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tions are obeyed by the cathode dark space in hydrogen
and air over the full pressure range up to and above one
atmosphere.

The similarity relations serve two purposes. Firstly,
they enable properties of the dark space such as 6eld
strength, ion density, length, and temperature to be
obtained at high pressures from the simple measure-
ment of current density. " Because the dark space is
very short ( 10 ' crn at 760 rum Hg) these quantities
cannot be measured by any other means. Secondly they
often shed light on the discharge mechanism since the
fundamental processes must also conform to the simi-
larity requirements. It appears likely therefore that

these processes are the same in the cathode dark space at
high, as at low, pressures, namely ionization by electron
impact, and electron emission from the cathode by
positive-ion bombardment or photoemission.
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The problem of a vibrating harmonic oscillator whose frequency is changing in time is considered in the
case where the frequency co is initially constant, varies in an arbitrary fashion and becomes constant again.
It is found that the relative change of the quantity, the energy divided by the frequency, in the 6nal region
from its value in the initial region is zero to as many orders in the rate of change of co as co has continuous
derivatives. For the case where there is a break in the Eth derivative of cv the relative change is given to this
order.

INTRODUCTION

'HERE are many problems in physics in which
there exist quantities which change so slowly

that they may be taken as constants of the motion to
a high degree of accuracy. Any such quantity whose

change approaches zero asymptotically as some physical
parameter approaches zero or in6nity is an adiabatic
invariant. For instance, in Fermi's theory' for the
acceleration of cosmic rays, it is assumed that the
magnetic moment of a spiraling particle in a varying
magnetic field remains constant. Combined with the
conservation of energy this enables one to show that a
magnetic 6eld can reQect such a spiraling particle. The
magnetic moment of this particle is not really a rigorous
constant but is nearly so if- the relative space change in
the magnetic 6eld over the Larmor radius of the
particle is small, or when the field is changing in time
if its relative change during a Larmor period is also
small. These conditions are satisfied to a high degree
in many astrophysical situations. '

The constancy of the magnetic moment to 6rst order
in these parameters of smallness was first derived by
Alfven' and was later shown to be true in the next

' K. Fermi, Phys. Rev. 75, 1169 (1949).
~ L. Spitzer, Astrophys. J. 116, 299 (195&).
s H. Alfven, Cosmical Electrodynamics (Clarendon Press, Oxford,

1950), p. 19.

order by Helwig4 for a general 6eld. Later, Kruskal'
showed that it was valid to all orders for the special
case of a particle moving in a magnetic field in the s
direction which varies only in the y direction and a
constant electric field in the x direction. From these
results it seemed possible that the adiabatic constancy
of the magnetic moment to all orders was a result of
general validity.

That the magnetic moment of the particle is a
constant in all orders would imply that any change in
it must vanish more rapidly than any power of the
parameter of smallness, i.e., the relative change of the
6eld over the Larmor radius. This does not imply that
it must be a rigorous constant. For instance, 5c
=exp (—1/X) has this behavior since at X=0 all
derivatives of Ac vanish.

An example of an adiabatic invariant in quantum
mechanics would be the distribution over energy states
of a system as the Hamiltonian is changed by external
means, such as changing the volume of the boundaries
of the system without adding heat to the system.

In order to approach the problem of the constancy
of adiabatic invariants to all orders, this paper treats
another simpler problem in which an adiabatic invariant
exists. Consider the classic one-dimensional problem of

4 G. Helwig, Z. Naturforsch. 10a, 508 (1955).' M. Kruskal (private communication).
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an oscillator whose spring constant is slowly varied by
some external means, such as a varying temperature,
which only affects the motion through its spring
constant. The counterpart of this problem was hrst
considered by Einstein' at the Solvay Congress of 1911
on the old quantum theory. Lorentz asked how the
amplitude of a simple pendulum would vary if its
period were slowly changed by shortening its string.
Would the number of quanta of its motion changers
Einstein immediately gave the answer that the action,
E/+, where E is its energy and ~ its frequency, would
remain constant and thus the number of quanta would
remain unchanged, if (1/c0) (dcd/dt) were small enough.
Birkhoff' showed for problems such as these, that one
can write the displacement

x=W(t) sinl co(t)dt+8 l,

where co(t) is the frequency and W(t) can be developed
in a series which converges asymptotically. However,
he did not evaluate the higher order terms and find
the variation of E/cd. This is easier to do if one writes

compare E/cd in these two regions. In this case it is
found that if co has W continuous derivatives through-
out, than the final value of E/~ is the same as its initial
value to X+1 orders in (1/co)(d&u/dt) T.he change in
the (/+2)nd order is calculated. If X= ~, that is if,
cu has all derivatives continuous, then E/a& is the same
to all orders, although as already remarked this does
not imply it is rigorously constant, since the result is
only an asymptotic one.

If the mass is one, the equation of motion is

d'x/dt'+co'(t/T)x = 0, (1)

where x is the displacement, &u(t/T) is a function with
the properties listed above, and large I' corresponds to
small (1/a&) (dcd/dt). Let r= t/T, so that Eq. (1) becomes

T'd'x/dr-'+(o'(r) x= 0, (2)

which is to be solved for large T. Since or is changing
slowly in time, we anticipate that x may be written in
the form

x(r) =W sinl T,

x=W(t) sinl
E~o

and develops both 8' and 5 in asymptotic series. The
relation between t/I/ and 5 may be chosen to simplify
the problem and it can be seen that E/cu is indeed
invariant to all orders in (1/c0) (da&/dt).

By generalizing this device Kruskal' is able to
express the motion of a spiraling particle in a general
electromagnetic held in terms of two such independent
variables. Specifying a relation between them to
simplify the problem, he is able to demonstrate that
the magnetic moment of the particle is also invariant
to all orders as has been suspected. It might be that
there are many such invariants which are known to be
constant to lowest order but which are actually in-
variant to all orders.

In this paper the details of the solution of the simple
harmonic oscillator are given. The solution of the
particle in the electromagnetic held will be published
in a separate paper by Kruskal. s

CALCULATION

Since, when co is changing E is changing also, we
restrict ourselves to the case where the frequency cv as
a function of the time t is at first infinitely Qat, then
changes in some arbitrary way, and finally becomes
infinitely Sat again. Thus the energy is well dehned
and constant in the initial and final regions and we

'P. Langevin and M. DeBroglie, Ja Theori du Rayonnement
et les Quanta (RePo~t on meeting at Institute Solvay, Brussels, 1Ã1)
(Gauthier-Villars, Paris, 1912), p. 450.

~ G. D. Birkhoff, Trans. Am. Math. Soc. 9, 219 (1908).
M. Kruskal (to be published).

x( )=7(W"—T'S'W) sinl T ~ Sdr l( J

+(2TSW'+TS'W) cosl T ' Sd7 l, (5)
( I"

i

where primes represent derivatives with respect to v.
Thus Eq. (2) becomes

(W"/T' WS'+co'(7)W)—sinl T, l Sd7
(

+T '(2W'S+WS') cosl T ' Sdr l. (6)
(
i J

We choose the relationship between 5 and 8' to
malce the two coeflicients in Eq. (6) vanish separately,
so that 8" and 5 are given by

W"/T' WS'+&a'(7)W= 0—)
2W'S+WS'=0.

Equation (8) may be integrated to give

8"5=a,

(7)

(g)

where a is a constant.
Let us assume that the oscillator is started in the

initial region with a displacement xo and zero velocity.

where W and 5 are slowly varying functions of v,
between which we may specify an arbitrary relation.
Then

( r"
x( )r= W'sinl T ' Sdr I+TSW cos

)
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E/4p = -', aS/4p = —',a, (14)

and if S=&p in the final region, than the value of Z/4p
would be the same in the two regions for all T. However,
the representation (3) does not guarantee S=ip, since
many other functions 5 and 8' may represent a sinus-
oidal oscillation. For instance, if 8' changes in time,
then Eq. (7) shows that SW4p even though 4p is constant.
In general, after cv has varied in an arbitrary way, the
simple relations (10) and (11) will not hold in the final
region.

To investigate the value of 5 in the final region, we
therefore solve for 5 as a function of r by developing
S and W as asymptotic series in 1/T.

S=Sp+Si/T+Sp/T'+ (15)

W= Wp+Wi/T+W p/T'+ . . (16)

Substituting these series in Eqs. (7) and (9), we have,
to lowest order,

Wp ——(a/4p) &.

The nth order then reads, for an even m,

W p"—W„p(S')p —W 4(S') 4
—~

(17)

(18)

The initial conditions on W and S are chosen such that
8" is constant throughout the initial region. From
Eqs. (3), (4), (7), and (9).

S=&4p (in the initial region), (10)

(in the initial region), (11)

&xp'4p=a (in the initial region). (12)

We may take the positive sign in Eqs. (10) and (12).
Note that if we choose xo independent of T, a is also
independent of T.

The energy is computed in the initial and 6nal regions
by calculating the kinetic energy when x=0. Thus,
by Eqs. (3) and (4),

8= ',x"/T'= ', -W'S'= ', a-S (whe—n x=0). (13)

In the initial region, by Eq. (10),

S„=O, 0&m& F. (23)

Comparing Eq. (23) with Eqs. (13) and (17), we see
that in the 6nal region

E/pi= ', a+ Supp/piT~+'— (24)

so that E/pp is constant to /+1 orders in 1/T. If pp

has a jump sz+& in its (X+1)st derivative as a function
of t, the relative change in 8/pi is given by

(WP)„=W„W,+W„,W,+ "+W,W.. (22)

In deriving Eq. (19) we have used Eq. (17) to cancel
the 4p term and in Eq. (20) we have used the fact that
u is independent of T. Note from the equations corre-
sponding to (19) and (20) that all odd orders vanish
since S~ and 8'~ vanish.

Equation (19) with (21) expresses S in terms of
lower orders 5 and W and their derivatives. Similarly
Eq. (20) with (22) expresses W„in terms of S„and
lower orders. Since So and 5'0 are given in terms of ~,
we have found asymptotic series in 1/T for S and W
which formally satisfy Eqs. (7) and (9). Notice that

and S„depend on m and its 6rst e derivatives.
Thus if the (X+1)st derivative of 4p has a discontinuity
at some time then 5~+2 and 8"~+2 do also. Since x
and x' must be continuous in all orders in 1/T, the
series given by (21) and (22) cannot represent a
solution to (X+2)nd order. This and higher orders in
Sand W must be found by solving Eqs. (7) and (9) in
regions where d~+'4p/d~+' is continuous and matching
x and x' in these orders,

Suppose that cv has E continuous derivatives and that
these E derivatives are zero in the final region. Then
by Eqs. (17) and (18) the first E derivatives of Sp and
8'0 are continuous and vanish in the 6nal region. By
Eqs. (19) and (20) with Eqs. (21) and (22), Sp and W&

have Ã—2 continuous derivatives, and $2 and 8'2
vanish together with these derivatives in the 6nal
region. Proceeding in this manner we 6nd that S~ and
8'~ are continuous and vanish in the final region. In
particular,

—Wp(S') „=0, (19)

(W )&p+ (W ) pSp+ +Wp S„=O, (20)

28++.]
sin(2 y —pcVpr).

(2~)K+2
(25)

where we have introduced the abbreviations

(S') =S„Sp+S pSp+ -+SpS, (21)
Here q is the phase of the oscillator when it reaches
the discontinuity. E may be either even or odd.


