that
part of the fluid which was previously occupying the
region 0—7; is now confined to the region b—r'.

15 S, T. Butler and J. M. Blatt, Phys. Rev. 100, 495 (1955).
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Obviously, one must have
(2= 9)/mi2= (a*— 09/ a?,

each being equal to the ratio of the original height of
the fluid to its new height. Whence, using Eq. (1), we

have
a®—b? h
r/2=0b21} ( ) (-——-) (2k—1). (2)
a? darme

Case B: The outer cylinder of radius @ is at rest and
the inner cylinder of radius b is rotating with a uniform
angular velocity . The layer structure in this case will
evidently be obtained by interchanging the roles of a
and b in the previous case, whence

r = g?— (02:2) (Z;l;—w) 2k—1). ()

It may be noted that in the present considerations also
(just as in London’s treatment, reference 6) no assump-
tion has been made to restrict the velocity of the super-
fluid in contact with the rotating wall to the velocity
of the latter.

Next, the mean flow rate within the kth layer is
given by:

Case 4:

kh
O (Tt — ") =—— In(rei’/7e). 4
2wm

Substituting for 71’2 and 7,2 from Eq. (2) we obtain
after simplification

a2b2

[+l

For the layer close to the rotating wall one has from
Eq. (2)

5]; (rk+1’~rk’) _-—
4m

2k~Anmwa®/h;  (C>1).

Hence, the mean velocity within this layer would be
very nearly equal to v, the peripheral velocity. Setting
the layer thickness equal to A, we obtain, from Eq. (5),
for the critical velocity,

755 = (1-—ﬁ . | (6)

4rmA a?

Case B: In the same way, we obtain for this case

h a’
4rmA\ b?

Next, we investigate how far the conclusions arrived
at above are applicable to the experimental results
discussed in Sec. II. In the Kolm-Herlin experiment,
2=0.95 cm, 5=0.63 cm, and the observed critical
velocity, #»*=1.2 cm/sec. Equation (7) then gives for
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the correlation length
A=8X10"% cm,

a magnitude well within the reasonable limits of
10~*~10"% cm proposed by Butler and Blatt.!® Also one
should expect from general considerations that the
magnitude of the correlation length would not be very
much different from the thickness of the supersurface
film.

One may now use this value of the correlation length
in Eq. (6) in order to obtain the magnitude of the
critical velocity expected in the Hollis-Hallett experi-
ments (¢=2.097 cm, 5=1.991 cm). One immediately
obtains

2,¥=0.09 cm/sec,

in remarkable agreement with the observed values of
0.08 to 0.09 cm/sec.

At this stage, one may not, however, insist upon the
details of the present model. It would be interesting to
work out, in greater detail, the actual magnitude of the
contribution due to the appearance of large-scale
vorticity in the superfluid. Pending the development of
such an analysis it seems that the present considerations
are a step in the right direction towards a clear under-
standing of the roles played by the superfluid and the
normal components in the rotation of liquid helium II.

IV. FLOW THROUGH THE SUPERSURFACE FILM

Clearly, one may expect that the essential features of
the stratification model should also be applicable to the
linear flow of the superfluid. Needless to add, the
details of such a consideration would be highly compli-
cated owing to the complexity of the macroscopic
boundary conditions. However, one may intuitively
develop a qualitative argument in order to picture the
flow of superfluid helium through the supersurface film.
It is interesting to note that this simple consideration
leads to quite far-reaching conclusions.

We study here the rate of transfer of the supersurface
film under a temperature gradient. Strictly speaking,
the stratification model is not applicable insofar as the
flow is nonisothermal. However, it still seems interesting
to point out some of the simple features of the probable
mechanism of the flow phenomenon.

Consider the change in the flow process as the heat
input is gradually increased from a vanishingly small
value. In the beginning, the rate of transfer is small
and therefore the velocity with which the film slips
over the supporting surface is much less than the usually
observed critical velocity. As the heat input is increased,
a stage is reached when the slip velocity becomes just
equal to the critical value. Here, superfluid particles in
contact with the surface would start experiencing fric-
tional effects and, in fact, some of the atomic layers may
stop moving. Next, since veit X d~const, and since the
effective thickness of the moving film has been reduced
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(due to the stoppage of some of the layers), the effective
critical velocity for the moving part assumes a higher
value. Consequently, the flow breaks up into two parts
—a portion of the superfluid (which is in contact with
the wall) completely at rest, and the remaining part
flowing with a subcritical velocity (pure superflow).
On further increasing the heat input two effects are
expected to appear. First, the thickness of the stationary
layer increases and second, since the superfluid par-
ticles can lose energy only in accord with the principles
of quantum mechanics, a layer structure is formed. In
other words, the moving portion of the superfluid is
broken up into layers. The actual velocity distribution
may be quite complicated. However, it does not appear
to be necessary to go into further details for the purpose
of a purely qualitative argument. Suffice it to say that
as a result of the frictional effects, the portion of the
superfluid which participates in the flow process effec-
tively reduces and hence the rate of transfer would not
follow the increase in the heat input. In other words,
even though intrinsically the velocity of flow may in-
crease, the observations would not exhibit a larger rate
of transfer insofar as the cross section of the moving
part goes on shrinking.

Such an effect, it may be noted, has been observed by
Chandrasekhar and Mendelssohn.® Also, it may be
pointed out that so far it has not been found possible
to account for their observations on the basis of any one
of the well-known models for the flow of superfluid
helium. It would be worth while to work out the actual
velocity at which the frictional effects first appear, but
at present one has to be content with an interesting,
though of course sketchy, picture of the flow phe-
nomena.

V. DISCUSSION OF RESULTS

We have seen above that once the stratification con-
cept is accepted as the probable model for the rotation
of superfluid helium, it follows that it would exhibit the
onset of strong dissipative effects at a well-defined speed
of rotation. Since each of the layer boundaries (that is,
the vortex sheets) represents a local breach of super-
fluidity, it is clear that the “merging” of these bound-
aries when their separation approaches the magnitude
of the correlation distance is virtually equivalent to the
appearance of a macroscopic turbulence field. One
cannot but stress the importance of the model in order
to estimate the magnitude of the correlation distance by
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recourse to well-known experimental results. In this
connection, one may utilize the observations of Heikkila
and Hollis-Hallett? who have measured the values of
2,* over a wide range of temperatures. It is found that
7,* varies from 0.08 cm/sec to 0.09 cm/sec as the tem-
perature is varied from 1.3°K to 2.1°K and then
increases rather rapidly as the lambda-temperature is
approached. This immediately leads to the conclusion
that A should decrease from 9X10~% ¢cm at 1.3°K to
8X107% cm at 2.1°K and then show a rapid decrease.
Of course, such a behavior of the variation of the corre-
lation length is quite consistent with the concept that
it would be of the order of the effective deBroglie wave-
length in the system under consideration (see reference 7
for a detailed discussion).

Clearly, in all systems there are a certain number of
particles in the lowest state of energy, that is, with
large deBroglie wavelength, but in the case of liquid
helium, below the condensation point, this number is
comparable to the total number of particles in the
system. Therefore, the magnitude of the correlation
length, which would be large at temperatures fairly
below the lambda point, should reduce rapidly as the
lambda point is approached. For the number of par-
ticles having large deBroglie wavelength becomes van-
ishingly small in comparison with the total number. In
fact, just above the lambda point one should expect
the correlation length to be of the order of the deBroglie
wavelength of a particle with energy k7, viz., ~10~7 cm.
A possible confirmation of these results may be obtained
if the Kolm-Herlin experiment is also performed at a
number of different temperatures.

Pending the availability of more detailed observa-
tions, it is encouraging to note that the present model
provides a fairly satisfactory explanation for the
anomalies observed with two types of arrangements
which are rather widely different from the point of
view of the stability of viscous flow. Further, it is
hoped that it would be possible to develop the full
details of this model within the framework of a general
quantum theory of the liquid state.
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