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Slow-Neutron Scattering by Molecules
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The operator formalism in slow-neutron scattering theory introduced by Wick and by Zemach and
Glauber is considered in an approximation in which molecular rotational and vibrational efFects are
explicitly separated. The combined effects of rotation and translation are treated in terms of the Sachs-Teller
"mass-tensor" concept, which is rederived on the basis of a rigid molecule Hamiltonian and extended to
include interference efFects. Only elastic vibrational transitions from the ground vibrational state are consid-
ered. The applicable neutron energy range is restricted to values large compared to the rotational level sep-
aration but below the vibrational threshold.

The method is applicable to the calculation of difFerential as well as total scattering cross sections and to
molecules of arbitrary structure. Expressions in closed form for these cross sections are obtained through use
of an approximate procedure for averaging over molecular orientations. In the case of hydrogenous molecules,
where direct scattering is dominant, the scattering by a given nucleus is described in terms of two parameters,
viz. , an effective nuclear mass for rotation and translation, and a vibrational constant. The relative simplicity
of the method is illustrated in the calculation of the differential and total cross sections of CH4 and the total
cross section of Hg. Agreement of these calculations with experiment and with other calculations is good.

I. INTRODUCTION
' 'Q the Fermi pseudopotential approximation, ' the
& ~ problem of slow-neutron scattering by nuclei of
chemically bound atoms can be formulated very con-
cisely by the introduction of the Fourier representation
for the energy-conserving b-function, which permits an
implicit summation over final molecular states. This
formulation has been used for molecular scattering by
Wick' and by Zemach and Glauber. ' The work of Wick
is concerned mainly with the asymptotic behavior of the
total cross section at high energy while that of Zemach
and Qlauber is directed toward the more formidable
problem of calculating the differential cross section at
arbitrary energy. The results obtained by Z.G. for CH4
are in much better agreement with experiment than
are the calculations of Pope. 4

Another, and much earlier, approach to the problem
of slow-neutron scattering by molecules, is that of Sachs
and Teller, ' in which only the total cross section is
considered and interference and vibrational eGects are
neglected. The basis of the S.T. method is the concept of
a nuclear mass tensor whose properties replace the effects
of chemical binding. The S.T. method has been ex-
tended by Messiah' to include molecular vibrations.

In this paper, the mass tensor approximation is
rederived by use of the formalism of Z.G., and is ex-
tended to include interference effects and the calculation
of the differential cross section. This reformulation is
quite concise, and demonstrates clearly the origin of the
mass tensor approximation, which is somewhat obscured

~Operated by the General Electric Company for the U. S.
Atomic Energy Commission.

~ E. Fermi, Ricerca Sci. 1, 13 (1936).
~ G. C. Wick, Phys. Rev. 94, 1228 (1954).
3 A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118, 12

(1956).These papers will be referred to as Z.G.
4 N. K. Pope, Can. J. Phys. 30, 597 (1952).
~ R. G. Sachs and E.Teller, Phys. Rev. 60, 18 (1941).This pape

will be referred to as S.T.' A. M. L. Messiah, Phys. Rev. 84, 204 (1951).

in the original S.T. paper. The expression from which
the cross section is calculated can be averaged over the
thermal equilibrium distribution of initial molecular
states, but the evaluation of the average over molecular
orientations is much more difFicult. The use of the Z.G.
formalism suggests a mathematical approximation for
averaging over orientations. When this approximation
is used, an expression in closed form for the total cross
section for direct scattering is obtained. The differential
cross section is then found by simple numerical integra-
tion. The results are compared with experiment in the
cases of CH4 and H2, and the agreement is found to be
good.

II. FORMAL RESULTS

In the Z.G. formalism, a(8, e), the differential cross
section for molecular scattering through an angle 0 with
energy gain e, is given by

a (O, e) = g o „, (O, e),
v, v'

with

a., (i1,e) =u„„(k/2nks) )t e '"(x..)rd1. (2)

Here a„, (8,e) is the contribution, to the cross section
from the ordered pair of nuclei v and v; ks is the initial
neutron momentum; k is the final neutron momentum;

(x-) =LE'I- ' p(—&'P')j
XLP; exp( —E,/T)] ', (3)

X,. '=Q;~exp(sx r, (t)) exp( —sx. r, (0)) ~P;);

T is the absolute temperature in energy units, P; the
initial molecular wave function, x the momentum gained
by the neutron, and r„(t) the Heisenberg position-vector
operator of the vth nucleus. Natural units with 5= 1 are
used, and all quantities refer to the laboratory system.
The terms in (1) with v= v' give the direct scattering

290



SLOW —NEUTRON SCATTERING BY MOLECULES 291

contributions; for these a„„.in (2) has the value

a„,=A,s+C.s, (4)

The dependence of (6) on 0 is contained in the rotational
and vibrational factors. When vibrations are completely
neglected, the vibrational factor disappears, and the
result then leads to a generalization of the S.T. ap-
proximation which includes interference effects. As is
shown in the appendix, the present approximation
yields

(y„„')s (X„„.")s ——exp{——,
' (x.I„'L) (st+ Tts) }
)&exp{i@ [b,(0)—b„(0))}, (7)

' where b„(0) and b„(0) are the equilibrium position
vectors of the vth and v'th nuclei with respect to the
molecular center of mass, and K„ is the S.T. mass
tensor corresponding to the vth nucleus.

The vibrational factor (y„„")ris evaluated in Z.G. If
we restrict attention to neutron energies below the
vibrational threshold, and assume, moreover, that all
molecules are initially in their ground vibrational states
(i.e., that 2'=0 for vibrations), then (y„,'")r reduces to
the time-independent form

where c„'"& is the amplitude vector corresponding to the
s th nucleus and the A, th vibrational mode, and co~ is the
angular frequency of the Xth mode. For each value of X,
the amplitude vectors are normalized via the condition

M„being the mass of the vth nucleus. The dependence of
{y„„.")ron the molecular orientation 0 is contained in the

7 The "quasiclassical" approximation employed in this paper is
not to be confused with the semiclassical or static approximation
used, for example, by N. K. Pope, reference 4.

where A „and t"„are the bound coherent and incoherent
scattering lengths, respectively. For the interference
terms, on the other hand,

a„=A,A„., (vW v').

In (4) and (5), the effects of nuclear spin correlation
have been neglected.

We shall be interested in neutron energies large com-
pared to the spacing of the molecular rotational levels.
At these energies, and provided T is much larger than
the rotational constant, the rotations may be treated in
a "quasiclassical" approximation which permits the
evaluation of x„„ata fixed molecular orientation Q. A
further implication of this quasi-classical approxima-
tion' for the rotations is that (neglecting rotation-
vibration interactions) x„„,and hence (y„, )r, may be
separated into factors corresponding to translation,
rotation, and vibration, respectively,

quantities c„'M. The function (g„„)r is obtained by
substituting (7) and (8) into (6).

To perform the averaging over molecular orientations,
we note that (x„„)rappears as a product of factors. The
first of these, exp{iv. [b„(0)—b. (0))},is a static inter-
ference term which can be a rapidly varying function of
orientation. The second factor,

(10)

represents, in the S.T. approximation, the combined
dynamical eGects of molecular rotation and translation
on the scattering from the vth nucleus. The final factor
is given by (8) and represents the dynamical effects of
zero-point vibrations. The dependence of this factor on
orientation depends on the degree of anisotropy of the
vibrations. We now make the approximation that the
average of the product of these three factors is equal to
the product of their averages. The accuracy of this
approximation can be judged by comparison with the
results of Messiah' for H2 and CH4 obtained by a
rigorous averaging over orientations. This comparison
will be made in the next section.

The static interference factor in (7) is easily averaged,
giving

where b„„=~b„(0)—b„(0)~, and jo(x)=x 'sinx. An
approximate average of the S.T. factor (10) can be
obtained by averaging in the exponent:

(gp )a= exp{—IP(2M p'") '(it+ rt') }, (12)
where

(13)

Equation (12) gives the (x)r-function corresponding to
the scattering by a monatomic gas of mass 3I„&" at
temperature T.' The effects on slow-neutron scattering
of the dynamics of the rotational and translational
motions of the vth nucleus have thus been reproduced
by the use of an equivalent free translation with a
modified nuclear mass.

The accuracy of this approximation can be gauged by
comparing the total cross section for direct scattering in
the S.T. approximation with that for a monatomic gas in
the high energy limit (XT/Eo)((1, 'A= (m/M„) being the
ratio of neutron mass to nuclear mass. In this energy
range, the monatomic gas cross section has the well-
known form

On the other hand, it follows from (7) and (14) that the
Sachs-Teller result for the rigid rotator is

8 The device of replacing a gas of rigid rotators by a monatomic
gas with effective mass given by {13)was first used in a study of
neutron thermalization by H. D. Brown and D. S. S't. John,
Atomic Energy Commission Report DP-33 (unpubhshed).



292 T. J. KRIEGER AND M. S. NELKIN

3,4

3,0

b
2+2

0

I.s

l.4

jig EXPERIMENTAL POINTS—MESSIAH—PRESENT CALCULATION

values of (s'v) which are of interest, the approximation
(20) will be accurate.

The final expression for (X„„)p, obtained by com-
bining (20), (12), (11) and (7), is

(X- )r= is(s&- ) exp( —"V- )
)&exp{—s (2M„) i(it+Tts)}, (21)

where M, is defined by (19). Specific examples of the
application of (21) will be discussed in the next section.

III. CALCULATION OF CROSS SECTIONS
I.O 80 I

I20
l&EO (ev)

160 200

Fro. 1.Total slow-neutron scattering cross section per proton of
CH4 as a function of E0 ' at room temperature. 0 f=20.36 barns is
the free-proton cross section.

where
a= ((1+mu. S-'u)-')n,

b=Pm(u R-'u)(1+mu R 'u) ')n (17)

M„= (2m) ()%,i+)is) ', (19)

can be used with good accuracy. Although the discussion
of this and the preceding paragraph is primarily a
justi6cation for (12), a slight improvement in accuracy
results when (19) is used. In most cases Xi and Xs are
very nearly equal, neither diKering much from Xo
= (m/M. Io'). This is illustrated in Table I for protons in
CH4, H2, and H20.

Finally, it is necessary to average the vibrational
factor (8) over orientations. Again, this can be done
conveniently by the approximation of averaging in the
exponent, which gives

&x-"& =o= p(—"v- ), (20)
where

v- =Z~(1 ~~) 'L(e.'"')'+(e"'"')'3=-'Lv +v ~ )

and u is an, arbitrary unit vector. The expressions (16)
and (17) may be evaluated, for a given molecule, in
terms of the components of the mass tensor, and are
easily shown to agree with the results of Messiah' for
spherical top or linear molecules. ' We now define two
eGeCtiVe maSSeS M„OI = (m/)ii) and M I'& = (m/)is) &

where
=(1+) ) '

(&/ )=(&/2) (1g)

If, for a particular molecule, ) ~ and X2 are nearly
equal, it can be assumed that the form (12) for the
rigid rotator scattering, with M„&'~ replaced by an
average

In order to estimate the accuracy of the mathematical
approximations employed above in averaging over
molecular orientations, we shall compare the total
molecular direct scattering cross sections of CH4 and H2
as calculated by the method outlined above with those
obtained by the method of Messiah' in which the
averaging over orientations is performed exactly. It is
most convenient to start from the relation obtained by
integrating (2) over the momentum transfer:

oi.i& "I (Ep) = (a„„/2m'mkp) " dsxdte '"(x„„)&, (22)
J

where

(x„„)r=exp( —s'v„„) exp{—s'(23I„) '(it+ Tt') }. (23)

If in (22) the x integration is performed by a trans-
formation to polar variables with polar axis along kp, one
obtains

t+" dt
o.t &"I(Ep)= (2')'*a„„ko '(M„/T)'* —use c (24)0

p()

where C—= (M„Ep/Tm) and I= (1—iut '+Pt ') ' in
which n=—(m+M„)/mT and P—= (2M„v„„/T). The inte-
gral in (24) may be evaluated by. means of contour
integration in the I plane. "The Anal result is

o't,op'"I (Eo)=pra- (2po/Eo) {erfLC&)
—(1—P)&e

—o" erfLC&(1 —P)&j}, (25)
where

po=—(4mv„„)
—',

erf z is the error function

p Z

erf s—= exp( —t')dt,~ J,

TABLE I. Effective inverse rotational masses for the protons in
several molecules, as defined in Eqs. (13) and (18).

In general, the argument of the exponential in (8) will
contain a term of the form (~'v) plus a term dependent
on orientation. The accuracy of the approximation (20)
depends on the magnitude of the orientation-dependent
term. If this term is small compared to unity for the

CH4
H2
H20

0.313
0.833
0.531

0.297
0.814
0.482

0.292
0.808
0.491

~ This point is discussed in more detail in the Atomic Energy
Commission Report KAPL-1597 (unpublished') by the authors.

' This integral has been evaluated in another connection by H.
Hurwitz and P. F. Zweifel (private communication).
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and
(26)

2A

Following Messiah, we shall calculate only the direct
scattering by hydrogen nuclei. Considering the CH4
molecule first, we note that here, owing to the small
rotational constant (B=0.0006 ev), the mass-tensor
approximation should give good results. Furthermore,
the use of the other approximations introduced by the
present method is seen to be well justi6ed in view of
the near equality of lii and Xp (see Table I) and of the
small anisotropy of the equivalent vibrators. '

Using Messiah's molecular data, Eq. (26), and Table
I, wednd

2.0

b
b Le

20

I
EXPERNENTAL PO(NTS
MESSIAH

PRESENT CALCULATION

40
l/E& (ev) ' 80

(m/MH) =0.2944,

cv = (4myHH) '= 0.1656 ev,

and) fol T= 94 K)

p =0.0510.

With these values, the cross section per proton may now
be calculated from Eq. (25). In Fig. 1, the results of this
calculation are compared with those of Messiah and
with Melkonian's experimental data. " (For conven-
ience, the ratio of the cross section to the free-proton
cross section p./=maHH= 20.36barnsisusedas ordinate. )
We note that above 0.01 ev the two theoretical curves
are in good agreement with each other and with the
experimental curve. Below 0.01 ev the present calcula-
tion is in better agreement with experiment, which may
be attributed to the inadequacy of Messiah's 1/Ep ex-
pansion at these low energies. However, as was pointed
out by Messiah, the mass-tensor approximation breaks
down below about 0.01 ev in the case of CH4. The
improved agreement of the present calculation with
experiment indicates only that the 1/Ep expansion in
that energy region introduces greater inaccuracies than
does the mass-tensor approximation.

For the H2 molecule, the applicability of the mass-
tensor approximation is of more restricted validity since
the rotational constant is larger (B=0.007356 ev).P The
mass-tensor approximation, therefore, should break
down at a higher energy than in the case of CH4. More-
over, the rotations of an H2 molecule at room tempera-
ture are not well described by a Maxwellian distribu-
tion. To meet this difhculty we define an effective
temperature T', by means of T'= (3/5) T+ (2/5)(Ez)r.
For T=300'I, (Eii)=0.0235 ev, 'we find T'=0.0249 ev
=289 K. This 4% correction is similar in magnitude to
the one applied by Messiah for the incompleteness of
rotational excitations. In order to make the comparison
with Messiah's results more precise, the H2 calculations
were performed for T=300'K. The input parameters
for (25) are

(nz/MH) =0.8107, &p = 1.6385 ev, p =0.00751.

"Messiah uses T=300'K, which makes precise comparison
with our calculations difBcult.

'2 E. Melkonian, Phys. Rev. 76, j.744 (1949).

Fxo. 2. Total slow-neutron scattering cross section per proton of H2
at T=300'K. Interference terms are neglected.

The present approximation for averaging over orienta-
tions in (10) should be a good one in this case also, since
X~='A2. Although the vibrations are quite anisotropic,
the vibrational factor

z y = (&/4) (Ep/2~)

(M q& 1"
0'-'(~)=~-'I

I
dp—jp(&&-') exp( —&'v-)

E2mT j & —xp kp

M
&&exp —

I
p+ — I

1,

. 2T. & 2M,)
If we set f'.„=(1+ 8'„„M,T) ~, p., = (1—t,;)(2 ''„) ',
T'= f „„,T, and M„'= i „„M„,the factor in curly brackets
in (27) becomes

M„' p
em(~-') exp —,, I

p+ —,I

2T'i~' 0 2M, '&
(28)

is much smaller than unity over the energy range of
interest, so that averaging in the exponent in (8) is
reasonably accurate. In Fig. 2, the cross section of H2 as
calculated from (25) is compared with Messiah's curve
and with experiment. "The two theoretical curves di6er
in the same way as in the case of CH4. The agreement of
the present calculation with experiment is not so good
because of the greater inaccuracy of the mass-tensor
approximation when applied to H2. The omission of
interference effects in the total cross section calculations
is justified by the smallness of the hydrogen coherent
scattering length.

As a further check on the accuracy of the method of
calculation presented in this paper, the differential cross
section for the CH4 molecule was calculated and the
results compared with the calculations of Z.G.,' who,
while not using a mass-tensor approximation, made
expansions in inverse powers of neutron energy and
rotational mass. To obtain an expression for the differ-
ential cross section, we combine (2) and (21) and
integrate over e. The integration over t is performed
6rst, being the same as that for a monatomic gas. It is
easily carried out' to give
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F&G. 3. Differential cross section of CH4 for slow neutron
scattering at E0=0.0732 ev and T=0.0255 ev. Normalization of
the present calculation is such as to agree with curve of Z.G. in the
range 40'—50'. Normalization of experimental data is that of Z.G.

where o„„'(8,c) is the differential cross section corre-
sponding to a monatomic gas of vth nuclei at a fictitious
temperature T' and of fictitious mass M„'."

The differential cross sectiono (8) =P.. .o„„(8)of CH4
was calculated from (27) by numerical integration,
after a transformation of the variable of integration
tom= (0/ks). The following values of the parameters were
used'. T=0.0255 ev, Eo——0.0732 ev, C~ ——0, A|:——0.64
)&10 '2cm, CH=2.52)&10 "cm, AH= —0.42)&10 "cm,
b~H ——1.093)&10 ' cm, bHH

——1.7848&(10 ' cm, 3fH
= (m/0. 2944), Mc = 16 m, yrrH =6.266X10 " cm', yacc
=2.1375X10 " crn'. The interference terms in o.(8)
(vAv') were found to be very small since An'(&Cns.
Moreover they tend to cancel since Aq and AH are of
opposite sign. The results of the calculation are shown

plotted in Fig. 3, together with the data of Alcock and
Hurst" and the calculation of Z.G. The normalization of
the present calculation is such as to produce best 6t
with the data in the region 0=40'—50'. It will be
observed that the present calculation fits the data very
well for 8&30'. For 0&30' there is some doubt con-
cerning the accuracy of the experimental data, as can be
seen from the inconsistencies in the high- and low-

pressure values. In general, however, it appears that the
present calculation gives a somewhat better 6t at small
scattering angles than does the Z.G. curve. '~

"The form of o»(8, e) given by (29) is convenient for calcula-
tions of neutron thermalization, where the monatomic gas kernels
have already been programmed for machine calculation. This
point is amplified in reference 9.

'4 N. Z. Alcock and P. G. Hurst, Phys. Rev. 83, 1100 (1951)."A weak logarithmic singularity in the differential cross section
at 8=0', which occurs in the present calculation and in the
Z.G. rigorous monatomic gas scattering analysis, is not shown. It
is absent in the Z.G. CH4 calculation because of the approximate
expansions employed. The numerical work of the present calcula-
tion indicates that the singularity is confined to very small
scattering angles and is already completely negligible at 8=5' for
E0——0.0732 ev. The origin of the singularity is discussed by Z.G.

from which, incidentally, it can be seen that, in the case
of direct scattering from the vth nucleus,

o „„(8,e) = exp(p„e)o, „'(8,e), (29)

IV. SUMMARY AND CONCLUSIONS

A simpli6ed model for calculating the slow-neutron
scattering cross section of free polyatomic molecules has
been developed on the basis of an extended mass-tensor
concept. The model, which is valid for neutron energies
large compared to the rotational constant but below the
vibrational threshold, includes the effects of zero-point
molecular vibrations, and permits the calculation of
both the interference and direct scattering terms with-
out resort to expansions in inverse powers of the nuclear
mass or neutron energy. In the application of the
method to the slow-neutron scattering by hydrogenous
molecules, in which case chemical binding eGects are
greatest, there is the simplifying feature that the scat-
tering is predominantly direct, with interference terms
making only a small contribution to the total scattering.
Here the model essentially reduces the description of the
scattering to the consideration of two molecular parame-
ters: MH, an eGective proton mass for translation and
rotation, and pHH, a vibrational constant equal to the
mean square zero-point vibrational displacement of the
proton. The method thus represents a considerable
simplification over the more rigorous Z.G. method,
which, despite its powerful techniques, does not yield an
exact solution to the rotator problem. Moreover, it
gives approximate solutions only in the cases of spherical
top or linear molecules, whereas the present method
applies to molecules of arbitrary structure. Of course,
the simplifications described here have been achieved at
the expense of a considerable restriction in the applicable
energy range, dictated by the use of the mass-tensor
concept. Though small, this energy range is nevertheless
of considerable interest.

The utility and relative simplicity of the method is
demonstrated by the calculations of the cross sections of
CH4 and H2, which are in quite good agreement with
experiment, and with the results obtained by more
complex methods.
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APPENDIX

In this appendix, it will be shown that, in the "quasi-
classical" approximation introduced in the text,

(y„„')r(y., ")r——exp(ix Lb, (0)—b. (0)))
Xexp( —-,'(x St —'sc)(it+Tt')} (A1)

where I, is the usual S.T. mass tensor.
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We start with a form analagous to (3):

(x„„")r——Q "~exp{i@ b„(t)) exp{—ix b„(0))~P")r
=(P"~exp(i') exp( —iH„t) exp[i' b, (0)]

Xexp[—ix b„(0)]~f")r, (A2)

where II is the Hamiltonian for the rotating rigid
molecule, and H„ is H with p„replaced by (p,—~). An
expression for II in terms of the y s is obtained on
writing the total rotational energy of the molecule in
terms of the total angular momentum L=P; b;Xp;,
and the moment of inertia tensor 3,

for a later stage in, the calculation. The symbol ( )& will
thus refer, from this point on, to merely an average over
L values. Hence, from (A2), in the quasi-classical
approximation,

(y.„")r——(exp{—[x 8, 3-'L+-', x R„x]it))p
Xexp{ib [b, (0)—b„(0)]). (A7)

The thermal average is effected by integrating over an L
distribution determined by the Boltzmann weighting
factor exp{—(2T) '(L ~ ' L)).The resulting integrals
may be evaluated by setting L=1.3l=3'* 1, and d'L
= (Detg'*)d'1. The thermal average (A7) then becomes

(x„„.")r——exp{i' [b„(0)—b„.(0)]) exp{——',itx Q„x)

exp( —P/2T) d'1

where

with

From (A3),

Q;;=8;t 3—.S,=Q;;t,

—b, b„
0
b 0.

(A4)

(A5)

X exp( —P/2T)

Xexp{(itx S„t Q & l))d'1 . (A8)

The integrals (A8) are easily evaluated, yielding

H„=H—-', L 3-'S„.x
—-'x 8 & Q 'L+-', x Q„x. (A6)

Direct substitution of (A3) and (A6) into (A2) is not a
useful procedure owing to the noncommutativity of the
various operators appearing in (A3) and (A6). This

difhculty is not the result of the complexity of the
scattering system, as may be seen from the fact that the
same difficulty arises in calculations with the greatly
simplified rigid rotator model employed by Z.G.

The quasiclassical approximation introduced here
consists essentially in treating the operators in (A2) as
classical, commuting variables and replacing the rigid
rotator wave functions lt" by rotational wave packets
characterized by simultaneously mell-defined values of
orientation and angular momentum. Such wave packets
will exist when the rotator is sufficiently excited, i.e.,
when T&)B, and when the collision time is small com-
pared to the rotational period, i.e., when &0))(M')'*,
where (BT)& is the level spacing in the neighborhood of
the most probable level. These are the usual conditions
for the validity of the S.T. mass-tensor approximation.
The thermal average in this approximation involves, in
general, an average over molecular orientations together
with an average over a Boltzmann distribution of L
values. However, since f' also depends on orientation, it
is necessary to reserve the averaging over orientations

(x„„")z=exp{is [b,(0)—b, (0)])
Xexp{—-', (x Q„x)(it+ Tt2)). (A9)

The translational function is given by Z.G. :

(y.,')r =exp f —~'(2M) '(it+ Tt')), (A10)

where M is the molecular mass. Combining (A9) and
(A10) gives the desired result (A1), with

SR
—'=Q +M—'1

where 1 is the unit tensor and K., by comparison of
components, is seen to be identical with the S.T. mass
tensor corresponding to the vth nucleus.

It may be verified on a more rigorous basis that the
present model gives the correct result for a rigid rotator
in the limit of very large neutron energies. For in this
case, all initial molecular motion may be ignored, with
the result that

exp(i') exp( —iH„t)~exp{—2~its. Q„„x), (A12)

a form dependent only on the molecular orientational
coordinates. The thermal average defined in the text
then reduces rigorously to an average over these
coordinates, independent of the molecular energy levels
or wave functions. The form (A12) represents a
generalization of the "classical limit" introduced by
Z.G. to arbitrary molecular structure.


