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The di6erential cross sections for high-energy bremsstrahlung and pair production in a screened Coulomb
6eld are calculated without the use of the Born approximation. It is shown that for pair production the
correction to the Born approximation occurs only for momentum transfers q of order mc, for any amount
of screening. For bremsstrahlung, however, the correction is only important for q's of order (rncv/E)rnc,
where 8 is the energy of the electron. As in the case of no screening, the correction to the differential cross
section for bremsstrahlung is found to be given by a factor multiplying 'the Bethe-Heitler cross section.
It is then shown that the bremsstrahlung cross section integrated over the angles of the 6nal electron is
additive, just as in the case of pair production: one part is the Bethe-Heitler cross section including screening;
to this is then added the Coulomb correction which is independent of screening.

The cross sections are evaluated by using wave functions which are accurate in the region in space which
contributes significantly to the matrix element. This region is determined by the order of magnitude of g,
and different wave functions must be used in the regions (I) corresponding to q's of order mc and (II) cor-
responding to q's of order (roc'/E)rnc. In (I) the wave functions are obtained by an expansion in partial
waves and use of a WKB method on the radial wave equation. In (II) we use a WKB technique on the
three-dimensional wave equation itself. Corrections due to the use of Sommerfeld-Maue wave functions,
which are solutions to the second-order Dirac equation, are shown to be negligible. Finally, the method
is used to obtain the cross section for small-angle elastic scattering.

1. INTRODUCTION

HE diGerential cross section for high-energy
bremsstrahlung and pair production taking into

account the Coulomb Geld of the nucleus exactly has
been derived by Bethe and Maximon' in the case of an
unscreened atom. It was also shown by them that
the extension to the screened case could readily be
made in the case of pair production. It was then shown

by Olsen' that the cross section for bremsstrahlung
integrated over the direction of motion of the final
electron can be inferred from the corresponding expres-
sion for pair production for any amount of screening.

The present work was then intended to give the
remaining unknown quantity, the diGerential cross
section for bremsstrahlung in the screened case (dif-
ferential both with respect to the photon and electron
momenta). It soon became clear, however, that it was

possible to solve the entire problem in a way which

pointed out clearly the significant factors which deter-
mine the matrix element. In particular very simple

accurate high-energy wave functions for an electron in

an arbitrarily screened potential have been constructed.
These wave functions give the exact results for the
matrix elements in the case which may be checked,
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namely the case of a pure Coulomb potential treated
by B-M.

At the same time, the present calculation, being so
much more transparent than the exact one, should be
able to give a little insight into the mechanism of the
Coulomb correction at these high energies. It was
especially intended to study more closely the eGects
caused by the diGerence in the spatial part of the states
for pair production and bremsstrahlung; namely that
in pair production both particles are represented by
wave functions with asymptotic behavior plane wave
plus ingoing spherical waves, while in bremsstrahlung
the initial electron is represented by a normal scattering
state (plane wave plus outgoirtg spherical waves) and
the final electron by a wave function with asymptotic
behavior plane wave plus iegoieg spherical waves. It
has been shown' that this causes a big diGerence
between the differential cross sections for the two
processes. It has, however, also been shown' that this
eGect disappears when the cross sections are integrated
over the motion of the final electron, and that con-
sequently the Coulomb correction to this integrated
cross section is the same for both processes. As a con-
sequence of this, the remark about shower theory in
B-M should be corrected: Conventional shower theory
is rot changed by the Coulomb eGect.

It is interesting to note that the essential calculations
for the diGerential cross section for high-energy brems-
strahlung were given by Sommerfeld' for the case of

e A. Sommerfeld, Atornbau und Spektraltinien (Vieweg und Sohn,
Braunschweig, 1939), pp. 501—505 and p. 551. The cross section
for bremsstrahlung is given by Eq. (VII, 7.28) and the preceding
equations for Q&, Q2, and Q3. This is exactly the expression for
bremsstrahlung corresponding to B-M (reference 1) Eq. (6.26)
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28 OLSEN, MAXIMON, AND WERGELAND

an unscreened atom. These calculations are, however,
only used to obtain the Born approximation result.

Finally, the electron wave functions studied here may
be of interest for other high-energy electron processes.

2. GENERAL DISCUSSION

We consider first the general approach used in
obtaining wave functions which are accurate in the
regions of space from which there is a significant con-
tribution to the matrix elements for bremsstrahlung
and pair production. This is followed by a discussion of
the salient features of the wave functions and the
related cross sections.

The method which has been used for calculating
matrix elements is brieQy this. The Born approximation
is assumed to be nearly correct, that is, the regions in
space which contribute significantly to the more
accurate matrix element are assumed to be determined
by the Born approximation matrix element. For brems-
strahlung and pair production the important regions in
the Born approximation are determined by the factor
exp(iq r), where q is the momentum transfer to the
nucleus. The most important contributions come,
therefore, from regions where q. r 1. Again we use a
result from the Born approximation, that for high
energies the cross section is only significant for q~i and
q~1/e, and these regions are of equal importance.
Further, it can easily be seen from energy and mo-
mentum conservation that q„ the component of
momentum transfer in the direction of k, the quantum,
is always of order 1/e. Thus the signicant regions of q~,
the component of q perpendicular to k, are q~ 1 and

q~ 1/e. Now in evaluating the matrix element we will

use cylindrical coordinates p, z, q with z axis along k.
Thus if we evaluate the matrix element for q's of order
1, the big contribution to the matrix element comes
from the region in space near the 2 axis, where the
"impact parameter" p is of order 1, and

~
z~ e. On the

other hand, if we evaluate the matrix element for q's of
order 1/e, the big contributions to the matrix element
comes from the region in space far from the s axis, where

p e and ~z~ e. Thus, with q 1 we need, when
evaluating the matrix element, wave functions which
are accurate only in region (I), (p~1, ~z~ e) whereas
with q~1/e we need wave functions which are accurate
only in region (II) (p e, ~z~ e).

It is clear that the form of a particular wave function
will be simplest when described in a coordinate system
with 3 axis along the momentum, y, of the particle to
which it refers.

Let (pi,zi) and (ps, zs) be the cylindrical coordinates
with s axis along p~ and p2, respectively. Because of the
small angles $0(1/e)j between the fast particles, pi
and ps are both of order 1, and

~
zi

~

and
) zs (

are of

for pair production. The expressions for J, Ji, and J~ (which are
substantially equal to 8-M I1, I2, and I3) are given by Eqs.
(VII, 7.8 and 7.9) in terms oi X (B-M: Ia). The integral X is
evaluated in Eqs. (VII, 2.19 and 2.19a).

order e in region (I). Similarly, in region (II) pi ps e

and (z&~ (zs~ s. We therefore solve the wave equa-
tion in the region p 1,

~
z

~
e, where the z axis is now

along p, and use such solutions for both the initial and
final states in the matrix element when q~i. Similarly,
for q 1/e the wave functions in the matrix element are
given by the solutions to the wave equation in the
region p e, ~z~ e. The method of solution is different
in the two regions. In region (I), the region of small
"impact parameters" (p 1), we use an expansion in
partial waves and apply a YVKB technique to the radial
wave equation. In region (II), where p~e, we apply a
%KB method directly to the three-dimensional wave
equation.

Such methods have been applied to the scattering
problem by Moliere, ' by Landau and Lifschitz, ' and
more recently by others. ' In that case, only the phase
shifts are required, i.e., the asymptotic form of the wave
function. Here, however, we need the wave function at
finite distances (of order e) from the nucleus.

The scattering problem does not demand that a dis-
tinction be made between the wave functions pertaining
to the two regions. Indeed, as is explicitly shown in
Sec. 9, the wave functions pertaining to either region
lead to the same scattering amplitude.

However, for bremsstrahlung and pair production we
find that neither of the wave functions may be used for
both q 1 and q 1/e. Specifically, in the case of brems-
strahlung, the wave functions pertaining to q~i give
the Born approximation cross section in this region
(although the wave functions themselves are not those
given by the Born approximation). Thus if these wave
functions were applied to the bremsstrahlung problem
in the region q~1/e as well, we would obtain the incor-
rect result that there is no Coulomb correction to the
Born approximation for all q s. Similarly, in the case of
pair production, the wave functions pertaining to q 1/e
give the Born approximation cross section in the region
q~1/e (although the wave functions are not those
given by the Born approximation) and thus if these
wave functions were applied to the pair production
problem in the region q 1, we would obtain the same
incorrect result that there is no Coulomb correction to
the Born approximation cross section for pair produc-
tion.

As we have just noted, the cross sections for pair
production and bremsstrahlung behave differently in
the two regions q 1 and q~1/e. In order to understand
this, let us consider the character of the wave functions
appropriate to each of these regions.

In the case of q 1/e, the wave function for the
normal scattering state (asymptotically a plane wave
plus outgoing spherical waves) is, apart from spin-

4 G. Moliere, Z. Naturforsch. 2a, 133 (1947).
5 L. D. Landau and E. M. Lifshitz, Quantum Mechanics

(Ogiz, Moscow, 1948) (in Russian), Part I, pp. 184-203, 470-473.
6 I. I. Gol'dman and A. 3 Migdal, Soviet Phys. 1, 304 (1955);

R. J. Glauber, Phys. Rev. 91, 459 (1953);L. I. Schiff, Phys. Rev.
103, 443 (1956).
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dependent factors,

p+ e——xp ip r i—j V(pg)df',

where the z axis is in the direction of y. The wave
function with asymptotic form plane wave plus ingoing
spherical waves is

P =exp iy r+i V(p,t)df .

Now the matrix element for pair production is of
the form

*e'k'f, *d'r,

in which expL+ik r) appears since the quantum is
annihilated, and the complex conjugate of each of the
wave functions appears since both particles are created;
for the same reason the ingoing type wave function
must be chosen for each of the particles.

Thus the matrix element depends upon the potential
only through the factor

exp i ~ —V,)(p2g')df' —i V„,(pl,f)di
Z2 Z]

where V,~ and V„.have opposite signs and p~, z~ and

p2, z2 are cylindrical coordinates that refer to the
positron and electron, respectively. Because of the
small angle between p~„and p, ), (pl —p~)/pl ——O(1/e)
and (Zl —Z2)/Zl=O(1/e), SO that the termS in the
exponent nearly cancel, leaving terms of order 1/e
multiplying J,"V(pg')df'. The exponent being small, the
exponential may be expanded. Thus the matrix element
is proportional to the potential, an(i is the Born ap-
proximation result. Thus the Born approximation
matrix element results from the cancellation of phases
in wave functions which are not themselves Born
approximation wave functions.

This is in contrast to the bremsstrahlung process,
where the initial state is the normal scattering state and
thus the matrix element is

ding y +g—ik r~ +

d3r(p +e((pl k) ~ &+
s(0 s&0

s~»+~) '~y

The exponent therefore contains the extra term
i—J'„"V(p,f)df in addition to the term which is of

order 1/e and which gives the Born approximation.
This leads to a 6nite correction to the Born approxima-
tion for bremsstrahlung in the region g~1/e for arbi-
trarily high energies.

For the region q~1 we need to know the wave
functions accurately close to the z-axis (p 1) but far
away from the nucleus (~z~ e). Consder 6rst the wave
function for the normal scattering state. At high ener-
gies it is clear that there are no scattered waves in the
region z —~, p~1, which corresponds very nearly to
backscattering; therefore the wave function in this
region is a plane wave. In the forward region, (z
p~1), the wave function is given by small-angle scat-
tering theory. Consider next the ingoing-type wave
function, which represents a particle leuvieg the nucleus.
In this case there cannot be any distortion of the plane
wave in the region z e, p 1 at high energies, and
scattering occurs only in the region in frolt of the
nucleus: s~—e, p 1.

It is now possible to show that in the present region,
q~1, the cross section for bremsstrahlung is proportional
to the cross section for elastic scattering, provided only
that the definition for q, the momentum transfer, is
changed appropriately. Since in bremsstrahlung the
initial state is a normal scattering state while the Anal

state is described by an ingoing type wave function,
then, as discussed above, the initial state is a plane
wave for z&0 while the 6nal state is a plane wave for
z&0. Thus in the matrix element one of the wave
functions will always be a plane wave. The radiation
interaction e—'"' may therefore be combined with the
initial. state e'»' for z&0, changing the momentum of
that state from pl to yl —k. In the same way, for z) 0,
th fi l tate —' ' i h ged i to '&~"&' A
typical term in the spatial part of the matrix element
is thus

we—ik ~ rf +d8r
Again, since y2 *=e '»' for z&0, and q»+=g'»'

for z&0, we may write

Here the dependence upon the potential is given by the
factor

+ dsre i(pa+k) r(o—

exp —i V(pm, f)df i—V(pbt)C

=exp i V(p—,f')df'+iO(1/e) V(p f)dt' .
W 4~8$ tl

Since p~—
ym

—k is never zero, the delta function is
always zero. Finally, using the wave equation for p,
SM.

(V'+Ps —2eV)(p=O,
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I& may be written in the form

dsrp eye'(&'-ai. r

Ps'- (yi-k)'
26'

Each of the above integrals may now be recognized as
the T matrix for elastic scattering. Moreover, since the
energies of the initial and Gnal states in the T matrix
are almost equal [in the first integral ps —~yi —k~
=O(1/e) and in the second pi —~ys+k~ =O(1/e)j, the
value of the T matrix will be very close to that which
it takes on the energy shell. T is then only a function of
the momentum transfer q= (yi —k) —ys

——yi —(ys+k).
The expression for I~ thus simpliGes to

26g 2Ey

,+, , T(q).
-P' —(y —k)' P' —(y+k)'

In the same way one finds that Is and Is are propor-
tional to T(q). LSee (6a.2,3) in text. $ Since the cross
section is a homogeneous quadratic function of the I's
(8.1) it follows that the cross section for bremsstrahlung
is proportional to the cross section for elastic scattering
in the region q 1.

It may be observed that the initial state wave
function in the region s —e and the Gnal state wave
function in the region s~e have been approximated by
plane waves. Actually, as is shown explicitly in Sec. Sa,
the plane waves in those regions should be rnodiGed
slightly by a factor which for a pure Coulomb field is
the familiar term e+" "g'". As the detailed calculation
shows, this factor may be neglected throughout, since
it is independent of the energy of the particular state
and independent of whether we choose ingoing or
outgoing waves.

What has been said here about the proportionality
between the bremsstrahlung matrix element and the
scattering T matrix may also be seen from the explicit
calculations of Sec. 6a and Sec. 9. In particular see
(6a.8) for bremsstrahlung and (9.2) for elastic scat-
tering. The second term in (9.2), which is 5(q), is always
zero when qb„, is substituted for q„,t since qb„, is
never zero.

Now it is easy to see that the bremsstrahlung cross
section in the region q 1 is given by the Born ap-
proximation: Turning to the scattering cross section
we notice that in the present range, q 1, spin sects
are unimportant' since the scattering angle is small:
8=q/p 1/e. Moreover, in this region we may neglect
screening. Thus we can use the fact known from scat-
tering theory, that for a spinless particle in a pure
Coulomb Geld, the scattering cross section is given by
the Born approximation (Rutherford formula). Having

r I.e., in the Dirac equation (3.2) the spin dependent term
its. (~ V) is small compared to 2eV.

shown above that the bremsstrahlung cross section is
proportional to the scattering cross section, it follows
that the bremsstrahlung cross section is given by the
Born approximation. It may be emphasized that this
result is obtained only because, in the case of electrons,

q 1 corresponds to impact parameters of the order of
the electron Compton wavelength, which is both con-
siderably smaller than the atomic screening radius and
also much larger than the nuclear dimension, and thus
we have the pure Coulomb potential V= a/r. O—n
the other hand, for p, mesons, g~1 corresponds to
impact parameters which are of the same magnitude as
the nuclear dimension. Therefore the potential will be
modified, and we may expect to obtain corrections to
the Born approximation in this region. The present
result for bremsstrahlung from electrons may thus be
contrasted to the case of pair production for q 1/e,
where we obtain the Born approximation cross section
for any potential. Since for q~1 the cross section is
proportional to the scattering cross section, and thus
given by the Born approximation, all corrections to
the total cross section for bremsstrahlung come from
the region q 1/e alone.

The reason that the correction to the total Born
approximation bremsstrahlung cross section is so small
also appears to follow from the above discussion.

It is well known that in the case of scattering in a
pure Coulomb field the correction to the Born approxi-
mation cross section is zero instead of being of the order
(Z/137)', as would be expected. As we have seen, this
peculiarity of the Coulomb Geld is also present in the
case of bremsstrahlung for the region of momentum
transfer of order 1. The correction to the total Born
approximation cross section would thus be expected to
be somewhat smaller than (Z/137)'. As it has been
shown' that the total cross sections for bremsstrahlung
and pair production are equal except for the usual
changes in sign of momentum and energy, and phase
space factors, this conclusion also holds for pair pro-
duction. Here, however, one does not see this e6'ect so
clearly, since the entire Coulomb correction appears in
the region q 1.

3. SOMMERFELD-MAUE TYPE WAVE FUNCTIONS

It has been customary to use wave functions per-
taining to the iterated (second-order) Dirac equation in
calculating matrix elements, such as in the case of
bremsstrahlung and pair production. "' As, however,
the usual perturbation theory for transition amplitudes
with "variation of constants" can only be applied
directly to wave equations linear in the time derivative,
it follows that the matrix elements should be calculated
using the wave functions of the linear (first-order) Dirac
equation.

However, in the actual case of high-energy brems-
strahlung and pair production it is easy to see that the

' L. Bess, Phys. Rev. 77, 550 (1950).
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solutions to the Grst- and the second-order equations are
identical up to orders 1/e'.

In fact, the iterated equation is obtained from the
Dirac equation

( in—V+P+V s)—go=0 (3.1)

by putting tp= (1/2e) (—in V+p —V+e)p, so that

[Vs+Ps 2—eV+Vs i—n (VV))&=0. (3.2)

4. BORN APPROXIMATION

Before going into details of the actual calculation, it
may be of some interest to review brieQy the Born
approximation calculation.

The solution of (3.4) up to first order in the potential
is evidently

V(l r+r'l)d r'. (4.1)

The solution of this equation up to relative orders
1/r, which in our case is equivalent to relative orders
1/e as discussed in Sec. 5, is the usual Sommerfeld-
Maue type wave function

( in. V)
it =e'&'l 1—. lFss.

2e )
(3.3)

P is the appropriate solution of

(P+2ip p' —2eV)F=O, (3 4)

may easily be shown to be

in vy V~ in vy-

2e j e ( 4e

Up to relative orders 1/e' therefore, the high-energy
wave functions of the linear and the iterated Dirac
equations are identical.

Some confusion seems to exist concerning the general
expression of the matrix elements in terms of the
iterated Dirac equation wave functions p. From what
has been said above, this is evidently

1
gPgtH'gP, dsr= t ggtDftH'D g—tg,d'r, (3.5)

4eles
where

D;= ( in V+A —V+e;). —

A formula considerably different from this has been
proposed recently by Horton and Phibbs. ' Their for-
mula was however derived from a diferent cause,
namely from an assumed non-orthogonality of the
iterated Dirac wave functions. As, however, any set
of wave functions containing a plane wave at large
distances constitutes an orthogonal set, no modi6cation
of the matrix element is to be expected for this reason.

9 G. K. Horton and E. Phibbs, Phys. Rev. 94, 1402 (1954); 96,
1066 (1954).

where V (r) is now the screened Coulomb potential. The
wave function (3.3) for an unscreened potential is just
the wave function used in previous calculations by
Sommerfeld, ' Bess, Bethe and Maximon. '

The wave function of the linear equation

( in V)
|P=—(e—V in ~+—P)e*& rl 1— lNF,

26 2e )

The notation {&} refers to wave functions with
outgoing

asymptotic form: plane wave plus . . g spherical
ingoing

waves. Keeping only terms linear in V in the matrix
elements Ii, Is, and Is of B-M, we find the Born approxi-
mation expressions for bremsstrahlung

t' ( ei ss pIi= Fs, *e' 'Fi+d'r=2l ———
l

~e' 'Vd'r
&D, Dj

z
~

~

—q l

P *e'~'~Fg d'r= —e'&'Vd'r,

Z —q
Is= (&Fs, *)e's'Fi+d'r= e's'Vdsr, (4.2)

D, &

k
Di= 2Pp tl+q'= —(1+Pi'8i'),

Ds= 2pi. q —q'= —(1+ps'Bs').
62

The notation is as in B-M. The expressions for pair
production are obtained in the usual manner by
changing the sign of p& and e&, treating q as independent
of p&. We shall have opportunity several times to
compare our "exact" calculation with these expressions.

Actually, as is well known, it is of no importance in
the Born approximation whether we take ingoing or
outgoing waves in the final (or initial) state. In fact,
it is evident that the expression (4.2) as well as the
Born approximation cross sections for pair production
and bremsstrahlung" are invariant with respect to the
simultaneous change of sign and reversal of direction
of ps (or pi) (p—+—p, y/p~ —y/p) Lsee (4.1)). This
property of the Born approximation is perhaps most
easily understood considering the usual perturbation
theory expression of the form

(2l Vlm)(elH, „,'[1)
lim P E„—Eg~ig

( corresponding ro . . spherical waves).outgoing
ingoing

Since the radiation interaction describes the interaction

' %. Heitler, The Quantlm Theory of Eadiation (Oxford Uni-
versity Press, New York, 1954), third edition, pp. 244, 257.
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with a plane wave (the photon)

the momentum and therefore the energy in the inter-
mediate state is fixed, and the energy denominator
E„—E~ is never zero. Thus the sign of q is immaterial.

As the Coulomb interaction matrix element (m
~
V

~
n)

does not have this property, the sign of p will be relevant
in corrections to the Born approximation involving
higher orders in the potential, V(r)

in P')

2e )
(5.1)

S. HIGH-ENERGY WAVE FUNCTIONS

We use throughout the same notation as in B-M.
The Sommerfeld-Maue type wave function for a
screened potential is, as discussed in Sec. 3,

introduce cylindrical coordinates with s axis along k.
The contributions to the integrals then come from

p 1/q, and
~

s
( 1/q, . (5.4)

At the high energies considered here, the important
angles of emission of the fast particles are clearly of
order 1/e. It then follows from momentum and energy
conservation that q, is of order 1/e, while q~ generally
is of order 1, but may become of order 1/e when the
three vectors k, pq, and p2 are of the same order of
magnitude and very nearly coplanar. The Born ap-
proximation then tells us that these two regions of q~
are of equal importance, and again we suppose that
this is also true for the exact cross sections. For the
case of complete screening, e))137Z &, the lower region
of q~ is q~ Z&/137. For simplicity, however, the lower
region will always be referred to as q~ 1/e.

We thus conclude that the important regions for the
interaction of the electron with the photon Geld are, in
the case of q~i:

where F~ is the appropriate solution of

(P+2ip V—2e V)F=0. (5.2)
p 1, fsi e

while in the case q 1/e:
The diGerence in normalization from B-M should be
noted. It is more convenient for us to normalize so that

e+'&"
e'&'F+]„„~e'&'+ f(8) (5.3)

Ig= d'rF2*e'q 'FI.

In the Born approximation (4.2) it is seen that the
order of magnitude is determined by the exponential
e''I'. Since the exact treatment of the F's may only
introduce corrections to the Born approximation, it is
clear that the same conclusion holds for the exact F's.
(Compare also B-M Sec. IX.) The integrals I~, I2, and
I& are therefore largely determined by the exponential
factor. The most important values of r in the integrals
will therefore be those which makes q r 1. We now

As in B-M, the cross sections for pair production and
bremsstrahlung are expressible in terms of the matrix
elements I&, I», and I» LEq. (7.11),B-M].The symbol
J means perpendicular to k. In the case of no screening,
it is possible to solve Eq. (5.2) exactly, and the integrals
I&, I2, and I& can be expressed in terms of hypergeometric
functions, as was done by B-M. (See also Sommerfeld,
reference 3.)

If screening is of importance one has to find other
methods as Eq. (5.2) cannot be solved exactly, par-
ticularly since the screened potential is given only
numerically. In order to 6nd this new method the fol-
lowing considerations are helpful.

Consider the typical integral

Again, since the coordinates in the "wave functions"
F&(p&,s&) and F2(p2, s2) refer to only slightly different
directions (angles of order 1/e) of the s axes which now
are along p& and p2, respectively, the regions in both
these sets of variables are simultaneously exactly either
(I) or (II).

We will therefore solve the wave equation (5.2) (see
Secs. 5a and 5b) in the two regions (I) and (II), and
in Secs. 6 and 7 use these solutions to obtain the
matrix elements I~, I2 and I8 for the cases of momentum
transfer q 1 and q 1/e, respectively.

a. Wave Functions for y-l, ~z~

These are the regions close to the s axis where 8, the
polar angle of r, (tan8=p/s) is either of order 1/e or
else s —8 is of order 1/e. Because of these very small
forward (and very large backward) angles involved,
this may be called the scattering region, and the
Rayleigh expansion should accordingly be useful:

e'& 'F~ PP(21+ 1)e+—'—"u—~(r)Pg(cos8),
l

outgoing
where (&}refers to . g. g spherical waves. It is

ingoing
speci6cally because we have here ~s~ of order e, bit p
of order 1 that 8 1/e (or s-—8 1/e) and thus that
l's of order e give significant contribution to this sum.
Therefore, in this region we may approximate P&(cos8)
by Jo(16) and later we shall also replace the sum by an
integral over I.
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The above sum thus simplihes to

1
e'& 'F =—Q i'(2l+1) e+"''e i(r)Jo(LB)

pr
1 (z)0)

X (Sa.1)
(—1)' («0)

where from now on 6 is the angle between r and p
for s&0 and the angle between r and —p for s&0.

This method in its present form therefore cannot be
applied to obtain good approximations to the wave
functions in the other region (lsl e, p e). The latter
case is treated by a difFerent approach in Sec. Vb.

ui(r) is the solution of the radial equation

In (Sa.5) the important difference between the terms
in the first sum and those in the second is the additional
factor (—1)' in the latter. In the first sum successive
terms add constructively up to l of order e. The indi-
vidual terms being of order l, this sum is of order e2.

However, in the second sum, because of the factor
(—1)', successive terms will, for L of order e, cancel and
leave a contribution of order 1. The second sum is
therefore of order e and may be neglected.

Thus for 2,&0 the wave functions simplify to

e~t ipr+i Vd»'
l

E

ldl

d2

r2

L(L+1)
+p' —2eV—

. t&
Ni(r) =0. (Sa.2) XexpLi(+8 &+4 &+P/2pr) jJo(M'). (Sa.6)

sing the WKg method as outlined in Appendix A In the ingoing tyPe wave function, e' 'F—,the Phase
shifts cancel giving essentially a plane wave

12

ei(r) =sin pr ——+ +bi+
2 2pr

(Sa.3)
esp rP

expl ipr+i Vdr'
l

)I LdL

We have here kept terms including those of order 1.
Especially the term P/2pr should be noted. This is
necessary because the two radial functions from the
initial and final states together with exp( —ik. r) from
the electromagnetic field will give

exp(i(pi —p~)r —ik. r}= exp(i(pi —p2 —k)r+ jkr8'/2}

(for bremsstrahlung), i.e., terms of order 1 in the ex-
ponent. For details see Sec. 6, where the actual calcu-
lations are carried out.

The phase shift hi is Lsee Appendix A, (A.27)j

Xexp(iP/2pr) Jo(LB)

(=exp ipr l
1——l+i Vdr'

=expl iy r+i Vdr' t. (Sa.7)
(

The normal scattering wave function, e'&'F+, is

V(D'+(L/p)'j')df (Sa.4)
(.

expl ipr+i Vdr'
l)

Z (L+-')

iP
Xexpl &i8g+iBi+ +i Udr'

t Jp(LB)
E. 2pr

e lyr

&(—1)'(L+-')

( ip
Xexpl &iLii ibi i —~ V—dr'

t J,(L8). ——
2p ~„) (Sa.S)

This expression is valid for electrons. For positrons we
have only to change the sign of the charge,

$$ (Pos) — $$ (Oi)

The wave functions for s)0 are, from (Sa.1) and
(Sa.3),

ipr

Xexp(2ibi+iL2/2pr) Jo(Li7). (Sa.8)

(Sa.7) shows that the plane wave is given as a super-
position of only outgoing spherical waves in the present
region, s) 0, r e, and small angles of order 1/e about
p. This may be expected by simple geometrical con-
siderations: In this region spherical outgoing waves
themselves are almost plane waves traveling in the
direction of p, away from the origin, while ingoing waves
are almost plane waves moving in the opposite direc-
tion. The latter waves must therefore be absent in a
description of the plane wave.

The plane wave part of the scattering state wave
function e'p'F+ can likewise be represented as a super-
position of only outgoing waves in this region. Thus
this wave function has only outgoing waves; all ingoing
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waves are absent. This is indeed indicated by the result
(5a.8).

The phase if,"Vdr' is of no importance to us as it
drops out in the matrix elements. In fact, since this
phase does not depend upon energy, and is the same
for the outgoing type wave function as for the ingoing

type Lsee (5a.7, 8) and later (Sa.10, 11)], these phases
from the initial and from the final state will exactly
cancel in the case of bremsstrahlung. In pair production,
where both particles are created, the corresponding
factor in the matrix element would be, for z&0,
exp[ if,"—V,idr' if,"—Vn„dr']. Because of charge con-
servation, these phases again cancel. It is shown, more-
over, in (6a.2), that derivatives of exp/if;"Vdr'] in
the matrix element will always give contributions which
are negligible.

We note L(A.21), ff.) that in the case of a pure
Coulomb potential the termi J'„"Vdr' must be replaced

by ia log2r which is the well known anomalous term"
in the asymptotic radial wave function, (Sa.3). Again,
in this case, the deformation of the plane wave is,
according to (Sa.7), exp$ia log2r). This is clearly
effectively the same as the usual expression

expLia log(r+z) j
in the present region of small angles.

It is interesting to calculate the wave functions
explicitly for the case of a pure Coulomb potential.
Then 8i ———a log(l/p) )note (A.11), fi.j and

(
exp( ipr—i —

~ Vdr'
))

g&P '&P '

ldl

Xexp( —iP/2pr) Js(its)

=exp ipr] —1——
(

i—
2)

Vdr'

=exp~ iy r i —Vdr' ~. (Sa.11))
It should be remembered that according to the de6nition
(Sa.1), 0 is the angle between r and —y in the present
region z(0, and that here y r= —pr(1 —8'/2).

It is easy to see that the ingoing type wave function
(5a.7 and 10) is indeed the space and time reversed
outgoing type wave function (5a.8 and 11).

p= g&x (5b.1)

b. Wave Functions for 9 e, ~s~ e

This is the region of angles 8 of order 1; hence we

cannot use the method applied in Sec. Sa. In the
present case, as we shall see, we may obtain a good
approximation to the wave function by applying the
WEB method to the wave equation (5.2) for F itself
rather than to the radial wave equation, as was done
in the case of small angles in Sec. Sa. We therefore write

esp
~ fP+

iyr+ie log2r

ldl(l/p) '

&(exp (iP/2 pr) Js (ld)

The equation for x is then, from (5.2),
—iVsx+ (VX)'+2y Vx+2eV=O. (5b.2)

=P e'* 'I'(1'ia) ex—p)iPr (1—-', ebs) 7

X iFi(ia; 1; -,'ipra'). (Sa.9)

Since both p and s are of order e, both cjx/Bp and Bx/Bz
are of order x/e, and the terms in (Sb.2) are of orders
x/e', x'/e', x and 1, respectively. It follows that x is
of order 1. Expanding x in powers of 1/e

This is indeed the small-angle approximation to the
exact Sommerfeld-Maue wave function one easily 6nds

x=xo+xi+.

p el r(1—ia)e's'iPi(ia;1;ipr —iy. r).

The difference in normalization from customary usage
has already been discussed in Sec. 5. The constant
phase factor p' Lnote (A.11), ff.$ is of course com-

pletely unimportant. It is a remarkable feature of the
WKB method to give these accurate wave functions.

For s(0 we find corresponding to (Sa.7, 8),

Vdr'
fexp

~
ipr i--

g SP ~ I'P I'ldl

)&exp( —2i8i —iP/2pr) J'o(i8), (Sa 10)
' N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-

lisions (Clarendon Press, Oxford, 1949), second edition, p. 46.

and
y Vxp+eV=O,

2y' VX 'iV Xo+ (Vxs)'= 0.

From this it then follows that

xo= ——„' V(p, f)df, (Sb.3)

which is of order 1, while xi is of order 1/e . As is shown
in Sec. 7, it is really necessary that the error in p be
of order 1/e' rather than 1/e for the approximation to
be applicable. This is required since an important part
of the difference xt;»i —x;„;„.,i is of order 1/e. In fact,
this part accounts for the Born approximation result.

It should be pointed out that the procedure used
here in Sec. Sb, i.e., a %KB method applied to the
wave function P, is not feasible in the region considered
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in the wave function iP. The e8ect of the spin fhp"
caused by Po„ is of no importance to us, since we sum
over spins. The only relevant change is in F:space and
time reversal changes the sign of x and of 3. Since

(Sb.4)

e
x-"(u,z) = —x+"(c, —z) =+- j V (u,f)di (Sb.S)

in Sec. Sa, vis. , 2 of order e but p of order 1. In this
latter case each of the terms in (Sb.2) is of the same
order of magnitude and hence the first two terms cannot
be neglected.

The yo we have written down is zero for s—+—~.The
wave function iP in (5.1), therefore, is a plane wave in
this limit, and thus describes the normal scattering
state. It is shown in Appendix B that this state is really
an approximation to the state satisfying the Sommerfeld
radiation condition: plane wave plus outgoing spherical
wave at infinity. We denote xs in (Sb.3) by x+ (dropping
the subscript zero). But we shall also need P, the wave
function describing a particle leavimg the nucleus, which
therefore must reduce to a plane wave for z~+ oo. It
is clear that the corresponding y must have the form
( /sp) J;"V(p,t)df Ho.wever, the sign has to be deter-
mined by space and time reversal of P+. These two
transformations applied to an "outgoing" state change
it into an "ingoing" state.""

P (r,t) =ST/~(r, t),

where S=PX space inversion and T=io„X complex
conjugation. It is easy to see that space and time
reversal, ST, commutes with the factor

( in Q)
siP r]

2e )

a. Bremsstrahlung

Here the initial state is a normal scattering state, iP+,
while the Anal state has the. asymptotic form: plane
wave plus irigoilg spherical waves, P . The matrix
element is

II„gg,i ~d r.j
f

In pair production, when both particles are produced,
both states in the matrix element are "ingoing" states,
P . As will now be seen directly, this causes a big
difference between the differential cross sections for
bremsstrahlung and for pair production.

The I's of B-M, which we write I + to indicate the
types of the initial and final states, are found by using
the expressions for e'p'F~ from (5a.7, 8) and (Sa.10,
11):

Ii—+= ' ldl l'dl' i Js(l8—i)Js(l'r')s)

ikr q ~
ls l"

y
Xexp~ ibr+ 8'

( exp iI — (+2i5i
2 ) E2pir 2psr)

dsr f ikr
+ —Js(i~i)Jo(l'~,) exp~ —i5r—

"Z&O & )
p l' l"

q -1
Xexp i( —— (+2Qi

~,
(6a.1)

&2prr 2p r)

where 5= pi —ps —k for bremsstrahlung. i1i and 8s are
the angles between r and p&, and r and p2, respectively,
for z)0 (the first integral), and between r and —pr,
and r and —

p&, respectively, for z&0 (the second
integral). They are always assumed to be small of
order 1/e.

We may write

The expression for g and the phase shift bq of Sec. Va
look very much the same. Their appearance in the
wave functions iP are however completely different:
while bi is the usual scattering phase shift, x(p, z) is not.

The x of (Sb.4) and (Sb.S) describe electrons. The
corresponding p for positrons is obtained by reversing
the sign of the charge:

Ii +=Ii(z) 0)+Ii(z&0),

where Ir(z)0) is given by the first term in (6a.1) and
Ii(z&0) by the second.

Before calculating Ii(z) 0) and Ii(z&0), we consider
the expressions for I2 and I3. It has been shown in B-M
[Eq. (7.12)j that only the components of I& and Is
perpendicular to k, I» and I», are of any importance
for high energies.

According to the definition of Is, (4.2), we find, using
the wave functions (Sa.7, 8) and (Sa.10, 11):

x+"'(~,z) = —x+"(i,z) (Sb.6)

0. MATRIX ELEMENTS FOR "LARGE" VALUES
OF THE MOMENTUM TRANSFER, (q 1)

In this section we calculate the bremsstrahlung and
pair production matrix elements in the upper range of
values of the momentum transfer, g 1. We then use
the wave functions for p 1, ~z~~s according to Sec.
sa.

d'r expj i Ud—r' ~e's'~~Fr, +.
2e Jg)s E &, )

(+ ~ d'rFs, *e'&'~i. exp~ i Vdr—'
~J )» Rose, Biedenharn, and Arfken, Phys. Rev. 85, 5 (1952). ~.(0

~' Haakon Olsen, Kgl. Norske Videnskab. Selskab, Forh. 2S, 10
(1955). The magnitude of the second integral relative to the
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„k
The angles are indicated in Fig. 1.Because of the rapid
oscillations of the integrand in (6a.4) for large values
of 8, the integration over 8 is extended to ao. %e now
perform the straightforward integrals over y, 0 and l'

in this order, using integrals' of the form

/' kr82y
8daJ (ta)J„(t'8) exp~ i

2

i ) P+l"
~ Pl/'y /i222~q

=—exp/ —i /J ]
—

f exp] f. (6a.6)
kr ( 2kr ) Ekr) ( 2 )

Fro. 1. Angles occuring in the matrix elements
for momentum transfer q~1.

This gives

( P21
Il(z&0)=— tdte'*" Q J (Nl)J„~ N2 ~e'"p

p, )

( 82 ppk'I
X ~dr exp i~ 5+ )r . (6a.7)

2p, )
Now the sum over 222 can be performed, giving Jp(/q~/Pl),
where

6rst one is
BF

)

Bp

q,'= pl'82'+ p2 82 2plp28182 coQ = (ll v) .

Thus the integral becomes

4%62

—
q&

I,(s&0). (6a.2)de e'i q ~ EP
2

26y

Similarly

and may be neglected. Performing a partial integration
on the first integral we find, again neglecting a term of
relative order 1/p2:

tdte""Jp(/qi/pl). (6a.8)
pkpl(1+ P2'82') "o

In the t integral only t Pl/q~ Pl will contribute.
Accordingly in the phase shift Lsee (7b.12) and (A.27)j

Ldll
8~——lim+a, [1—F(x)jJo(xl/p, ) (6a.9)~o g x2+~2

I,„= Il(s &0).
262

only values of the argument x of order 1 in the atomic
(6a 3) form factor F(x) will be of importance. But for such

values F(x)=0, so that

For the actual calculation of the I's, we recall the
definition

82 —a log (l/P)——

in the present range, giving

(6a.10)

I,(z&0) =
P2P2 ~

I ldl l'dl' I Jo(/8, )Jo(P82) (t i ' (q ) 2pl'Irq'i "I'(1—i&)

&pl) & p) q' ( 4 ) r(i~)

. (t l'
& . Thus

Xexp iver+ 8'+i~ — [+2i8) . (6a.4)
2 &2Plr 2P r)

Now we express Jp(692) and Jp(l 82) by the addition
theorem g~a) p,xi- (6a.11)

F2 ) (k/p2) (1+p22822)

Jo(ta,)= P J (ta)J.(/8, )s'-&~P &

Jp(t'82) = Q J (t'8)J„.(t'82)e' '&~p".

Il(s&0) is obtained from Il(s&0) by the transforma-
(«.&) tions pl~~+p2, k~—k, 82+~82, as is clear from the

W. Magnus and F. Oberhettinger, Formeln Nnd Satse fir die
Speci ellen Funky onen der mcthemctischen I'hysik (Springer-Verlag,
Berlin, 1948), second edition, p. 49 and reference 18, p. 395,
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de6nitiog. . Thus
br" =b—~= —a log(i/p)+const,

8p"=+a log (l/p)+ const,
I'(1—ia) (ques)

'

Ir(z(0) =
&(1+ia) & 4 )

(6b.1)

as given by (5a.4).
Using the wave functions (Sa.'/) and (Sa.10), one

X( —
I

. «'12) -i fd.
q~'3 (k/er) (1+Prs8rs)

$2 Ps

+il +
E2prr 2psr)

ikr62
Xexp i5r+—(q,'/4) ' r (1 ia—)/r (1+ia)

This is easily seen by comparison with the Born ap-
proximation expressions (4.2) for the case of no
screening, V= a/r, —as then +2ib p-+2i8, "r . (6b.2)

d'r t ~ r d'r
The three I's are, therefore, in the present range q~i,
equal to the Born approximation values apart from

' J,), r ~ J
the unimportant common phase factor

e"'V(r)d'r = —4~a/q'.
J

The present result, including the phase factor, coincides
with the result of B-M, apart from the factor I'(1—ia)/
I'(1+ia) which appears because we have used diferent
normalization than in B-M

t see (5.3)$.
It is interesting to note that the Born approximation

cross section comes out, although the wave functions
are not the Born approximation wave functions. In
fact, it was shown in Sec. Sa that our wave function
e'&'Il+ is, in the case of no screening, the small angle
approximation of the exact wave function. This is
analogous to and closely related to the fact that the
Born approximation cross section is exact for the scat-
tering of a (spinless) particle in an unscreened Coulomb
potential, and in the case of small angle scattering even
for a particle with spin. The case of scattering will be
discussed in greater detail in Sec. 9.

The present eGect is probably the reason why the
correction to the Born approximation is so much smaller
than expected. In the case of lead, for instance, the
Coulomb correction amounts to about 10%%uo

's instead
of a'=36%.

b. Pair Production

The matrix element

4'ei, —tK& mas 4'porn, —edsr

has ingoing type wave functions in both initial and
6nal states. The I integrals are accordingly I— . In
the present case it is advantageous to consider Io and
derive I&, Is, and Is by means of the rules given in B-M.
This is possible since screening is unimportant in the
present range. We will accordingly immediately use
the phase shifts for an unscreened Coulomb potential

'~ Davies, Bethe, and Maximon, Phys. Rev. 93, 788 (1954).

Here 8=k—pr —ps for pair production. Since, as was
shown in Sec. Sa there are no scattered waves in the
forward direction, the phases drop completely out of
the integral for 3'&0. In fact, the contribution to Iz
from the erst term in Io would be

d're's' b(g~)J,),
which is zero in the present region, q 1.

It was shown in (5a.9) that our wave functions are
the small angle approximation of the exact Sommerfeld-
Maue wave functions. The integral Io——may therefore
be evaluated using the method first given by Sommer-
feld. ' (See also Bess' and Nordsieck. ")The result could
be written down immediately and must coincide with
the result of B-M. However, the integrals in their
present form are much simpler, because of the small
angle approximation. The calculation is somewhat
analogous to Bess's computation. There is no need of
introducing parabolic coordinates, however, which sim-
plifies the calculation considerably.

Using the addition theorem (6a.5) as in the case of
bremsstrahlung, the integrals over p and 8 are readily
done by means of (6a.6).

In the case of bremsstrahlung, as can be seen from
the position of the terms exp(2i5~) and exp(2i8~) in
(6a.i), only the initial state wave function is scattered
in the region s& 0 and only the 6nal state wave function
in the region s&0. This is the situation which obtains
for simple scattering and leads us in that case, as well
as for bremsstrahlung, to the Born approximation
matrix element. For pair production, however, both
states are scattered in the region 2:&0 and this gives
a result di8erent from the Born approximation.

It is convenient to introduce as a new variable the
ratio of the two angular momenta, s= l'/L This removes
the phase from one of the 1 integrals. From (6b.2) we

"A.T. Nordsieck, Phys. Rev. 95, 785 (1954).
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7r t'
Ip =, s'' ds ddt

pgppk5 ~

(P21"
Xexp

(

—+s'—
) Jp(nsg) I

—
)

4k' ( pg p2) Kp~)
Here

1 (8g82q ' 8g82

k' 428)
co+,

bk

D&——kp,8p+2P28 and D2 ——kp282'+2P&h.

The $ integral is elementary, yielding

16i~k—8 r (D, D,
IQ s'-'ds( —+—s'

/

Plp2 ~ Pl P2

(Di D2 l' *(P2)
X (4kBns)2 —

I

—+—s'
[( Pl P2 ) - (Pl)

Introducing the new variable t=s2(D2/D~)(p~/p2), the
integral is seen to be a function of only one variable,
x=4n2P~P2k282/D~D2. With these new variables the
integral simplifies to

8n.k8 (P2D2)" t"
Ip =

i i
dtt "(1+t) 2

»D2&p»i) J p 4'
X

(1+t)'

By expanding [1—4xt/(1+t)']. ', the pertinent in-
tegrals are very simple:

4O
t I+a(\ +t)

—2n—,—2dt—
I'(1+ia+22) I'(1—ia+22)

r(2++2)

and accordingly

8~kb (p»2q
"'

Ip ]) ~

I'(1——+ia) [2F(1+ia, 1—ia; 1; x),
DgD2 4pgDg)

find, therefore,

22ri (P2~ '
t I t dr

Ip ——
~

—
~ Q s' 2~ds Pdl

ppkkp) m 0 J J

(Psi
XI~

~

—
~
J~(l8,)I~(ls82)

& kr)

(P2 PXP
Xexp

(
+s'

I
ibr+irrl

I y+.2kr Ep, p, )

Introducing now the new variable $= P/r instead of r,
the integral over / involves only the product of two

Bessel functions and can thus be done, again using
(6a.6). Then the sum over m can be performed as in
bremsstrahlung, giving

F being the hypergeometric function. Using the trans-
formation

F(1—ia, 1+ia; 1;x) = F(ia, i—a; 1;x),
1—g

and the fact that

1—x= (DgD2 —4n'k'pip28') = q~',
D1D2 D1D2

we may write

t9D1
=2P2

88 88

BD2=2py,

2kq~' ( 2P25 2p&8~

D1D2 0 Dl D2 )

(6b.4)

and I&
—is easily written down. (V= F, W= a 'dF/dx

as in B-M.)

82ra (P2D2) ( p2 pi)
I l«1+ )I' l'I ——

I

q,' & pgDg) ( EDg D2)

q~'kW ( 2pgb 2P25)
(6b.s)

DgD & D, D )
Before I2 and Ip can be found by the differentiations

(Pi't" i (P~l "
&p ) 2 Ep )

(P~l " i (P~) "
~P2) 2 &p2)

one should substitute 8=k—p~ —p2 and k= q+p~+p2
in accordance with the fact that Io should be a function
of q, p& and p2 in order that the Sommerfeld rules may
be applied. The factor (P~/P2) ' should also be noticed.
It comes from the different normalization condition for
the wave functions.

As in bremsstrahlung, Sec. 6a, we shall only be
interested in the components of I2 and Ip perpendicular
to k, as only these are of importance for high energies
[see B-M, Eq. (7.12)j. It should also be noticed that,
the s components I2, and Ip, being of relative order 1/2

4n. (P2D2q '
I

Ii'(1+ia) I'F (ia —ia; 1;x) (6b 3)
q,' E pgD, )

q~ is the transverse momentum transfer: q~= —u —v.
To derive the quantity I1— it should be noticed that

I~ iBI——p/85; thus 8 (as well as p~ and p2) has been kept
as an independent variable. In contrast to the Som-
merfeld rules' ' no extra parameter ) is therefore
necessary. This simplifies the derivation of I1.

From the definitions it follows that
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compared to I22 and I», they do not follow correctly
from our approximation.

One easily 6nds

~l,k=k/k, ~2 lh=k/k —pl/pl, (~11D2)a=2q,

2k'' u 2bqp 2k' V 28Qg
(~sir)g= —+, (V22*)~= —+

D1D2-pl D2- D1D2 -p2 Dl-
Thus

4~»2
t psD2q

'

I
II'(1+i')12

g,' EplD, &

q, q,sk ( u 28q~q
X —V—+i~ lV] —+

D2 DlD2 (pl D2

I
II'«+io) I2

q,' t p,D, &

q. q,su ( v 2~q. q
tV +ia —W( —+

Dl D1D2 ~ p2 Dl

It should be noticed that the sign of I2 in B-M Eqs.
(6.3a) and (6.10) is incorrect'2; the 6nal expression for I2
in (6.23) is however, correct. Our result is consistent with
the B-M result [B-MEq. (6.23)j.It is comforting that our
result agrees, to 6rst order in u, with the Born approxi-
mation for pair production, as obtained from the
bremsstrahlung result (4.2) by changing the sign of el.

V. MATRIX ELEMENTS FOR SMALL VALUES OF
THE MOMENTUM TRANSFER (q 1/»)

We now calculate the matrix elements for pair
production and bremsstrahlung for the range of mo-
mentum transfers q 1/e. (See Fig. 2.) The appropriate
wave functions are given by (5b.1) and (Sb.4-6). In
the present region screening will be of importance, and
the matrix elements will be given for arbitrary screening.
We again start with the simplest case, which here is
pair production.

a. Pair Production

The matrix element I~ is

Il exp( —iX2") exp(iq r) exp( —iXln")tfr,
4

where X2"+Xln"=—X2, "+Xi, n" as ingoing waves have
to be taken for both states.

We now separate the difference in energy from the
diR'erence in directions of y~ and y~ in the y's:

X2 (P2 s2)+Xi (Pl sl) Xl (Pl sl)+X2 (Pl sl)
X2 (pl sl)+X2 (ps s2) ~ (7a 1)

It should be remembered that XI'"=—y". Since the
angle between pl and ys is small, of order 1/e, and both
p and s are of order ~ in the present region we may
expand, taking for the moment the direction of p2 as

'2 This is also clear from B-M Eqs. (6.10)-(6.12).

FIG. 2. Cylindrical coordinates used in the matrix
elements for momentum transfer q 1/».

s axis, and omitting the subscript 2:

~X~ X2
X2(P2p2) X2(plysl) (p pl)+ (s sl)+0(1/e ) ~

leap BS

Using, from geometry,
2 (u vi

we 6nd

—X, "-X, -= —
i
——

I V(p, f)df

(yu yves s cj 8
V(p,f)C (7 3)

Pl P2 & p Bp cia. ')z

The first term here is of order 1/e' and should accord-
ingly be dropped, while the second term is of order 1/e.
Thus we may expand the exponent, giving

t'll u0' vl'
I, = —i ' d're' '~—-

&Pl P &

8 8
X ——— V(p, i)dt. (7a.4)

.p Bp 8s. ~,

We have here dropped a term proportional to 8(q),
which is always zero.' Since Il as given in (7a.4) is
proportional to the charge number, it must be the Born
approximation result. In fact, this may be written

(f»'u g'vp 1 8
Il = i d're'&—'~--

l"
x, (. f) v(p, f)C-,

~Jz
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using the fact that for a spherically symmetric potential the expression

1 8 1 t9
—V—L(p'+f')') = -V—E(p'+P)'j

p Bp

Now the q integration gives

l

x.—"=- V(p,r)e,

and performing a partial integration with respect to z,
we obtain

q
I2= e'2'Vd'r,

2p2q, ~
(7a.9)1 t'ql, u tl& v$ 8

Il—————
~

— ~22r pdpJl(q, p)
q. & Pl P2 & Bp

dze'~"

Integrating by parts once with respect to p and twice
with respect to z, we are left with We have thus proved explicitly that the pair production

cross section is given by the Born approximation in the
region q 1/e, for any amount of screening, a result
which was anticipated in B-M.

It is interesting to note that the terms of order 1 in
the phases J',"V(p |)df' from the initial and final states
just cancel Lsee (7a.3)g, leaving exactly the Born
approximation matrix element, (7a.5). This is true for
any potential V(r) This .is then in a certain sense to be
contrasted to the case of bremsstrahlung for q~1, in
which case we also obtained the Born approximation
result. In that case it was only because the potential
was the pure Coulomb potential, V= —a/r.

1 (tli. 'll ill, ' v)
Il ——

~

— 122r "pdp&o (q2p)
q2& p, p, )

dzv(r)e' ** (7a.5)

1 t'ill, u ql. v)
' d're*&'V (r)

q' & Pl P2 & "
In order to compare with the Born approximation we
substitute ~=—u—v, taking into account the fact
that for q~1/ :e

which is the Born approximation result (D2=2piq*).
In the same way

( -t.)V(p, f)df. —
Q

I2= e'2'Vd'r (7a.1O)
2p,q. ~

Therefore

I—z= 0(1/e)

angle between u and —v=O(1/e).

1 (tl~ u q~ vq k(n —z)N

qz E Pl P2 ) qz P1P2

(78.6)

(7a 7)

b. Bremsstrahlung

Here the 6nal state describes an electron leaving the
nucleus so that the matrix element is

Il += exp( ix2 "—)e'2f' exp(ixl, +")d'r.

On the other hand, since
Handling the phases in a manner analogous to (7a.1)

we 6nd

the factor in the Born approximation for pair production
corresponding to (4.2) is, in the present region, 62

Vdf—— Vdf
Pl -m P2 ~z( el e2 ) kN(Q —'U)

KD2 D, )
(7a.g) 8 p 8—(p —») ——— V(p, f') df'.

Bp zBz ~,
q PlP2

which indeed coincides with (7a.7).
The calculation of I2 and I2 is even simpler. Dropping

terms of relative order 1/e, we find
The first two terms add up to J' „"V(p,f )df'. This is the
important di8erence when compared with pair pro-
duction, (7a.3), where this term was absent. Using the
relation (7a.2) we may write

exp( —iX2"+iq r) p' exp( ixP")—2„J (tlu y vq
x~+—x2,-=— V4 —

I

L p, p, ]1 f

esf ~ I~~ p08d3y— e''I 'X~~"d3r
2eg

z 8 8
X ———

I V (p g)df (7b.2)'.
p8p Bz ~,the last step by partial integration. Substituting for p

1+I' 1+v2 k

Xi+ X2, — X1,+(P1)zl) X2, —(Pl)zl)
t'1~I'& Dg ——2E2 g D,=2E, ,

2&y 2E2 2ty62

+X2,-(pl zl) X2, —(p2 z2)
(7b.1)



THEORY OF HIGH —ENERGY BREMSSTRAHLUNG

(7b.6)I—v= 0(1/e),

The erst term here is of order 1 and must be kept in where we have used the fact that q~=u —v, and that
the exponent, while the second is of order 1/», and may in the present range (q~1/e) Lsee (7a.6)$:
be expanded as in (7a.4):

I& += d'y exp iq r i— V(p, t)df

(y u y v) s 8 8

( p, p2 & '. p ap as

V(PZ)dt. (7b 3)

angle between u and v=O(1/e).

We now turn to I2 and I2 and, as before, we shall be
interested only in the components of these quantities
perpendicular to k:

f+=—— i d2ye oxo, —+02 0~ eox1,+

2eg

The first term is proportional to a 5 function: d'y exp iq r i
~

V(p,—f)df V&x&,+
2g) J

22'(q, ) d'p exp iq~ y i V(p,—f)d|
00

(7b.4)

(y u y.»»
(s f') V (p—,y)df

pl p2 /POP 0

The angular integration gives, exactly as in (7a.5),

22r )q& u q~ rq
I~ +=—

~

——
I

"pdp~~(q~p)
q, & p& p2 &~

00 00

xexp i v(p, l )df —e'"'—
—oo — —oo ~P

x (.—t) v(PZ)deeds.

and is to be dropped. This term will be discussed
further in Sec. 9 for the case of scattering.

In the present case we have, rewriting as in Sec.
7a

(.
I& += i d'y exp~ i—q r i Vdf ~—

)

up to relative order 1/e 0

Because of the small angles between y~, y2, and k,
and since p and s are of order e, it is of no importance
whether we take the direction of y~, y2, or k for the
s axis. The symbol J then denotes the component of
any vector perpendicular to any of these vectors. For
the moment we take the s axis along p~ and q in the
x-s plane. Then

) dsoexp(iq~ y)~~X

r ~X
dso exp(imp cosvo)(cosvo, sinso)—

Bp

~X Q~ ~X
=22yiA(q~p)(1, 0)—= 22ri—Jg(q~p) —.

Bp gg Bp

Performing a partial integration with respect to s, we
find

2'E
I2~ += PdPJq(q~p)

26ygg gg

( foo q g 00

V (p, f)dt I

—' e'"'V(p, s)«. (7b.7)
)Bp~ „

Furthermore, integrating by parts twice with respect
I» is obtained from I» by substituting the index 2
for 1, as is evident from the definition:

22y (q& u q&'v)
I~ +=

qiqo ~ P2 P2

8 f
Xexp i~ V(p, f)—df —

~
e'2 *V(p,s)dz

—oo —~P —oo

(7b.5)
ig(N —v) 22r—

J pdp~~(q p)
qo P~P2

00 Qo

Xexp i V(p—g)di' — e'2"V (p,z)ds,
OO - ~p -—0O

+= (+ e xo)eoQ '0+ x&d2y

2e2 ~

qg 2x'
pdp~~(q~p)

2eqg, g~ 4

q 8
xexp( i v(p—,l)df (—

E ~ „' hap

X t e'" V(p,s)ds. (7b.&)
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Now it is also clear that for q 1/e.'

and
Dy= 2&2gzp D2= 261gz

( el ss ) ~st(tt —&)

ED, D,) q.'p,p,
(jb.9)

X V(p,z)e'«'ds I d're'&'V(r). (jb.10)

Since the cross section is a homogeneous, quadratic
function in the I's, the result is that the Born approxi
mation gets ntlltiplied by

~

A ~'.

Again we obtain the B-M result in the case of no
screening":

A
pdpp Ji(q p)If. t(q*p)

q~ ~o

= (q'/4) "I'(1—ia)1'(2 —ia)F(ia, 1—ia; 2; q '/q')

(qs ) ' I'(1—ia) pra

(F(ia, ia; 1; q '/q')—
( 4) I'(1+ia) sinhpra

ia(q s/q')F(1—+ia, 1 ia; 2—; q~'/q')}, (7b.11)

which is exactly their result LB-M Eq. (8.20)], as
1—x=—DtDs/4etesq =q /q' in the present range Lsee

(jb.9)]. The phase factor is of course the same as in

(6a.11).
VVe may express A in terms of the atomic form

factor F(x): Let aQ(r) be the charge. Then

Our results (7b.6—8) are therefore equal to the Born
approximation times the common factor

2' f 8
A = —— pdpJt(q~p) exp i ~—~ V(p, f)df'

q, Jp -p

This expression was used in (6a.9). tt is necessary in
order to obtain the correct expressions for the un-
screened case F(x) —=0.

The expression for A is then

p p'dp &1 FL—(p'+q')']}
A =lim

„",'.'1—F(q) q. " p'+q*'+et'

XJ pdp Jt(qip) J1(PJp)

st
Xexp 2ia

~

(1—F(*))Jp(xp) . (7b.13)
x +rts

In cases where screening is important LF(x) WO) this
expression must be handled by numerical calculation.
This will be left for later work.

8. INTEGRATION OVER ELECTRON ANGLES IN THE
BREMSSTRAHLUNG CROSS SECTION

Now we may show that our result for the brems-
strahlung cross section agrees with the result previously
shown more generally'. The cross section integrated
over the motion of the electron is additive just as in
the case of pair production: one part is the Born
approximation cross section imcludieg screening; to this
is then added the effect of the Coulomb correction,
which is independent of screening.

The expression for the square of the matrix element
LB-M Eq. (7.11)]is

1
Ps+s sls+e sos]I

siss I 2stss

+2Ilp(ssu Ised. +etv' Ising)

+2etes(Is„~'+Is„~') . (8.1)

1-F(p)= e-"'Q(r)d".
J

The potential is
2a p pds' es$1—F(p)]

V(r) = lim-
y-+p (2w)s J ps+.~s

This expression is the same for pair production as for
bremsstrahlung.

The cross section differs from the Born approximation
only in the region q~1/e. Here we find

and the integrals

f
e"*'V(p s)ds

p p.dp.f1 FE(p'+q') ']}—
= inn —2a Jo(P~),~o J p 2+q 2+rts

(jb.12)
p.dp (1 F(p ))—

V(p,s)ds= lim —2a Jp(p~p).
4 ~0 p 2+~2

'8 G. N. Watson, 2 Treatise on the Theory of Bessel Functions
(Cambridge University Press, New York, 1952), second edition,
p. 4i0.

1 1 ksQsxs q
s (ei

. . .+—
I
—+—I, (8.2)

q siss Q. q el ss 2 Esp st)

where g=g —e, and

8
q = —2s pdpJ&(q~) exp i V(—p,f')dl

0 4~ Bp

X e"**V(ps)ds (8 3)

We now choose the variables q„n= x/q~ and q~. The
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angular part of the phase space volume element is then so that the integral over q~ may be taken in the upper
range of q~. But in this range screening is of no im-

udqs ed' d gs= dqzdnqs. dqs, /$28 (1—n') &$. portance:

gd p~J, J p

With these variables the explicit dependence on q~ in
(8.2) vanishes and the differential cross section depends
on q~ only through

~
q'~2q~dq~. The integration over gs,

which is equivalent to integration over q~, therefore
gives

pq~~ 1 and hence p~—((&screening.
gg

In (8.4), therefore, the potential may be taken to be
the unscreened Coulomb potential, although q~(q».
Thus we simply find

4 p

I &I qsdqs

t2200 ~00 ~qp~

= (22r)'
J, q Cq I (q~)It(qsp')

00 8 8
Xexp i I V—(p t')d'f+i V(p', l)dg—

—00J ' J Bp Bp

where q» is a number small compared to 1, but large
enough so that all screening sects are contained below
g»:

q02))1/rscreening

Now the integral is

+ I'( no screening no screening)d+0 exact 0 Born

as mentioned at the beginning of Sec. 8, which will
lead to Eq. (4) in reference 2, if the integrations are
carried out

9. SCATTERING

The scattering amplitude for high-energy small angle
scattering was derived by Moliere, 4 from the phase
shifts obtained by the WEB method. In this section
we rederive his results using the wave functions of
Sec. 5. Scattering is closely related to bremsstrahlung:
The S matrix for scattering is

—00 —00

e"** "*"V(ps) V(p', z')dzCs'
t$,i+d'r= ~F2, *e'2'Fi, pd'r=I, +,

Let us now subtract from this the Born approximation
contribution for the screened potential: in which q= p~ —p2 ~ It is therefore obtained from the

Ii + of bremsstrahlung by putting k=0, and leaving
p& and p2 arbitrary. It should be noticed that, although
the s axis is now arbitrary, it has to be chosen so that
q, 1/e, as before.

From (6a.7), we find, in the case q 1,

p eox

q.dq. pdp p Cp Il(qJp)I&(qsp )
0

X exp i " V—(pg)df+i I V(p', g)dg —1
J—00 00 22r r

Ii(s) 0)= idle""Js~ —
qs ~

e "srdr,
pt2 & (pi & ~c

But now since" z
e"«=&+(pt p2) =qro(pt p2)— —

J 0 pl 2

q dq Ii(q~) Jt(q~') =~2(p p'), —
0 Thus, using (Sa.4)

and

00 F00
ezqzz —iqzz' V(p z)

~P ~P where 5=Pi—P2. Now
X V(p', s')dsds'. (8.4)

exp i V (—p, f)df +i V(p', f')df' -1 =0, It(s)0) = sr'(pi —ps) — 2qr xCx
P,—P2 ~

it is clear that with the integrand as in (8.4)

~vox ~00 tIox 00

Xexp —2i
~ 0

V(x,f')df' I,(xq ),

dq&+„dq&= dq» with the substitution x=l/pi. Only the term corre-
sponding to i/(pi —p2) was kept in bremsstrahlung,

"Thefnnctionss(p —p') isdefinedby jp'dp'f(p')s, (p p)'=f(p). (6a—.7). As in (6a.12) we find It(s(0) by the substi-
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tution pi&f2 in Ii(s)0): function for the region q 1/e need not be made in the
case of elastic scattering.
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Ii——Ii(s)0)+Ii(s(0)

=2~8(pi —p2)2~J xdh

APPENDIX A

The radial wave equation is

d'mg t' E(l+1))
+( p' —2.V——

~N, =0.
dr'

(A.1)

)(exp —2iJ 0

V(~ f)dt. J,(~q). (9.1)

since q,(&q~ for q I. The T matrix is defined by

821=~21 2%'ib(&1 E2)T21.

Therefore,

T=2mi xdxJO(xq)x —"'=—
dp

4ma q') *' F(1—ia)

q' ( 4) F(1+ia)

for scattering angle 8 /0, which gives the Rutherford
formula.

But now the expression for T in the region q 1/e
happens to be exactly the same as (9.2): Using our
result (7b.4) we find, for q 1/e,

5=Ii +=27'(q.)2m Jr pdpJp(pq)

Xexp —2i t V(p, l)di

which is the same as (9.1), since

00 oo

xdxJ, (xq) exp —2i " V(~t.)df —1 .
0 J 0

(9.2)

The wave functions used in calculating (9.2) are,
however, only valid in the case q 1, in which case the
screening is of no importance, thus reducing T as
given in (9.2) eA'ectively to the Born approximation
value as was true in the case of bremsstrahlung Lsee
(6a.11, 12)].For q 1 (9.2) thus reduces to

Since we want I& for /'s of order e, there is effectively
only one nondimensional parameter in (A.1), vis. , e.
We then use a %KB technique to obtain an approximate
solution of (A.1) for large e, expanding the solution in
powers of 1/~.

We require a wave function which agrees to within
terms of relative order 1/e with the exact solution of
(A.1) having the proper behavior at r=0 Using . the
method of Langer, '~" we have found that for r~e this
approximate wave function should be taken as

where

ei——cos ~ rj(r')dr' ——,'m

~0

g'= p' —2e V—(l+-')'/r'

(A.2)

(A.3)

and ro is defined by i1(r0)=0. Since for r 1, 2~V( ((l+-)i2/r2~ for the Coulomb potential (with arbitrary
screelllng),

«= (~+-')/p+O(1/~) =O(1) (A4)

r X

J
~ qdr'= lim

~

qdr' fqodr'—

where

+ lim I q,dr I qdr', —(A.5)

Since we only need the wave function for both / and r
of order e one might be inclined to presume that it is
immaterial whether we choose, in the last term in q',
(/+ —',)2 or /(1+1). Inspection of the error by means of
an iteration procedure shows that we must indeed
choose g' as given above, even in this case. Now if V
is a screened potential then we may write

(~o)'= p' (~+-')'/"—
r = (~+-')/p

We thus find the same expression for the scattering
amplitude (9.2) in both regions, q 1 and q 1/e,
Therefore the distinction which must be made in the
case of bremsstrahlung and pair production between
the wave function for the region q I and the wave

'OR. E. Langer, Phys. Rev. Sl, 669 {1937);Bull. Am. Math.
Soc. 40, 545 {1934).

~' P. M. Morse and H. Feshbach, Methods of Theoretical Physics
{McGraw-Hill Book Company, Inc. , New York, 1953), Part II,
pp. 1092-1106.

2' R. E. Langer, Trans. Am. Math. Soc. 37, 397 {1935).

qs pie p2s (pl p2) L+1~' (/p2ip2)J+(O1 t/)
= (pi —p2) L1+O(1/e') j and
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lo (2pr p
n, (r) =sin p —-', l~+ +a log~

2pr E l )
~N ~N

b) = lim gdr' — '

hodr'
P-ooo

(A.6)

is the zero of qp. The first term in (A.5) is the phase and substituting in (A.2), we have
shift, 5)..

(A.11)

The second term may be written in the form

~r oo

21od '+ (g —ot)d '.
J„

(A.7)

2lpdr'= Ps (l+-,') tan—-'[Ps/«+-;)),

which, for r~e, l ~, simplifies to

p 1

21pdr' =Pr ,'l2r pp—r+—P/—(2Pr)+0(1/p)
Jrg

In the second integral in (A.7), since the lower limit is
of order e, we note that, for r&e,

np
—n= (np' —n')/(np+n) =2pV/(op+a),

qp+ g= 2P[1+0(1/e2)),

and hence

(imp
—

21)dr'= Vdr'

+terms of relative order 1/22. (A.8)

Thus, substituting (A.5—8) in (A.2) we have, for r

P 00

Ni(r) = sin pr —2lpr+ +8i+ Vdr'+0(1/&)
2pr

(A.9)

For the case of an unscreened Coulomb potential
V = u/r the integral in (A.—2) can be evaluated exactly:

= [P2~2+2«r —(l+2)2)

The first of these two integrals may be evaluated
exactly. Making the transformation of variables

g2 y2 (l+L)2/p2

we find

for an unscreened Coulomb potential. It may be noted
that the term a log(2pr/1) in (A.11) is exactly that
given in Mott and Massey, " where in our notation
bi =argI'(l+ 1—iu) = —a logl+0 (1/p) for l p. How-
ever, as will be shown in the following paragraphs, for a
screened potential b~ can be written as a function of the
single variable l/p. Hence also for an unscreened
potential we choose to write 8i as a function of l/p,
vis. , 5t ———u log(l/p), rather than 6i ———u logl. Thus
the term replacing f„"Vdr' in (A.9) is a log2r. Defining
8i= —a log(l/p) is convenient for the evaluation of the
matrix elements for q 1 (see Sec. 6) and changes the
wave function only by an inconsequential factor p'
[note (5a.9) and comments immediately following that
equation in the text) from customary use."

Finally, we simplify the phase shift defined in (A.6),
neglecting terms of 0(1/p). Since the term 2pU is small
compared to the remaining terms in g except near
r=rp, let us write (A.6) in the form

8i —— (21 gp)dr'+—~ gdr'
J„

gpdr' (A.12)

V(r') r'dr'
+0(1/p).

P ~ s L»" «+l)'/P'3'—
(A.13)

The second integral in (A.12) may be evaluated using
(A.10), since R 1 and hence the potential is unscreened
over the range of values of r' in the integrand. %'e thus
substitute V= —u/r in the second integral and find for
the second and third integrals in (A. 12)

~B
ndr—

J„,

where R is chosen so that
~

2pV
~

is of order 1/p relative
to p' —(l+ 2)2/2r2 for r ~ R and hence R is greater than
either ro or r~, but nevertheless of order 1. In the first
integral in (A.12) we may expand the integrand in a
series in V &.

g = gp —p V/gp+0 (V2/p),

and hence the 6rst integral is

= (pu/p) {log[R+(R'+ (l+-,')'/p') &)

-1 g[(l+-', )/»}+0(1/.) (A.«)
(l+,')' «r-—

+(l+—,') sin '
2.[«+2)2P2+ ppa2) 1

~

eQ

+—log (2 p[ppr2+2 «r (l+ ',)2)&+2 ppr+
—2p—~} noting that rp ——(l+ 2)/p+0(1/p) and t—hat 2pa/R is

0(1/p) relative to p' —(l+2)'/R'. However, the inte-
grand in (A.13) may be integrated exactly over the

A. 10

Neglecting terms in (A.10) which are 0(1/p) for r e

~' Reference 11, p. 53, Eq. (28).
'4 Reference 11,p. 48, Kq. (15).



46 OLSEN, MAXI MON, AND WERGELAND

neglecting only the nonlinear term (Vz)s in (Sb.2) in
the text, since this term is small in the region p~e,

~
s

~

~e and does not change the character of the solution,
(&).Two solutions are then clearly

range r&~r'~E since in this range, as just noted,
V= —ar:

V (r') r'dr'

P" L
' (~+ )'/P'j* &i& (r—r')2ie

I
t

d'r' d% V(r')
k+21 1 ~;„

g~= lim
~P (2s)' ~ea t' . (1+-',)') '

=—log Z+~ m+ --
~

—log
P — ~ P' ~- (8 1)

&+i@)r—x')

=—e-'p' d'r' V(r')e*p "
~B

gdr'—
~ro

rfpdr'+0(1/e) (A.15)

The wave functions f~ e'&'+——'x+ then satisfy the
Hence, substituting (A.13, 15) in (A.12) we have, s'

S f ld d. „. d.„. .
„h outgoing

neglecting terms of 0(1/e), ingoing

V (r') r'dr'

p"" L" (E+ )/pl*

e e+'""
P~(r~ pe) =e's '(1+ix~) =e's '—— d'r'

r

e

V(/t'+ (1+2) /p'j*)d f. (A.16) )(exp( ip—r'
~

-V(r')e'p" (8.2)
r

Since l ~, this may be written in the form

V{LV+ (i/P)'j') df

Thus B~ is a function of the single variable 1/p

APPENDIX 3
We want to show here that the wave functions

P~——e'&'+'x+ with x~ given by (5b.3) and (Sb.5) are
the approximations in the region r e of wave functions
which satisfy the Sommerfeld radiation condition:

outgoing
plane wave plus . . spherical waves, corre-

ingoing
sponding to P+ and f . These boundary conditions can,
however, only be satisfied by solutions of the second-
order equation. We accordingly include the term V'p,

's See reference 4, Eqs. (2.2) and (4.4).

Zt. f' ~ikz(z —z')

xg=lim —
~ d'r'h(g g') V(r') — dk,

2pk, ~ig

The k, integral is a step function, so that

f

x,=— V(.,")d", x =-
p~,

V(p, s') ds',

which are the results given in (Sbj) and (Sb.S),
respectively.

It should be noted that neglecting the term (Vg)' in
the equation for x& introduces errors of relative order
Z/137 in the wave function (8.2). On the other hand,
when r~e the major contribution to the integral in
(8.1) comes from k 1/e. Thus, in (8.1), significant k's
are «p and the term k' in the denominator of the
integrand may be neglected:


