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liquid nitrogen, Compton scattering causes degradation
in the energy of some of the 511-kev gamma rays. This
is probably the reason that no three-quantum radiation
was observed in an earlier experiment.

From the change in the ratio of peak to valley
counting rates, and the resolution curve of the spec-
trometer, the abundance of three-quantum events may
be calculated. The abundance of three-quantum an-
nihilation in liquid helium is (16&3)%.This amount of
three-quantum annihilation radiation clearly indicates
that the v.3 component is due to orthopositronium.

Triple-coincidence measurements were made to
verify the existence of orthopositronium. Three NaI
scintillation counters were placed coplanar with the
source every 120' around the source. The triple-
coincidence rate was compared with the rate in liquid
nitrogen. The coincidence rate in helium was greater
than that in nitrogen by (0.7&0.2) count per minute.
From this coincidence rate, the abundance of three-
quantum annihilation is (13+4)%. This is in satis-
factory agreement with the abundance calculated from
the gamma-ray spectrum analysis.

DISCUSSION

The three mean lives, ~1, r2, and v3 are associated
with parapositronium, free positron annihilation, and
orthopositronium annihilation, respectively. The ortho-
positronium component has an abundance of 16+2%,
based on the three abundances listed above. Any error
in the mean life ra would acct this value. If v g is smaller

r F. L. Hereford, Phys. Rev. 95, 109/ (1954}.

than 1.2)(10-' sec, the abundance would be increased.
If the long-lived component is due to orthopositronium,
the very short-lived one must be due to paraposi-
tronium, and will have an abundance of about 5%.
The remaining 79% of the positrons do not form
positronium.

The mean life of the short-lived component, v1(5
X10—"sec, indicates that positrons rapidly lose energy
in liquid helium, so that in a time less than 5X10 "sec
the positron has either formed positronium or has lost so
much energy that positronium formation is no longer
possible. The intermediate mean life, 7.2= 2.6X10 ' sec,
is longer than that generally found for free positrons in
condensed materials. The component of long mean life,
y3 ——1.2)(10—' sec, indicates that very little pickoff
annihilation occurs. From this it may be concluded that
the exchange repulsion between the positronium atom
and the helium atom is much stronger than any polari-
zation eGects which would tend to raise the electron
density at the positron.

The behavior of positrons in liquid helium is just
about what would be expected in helium gas at the
same density, i.e., about 700 atmospheres at O'C.
Computation of the annihilation probability for free
positrons using Ore's correction for Coulomb eGects4

for helium gas at 700 atmospheres gives a mean life
which is in exact agreement with the value measured.
The fraction of the positrons forming positronium is
consistent with the predictions of Ore4 and with the
triple-coincidence studies of helium gas by de Benedetti
and Siegel. '
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Rigorous lower and upper bounds are established for the energy of the ground state of a Bose gas with
hard-sphere interaction between particles.

1. STATEMENT OF RESULTS

K consider a Bose gas consisting of E identical
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nonrelativistic particles in a cubical box of
volume V. Between each pair of particles there is a
hard-sphere repulsion of range u, arid. no other inter-
action. Let m be the mass of each particle, and p= E/V,
p~= (1V—1)/V. We suppose E &2.

Let E be the ground-state energy of the gas. Calcu-
lations by Lee arid Yang' have shown that

Z [2' h'Epa/m],

as &-+oo and a-+0. The meaning of Eq. (1) is that
as a~0 the error is of higher than first order in u. An
asymptotic formula of this kind has the disadvantage
that there seems to be no way to convert it into a
precise inequality. The error introduced by breaking
oG the asymptotic expansion in powers of a at any
term is not controllable; it is unlikely that the power
series converges in the strict sense for any value of a.

The purpose of this paper is to supplement Eq. (1)
with precise inequalities.

' T. D. Lee and C. N. Yang (private communication). Theorem l.— 8& L,'av2uiss/pa/m J. (2)
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This lower bound for Jr is absurdly weak compared
with Eq. (1).The result is of interest only because it is
proved in a completely elementary and rigorous way,
and because it holds irrespective of the magnitude of
X and u.

The ground-state wave function is a function

+(ri r~)

of the positions of the S particles. If the walls of the
box are impenetrable, 4' vanishes when any r; is at the
boundary of the box. In this case we can extend the
de6nition of 0 to a continuous periodic function having
the edge of the box for period in every coordinate.
Thus Eq. (2) will hold for an impenetrable box if it
holds for a box with periodic boundary conditions. We
shall prove Theorem 1 for the more general case of
periodic boundary conditions. In this way we avoid
having to discuss the inessential complications arising
from boundary sects.

We prove a second theorem establishing a lower
bound for E which is potentially much stronger than
Theorem 1.However, this second bound is expressed in
terms of a two-particle distribution-function which we
are not able to evaluate explicitly. Henceforth we
always assume periodic boundary conditions. We
define the function

It.;=E;(r„,rg)

to be the distance of the point r; from its nearest
neighbor among the r;, measuring the distance "across
the boundary" into the next period whenever necessary.
Let P(N) be the probability-distribution of the quantity
E. in the ground-state of the gas. Explicitly,

P(N) = )%J'bLE —Ngd d

Clearly P(N) is independent of i, and is a continuous
function of I delned on the finite interval u&N & t/'&,

with J'P(N)dg= i.
Theorem 2.—E)Ph'Na/2m( max„P(N).

The interest of Theorem 2 arises from the fact that,
for a perfect Bose gas in an inlnitely large box (a= 0 and
N= oo), we have

P(N) =L(4/3)~pj exp'- (4/3)~pN3
max P(N) = (4/3)s p. (7)

For a perfect gas with 6nite E,
max„P(N) =P(0)= (4/3)g p, .

It is plausible to imagine that the presence of a hard-
sphere repulsion will compress the probability distri-
bution P(N) into a shorter interval and so increase the
value of /max„P(N)j above the perfect gas value.
Thus Eq. (6) leads to the conjecture that for all values

of u and N
E)L2s l'tsNpta/mg,

and suggests a way in which this conjecture may
subsequently be proved.

The third theorem deals with the much easier
problem of the upper bound. The upper bound is
easier because the true energy is the minimum expec-
tation value of the Hamiltonian of the system. So the
problem reduces to 6nding an approximate wave
function which is (a) a good approximation to the
true ground state, and (b) simple enough to make
precise calculation possible. Requirements (a) and (b)
obviously work against each other, and the choice of a
wave function demands a compromise. We have chosen
our wave function $Eq. (35) belowj in the belief
that it satisfies (a) better than (b). That is to say, we
believe that the exact expectation value of the Hamil-
tonian for our wave function would be much closer to
the true ground-state energy than to the best upper
bound which we have been able to calculate for it.

Theorem 3.—
2s.ksNpia 1+2(a/b)

a(b, (10)
m (1-(a/b))'

~ The simplest wave function of this kind gives

E (/&HA'/pug/ru jD (u/up))~-
The essential point of our theorem is that in the first factor on the
right of Eq. (10) there appears not ug but u.

with the lertgth b imdepertdelt of a aed darted by

(4/3) s.b'pt ——1.

According to Eq. (11), b' is the mean cube of the
distance of a particle from its nearest neighbor, when
E particles are placed at random in the volume V.

Theorem 3 states nothing when u&b. Our wave
function (Eq. (35)j is clearly inappropriate to describe
the state of affairs as u approaches the "jamming
radius" ug ——1.81b at which the spheres become rigidly
fixed in a closed-packed lattice. For b &a&ag it would
be better to use a trial wave function of a "crystalline"
form, in which each particle vibrates about a Axed
center, and the centers form a regular crystal lattice.
From such a crystalline wave function a 6nite upper
bound for 8 is very easily obtained. ' Our wave function
is "gaseous" in form and describes a perfect gas modified
as little as possible by the presence of the interactions.
It is interesting that such a wave function continues to
behave satisfactorily for values of u as large as b, since
b& —,uJ.The question whether there is in fact a transition
from a gaseous to a crystalline ground state for any
value of u&ug is one of the famous unsolved problems
of statistical mechanics. We are not able to throw any
light upon this question.

The coefficient 2s in Eq. (10) is the best possible,
by virtue of Eq. (1). Thus the error in the upper
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bound is of order u' for small u. This means that our
wave function must be a reasonably close approxima-
tion to the true ground state, representing adequately
at least the two-particle correlations.

2. PROOF FOR THE LOWER BOUNDS

In what follows we take G(m) to be any function
de6ned for 0(N& and satisfying

which has constant sign. But It o(x) is an eigenfunction of
constant sign, and therefore X= 1 is the lowest eigen-
value, and the minimum value of Q is 1.

We have thus proved that for every function P(x)
with g(a) =0

I g'Id4/dxI'dx& t g'V('g)IqbI'dx

G(N) )0, G(N)du=I & ~. (12)

Our proof begins with the following lemma.
Lemma 1.—Let f(r) be any function of the space-

point r, de6ned in a region 8. Suppose that 8 is "star-
shaped", i.e., if a point P lies in 8 then 8 contains the
whole of the radius OP. Suppose f(r) =0 for r &a. Then

" tgradPI'dr&C3a/17 "G(IrI') I/I'dr. (13)
4B

Proof of lemma. —Consider the function

A(x) =f(a)—f(x)

If p(g) is any function defined for a&x&b, and
P(a) =0, then we can extend the definition of P(x) by
writing g(x)=p(b) for x)b. Thus Eq. (22) gives for
any such p(x)

pbe I d4/dx I2dx

r" 00

x'I d4/dg I'dx) (3a/I) ) x'G(x')
I P I

'dg
a a

b

j) (3a/I) I g G(gs) I/I'dg. (23)

f(x) = (s/x) (s—x)G(s') ds.

This function &0(g) is defined for a &x & ~ and satisfies
the conditions

(16)

Now consider the function P(r) satisfying the conditions
of I.emma 1. For any fixed azimuth of r, g (r) is defined
in the range u&r&b, where b is the distance from 0
of the boundary of 8 in that direction. Writing f(r)
for p(x) in Eq. (23) and integrating over all azimuths,
we find

o&A(*)&f( ) & ( '/a)G(s')ds= (I/3a), (17)
~0

with

(W (*))= —G( ') = —V(*)& ( ),
S &S

(18)

V(x) =CG(x')/$0(x)7& (3a/I)G(x'). (19)

From Eqs. (16) and (18) it appears that &0(g) is the
eigenfunction of the eigenvalue problem

(8&/arl'd'&C3a/I7 G(IrI') Ig'I'dr (24)
eJ B B

from which Eq. (13) immediately follows.
Remark. —It is easy to show by a counter-example

that Eq. (13) does not hold for every region B. Some
condition on the shape of 8 is required, though the
"star-shaped" condition is probably unnecessarily
restrictive.

Proof of Theorem Z The gro.u—nd-state energy of
the gas is

C~(x)7= —XV(x)y(x), a&*&, (20)
x 8$

N
E= (@'/2m) Z Ig«d8 I'dri drN, (25)

with boundary condition p(a) =0, which belongs to the
eigenvalue 'A=1. The "potential" V(x) is everywhere
positive, and therefore the eigenvalue problem is
equivalent to 6nding the minimum value of the quotient

Q= 'ld&/dxl'dx

The minimum of Q is the lowest eigenvalue X of Eq.
(20). The lowest eigenvalue is necessarily nondegenerate
and belongs to the unique eigenfunction of Eq. (20)

where 0' is the wave function. Here grad; means the
gradient operator acting upon the coordinates r; of the
ith particle. Consider the positions (r2, ,rN) to be
temporarily fixed, and regard%'=%(ri) and Ri ——Ri(ri)
as functions of the position r~ alone. Around each point
r;, j=2, , S, there is a region 8; such that r; is the
nearest neighbor of ri and Ri I ri r;I when ri is in 8;. ———
The region 8; is convex and. therefore star-shaped
about the origin r;. Also 4=0 when Iri—r;I &a.
Hence the conditions of Lemma 1 apply to the function
0' in the region 8;, with r=r~ —r;. The lemma gives
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the result we Gnd

(33)

(34)Summing this over the regions 8, which together fill
the box without overlapping, we obtain which makes Eq. (33) reduce to Eq. (2). This completes

the proof of Theorem 1.

8&L3A'Xu/m)[y '—(15/2wV2)p
—'y 'j.

Igrad8 I'drt&L3a/Ij G(Irt —r;I') I@I'drt (.26)
Bg' Bg' The most favorable value for y is

y= (15/s.pv2),

I
gradt+I'drt& $3a/Ig) G(Rt') IVI'drt. (27)

An inequality analogous to Eq. (27) holds for each
of the X particles. Adding these inequalities together
after integrating over all Ã variables r;, we 6nd by
Eq. (25)

&&L3&'&/2~Ij I+I' P G(~P) drt' ' 'd» (28)

with I given by Eq. (12). Equation (28) is the funda-
mental result of this section, from which Theorems 1
and 2 follow easily. Theorem 2 is obtained merely by
substituting into Eq. (28) the particular choice

3. PROOF FOR THE UPPER BOUND

The first step is to define the trial wave function. For
this purpose we forget about the Bose statistics and
consider the positions (rt, .,rN) to be attached to X
distinguishable particles which are labelled in a definite
order from 1 to S, The trial wave function will not be
symmetric in the r;. The expectation value of the
Hamiltonian is still a good upper bound to the ground-
state energy, because it is known4 that the ground state
of the Bose gas is identical with the ground state of the
gas of distinguishable particles.

The trial wave function will be

G(x) =b(x I)— (29)
+=+(r t r~) =&8's (35)

for the function G, and using Eq. (5).
Proof of Theorem I.—For Theorem 1 we take in Eq.

(28) the particular choice

G(x)=maxLy —x, 0$, I= —',y', (30)

with the parameter y to be chosen later.
We use the fact that for every con6guration of points

(rt, ,r~) the sum PR cannot exceed a certain
upper bound set by purely geometrical considerations.
Since the spheres with centers at r; and radii equal to
~R; do not overlap and are all contained in the volume
V, we have immediately

gR &(6/w)V. (31)

P,=f(t;), (37)

where f(t) is a function to be specified later. The
important properties of f are the following.

0&f(t) &1, f'(t) &0, for 0&t& ~,
f(t)=0 for 0&t(a,

(38)

(39)

where Ii; is a function of the positions (rt, ,r;) only.
For each value of i we de6ne

(36)

where r; is the nearest to r; among the points
(rt, . ,r; t), taking into account the periodic boundary
conditions. We write

A more sophisticated geometrical argument, due to
Blichfeldt, ' gives the stronger result

QR,s&L15/2wv2j V. (32)

The proof of Eq. (32) will be found in the Appendix.
Substituting Eq. (30) into Eq. (28) and using Eq. (32),

I=4w P[1—f'(t) jd« ~,
0

goo
J=4w P fL'(t) 'jtd&~,

(40)

' H. F. Blichfeldt, Math. Ann. 101, 605 (1929). Blichfeldt was
interested in the problem of the maximum density of packing
of equal spheres. He proved Eq. (32) for the case in which all the
R; are equal. In this case he showed also that the numerical
constant can be improved a little further by a more elaborate
construction. However, an improvement much beyond Eq. (32)
cannot be hoped for. Empirical evidence suggests the inequality

ZR;3&VXV, (32a)

which holds with equality when the points r; are vertices of a
regular hexagonal lattice. Even if Eq. (32a) could be proved, the
eR'ect would only be to replace Theorem 1 by the result

E&P3 2'~'O'Xps/ns j, .
still far away from the conjectured Eq. (9). It seems that a
substantial improvement of Theorem 1 can come only from
arguments of a dynamical rather than a geometrical character.

Pf(t)f'(t)d«
~0

(42)

Because of Eq. (39), the wave function 4 vanishes
when any two of the particles are separated by a
distance not exceeding u. Thus N represents a possible
state of the gas, and the expectation value of the

4The ground state of the Boltzmann gas is necessarily non-
degenerate and has a wave function of constant sign. Since the
Hamiltonian is symmetric in the particle coordinates, such a
nondegenerate wave function must be symmetric. But then this
wave function is also the ground state of the Bose gas. For this
remark I am indebted to Professor Yang.
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Hamiltonian in this state is

Jt' fp p

P (g«dc+('d«1 d»n
E2lll )

"(e~'d., "d. . (43)

Then
N

gradq%'= Q 4P; '[gradlF;j= Q %e;q«1;F; 'f'(t;). (47)

= I+I'Z E Z '";.(~' ~) P'-'P;-'f'(t)f'(t)

& I+I'Z Z E I "~~l~l F' '~r 'f'(t')f'(t')- (48)

We divide the sum (48) into two parts, the first contain-
ing terms with i =j and the second with i Wj.When i =j
there are exactly two values of k giving nonzero
contributions, one with e;A, = j. and one with e;I,= —I,
and the two contributions are equal. When i(j then
necessarily t'I &i &j Thu. s Eq. (48) becomes

Zlg«d~+t'&2I+I' 2 F' '[f'(«)7
k=1 i=1

(45)

(46)
kg i&g'

eg=1, i=k,

~;J,=0 otherwise.

+2I+I' 2 I "~~t~lP' 'F' 'f(t')f'(t). (49)

At a point r~ with two equidistant nearest neighbors r;,
(grad1%') has a simple discontinuity and + itself is
continuous. The integrals in Eq. (43) are therefore
convergent and well-de6ned in spite of the discontinuity.

The physical meaning of the wave function (35) is
simple to understand. It describes a state obtained by
inserting E particles into the box one at a time. Each
new particle takes a wave function which is adjusted
to the positions of those particles already present. But
the particles added earlier do not adjust themselves
to the later additions.

Ke write

P & (i't '/«ll) [III+Hl],

Therefore Eq. (43) gives
Let I; be the unit vector in the direction of (»;—«q)

when «1 is the nearest to»; of the points (»I, ,» I). (50)

r

PI' F,'[f'(t;)]' F~'l. FI«'d«I d»~.
il=

J
F 2. . .F. 2F 2 F~1' ~ FN'dr1 ~ d7.N

P P[/~I, /F f'( )t] PP .1Pg-1[(~&7/Pgf (4)]FBI' 6'd«I d»)r

(52)
A&i& j'

I'P 1. . .P. 2P~ F'+12 ~ ~ oF'-12F P F&+1 ' ' ' FN (f7 1' ' ' tSTN

The fraction (51) would be trivial to estimate if the
factors F~12, ~ ~, FN2 did not involve the variable r;.
So we shall set limits upon the possible variation of
these factors as»; varies. Let i &p &~X. Let P~; be the
value which F„would take if the point r, were omitted
from consideration, that is to say

We set in the numerator of Eq. (51)

Fi+1 ' 'FN CFi+1 ' ' ' FN (56)

while in the denominator

P~lm Fg') F~l, Pf'( f»~l »; J) FgPf'(]»g »;—))—
P, '=f(l .—;I),

where r; is the nearest to r~ of the points
»j+I) ' ' '

p»p 1)~ Then

F.=mlnLF. . 'f(l».—«'l) j
and so by Eq. (38)

P~. 'f'(I «~ »'I) &P~'&P~.'—

(53)

(»lr ' ' ' )»a-1)

(54)

)F~l & ~ Fl«1—P [1—f ((»y —»$()j . (57)

The factors F„,P in Eqs. (56) and (57) are independent
of r;, and so the integration over r; may be performed
at once. We have in the numerator of Eq. (51)

1 fU'( '))t' d&«Z
&

[f'(I»' —«'l)7d»*
4

= (i—1)I, (58)
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and in the denominator

1—g I1—f'(I».—»'l)g F, d.,
j+1

N i-1 )
1—

I Z+Z IL1—f'(I».—r'l)j «'
aJ ( 1+1 1 ]

= V—(N 1)I.—(59)

The remaining factors are identical in numerator and
denominator, and so 6nally

(i—1)J 1 N (N 1)J-
II1(Q-1 V {N 1)—I 2 —V—(N 1)I—(60)

A similar argument is now applied to Eq. (52).
Let Ii~„;be the value which F„would take if both the
points r; and r; were omitted from consideration. Then

~i+1 ' ' '~j—1 ~j+1 ' ' '~N2 2 2 2

j—1

X 1—
I 2+2 II:1—f'(lr„—r;l)l

i+1 1+1 )
N

&& 1—P L1—f'(lr„—r;I)] . (63)

The integration over r; is now performed 6rst. In the
numerator the factor lej1, I

is zero except when t;
= Ir; »1, I. Therefo—re

In the numerator of Eq. (52) we set

F'+1' F 1'F 1' F-N'

&Fq.1 P ~ F 1, sF „1;s Fy;s (62)

and in the denominator

Next we have to perform the summation over k; this-
gives simply a factor 2 since r& must be equal either to
r; or to the nearest neighbor of r; among the points
(r1, ,r; 1). After this the r; integration can be
performed, giving in the numerator

) F f'(t)dr;& P f(lr; r, l—)f'(Ir; »„I—)dr;

= (i—1)E, (66)
and in the denominator

( j—1

g
F' 1-l Z+Z IC1—f'(lr. -»'l)j dr'

( 1+1 j+1 i
& U—(N—2)I. (67)

The remaining factors are identical in numerator and
denominator of Eq. (52). Therefore

Hm& Q 2(i—1)&/{IV—(N —1)IjLV—(N —2)Ij)
=—,'N (N —1)(N —2)E'/

{I V—(N —1)IjLV—(N —2)I)). (68)

Putting together Eqs. (50), (60), and (68), we obtain

O' N(N —1) 2 (N —2)E'
ECH& /+-

2m V—(N —1)I 3 V—(N—2)I
O'N tp1J i -2p p1E i'

I+-I I, (69)
2m &1 p1I) 3 &1—p1I—j

with p1=I (N —1)/Vj, and I, I, Egiven by E'qs.
(40)—(42). It remains to choose the function f(x) so
as to make the right side of Eq. (69) as small as possible.
The minimization can be carried through without
diKculty, but the details are tedious and will not be
discussed here. The upper bound obtained for E in
this way is not signi6cantly better than that given by
Eq. (10).

We shall content ourselves with proving Eq. (10).
This can be done very simply by choosing

~' I IFjf'(tj)d

f
f(l» "l)f'(I» r~l)d—r =E (6—4)

b (x—a)
f(x) =—,a(x&b;

x (b —a)

f(x) =0, x&a; f(x) =1, x&b;

(70)

(71)

In the denominator we 6nd

Fs 1—Z I:1—f'(I».—rjl)3 dr&
i+&

( K j—1 )
1—

I 2+2 IL1—f'(I .—r l)j d '
j+1 1

= V—(N—1)I.

where b is given by Eq. (11).Then

I= (4/3)nab' p1I= (a/b) (72)

J- 4m ab/(b a), — (73)

E=L4rb'a/(b —a)')Lb —a—a ln(b/a)$(41rab, (74)

and so Eq. (69) reduces directly to Eq. (10).
Remarks. —With the best possible f(x), the 6rst

factor in Eq. (10) remains unchanged, and only the
(65) coefficients of (a/b) in the second factor are somewhat
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improved. But from the calculations of Lee and Yang'
it is known that as a~0 the correct form of the second
factor in Eq. (10) should be I 1+O(a/b)17. Thus the
terms linear in (a/b) ought not to be present and arise
from the crudeness of our analysis; the coefKi.cients of
these terms do not possess any physical signi6cance.

It is an interesting question, whether an exact
evaluation of the expectation value of the Hamiltonian
for the trial wave function (35) would give an upper
bound for E with an error of relative order (a/b)l or
smaller. It is our belief that this is so, and that the
terms of order (u/b) could be removed by a more
careful calculation with the same wave-function.

I wish to thank Professors Lee and Yang for stimu-
lating my interest in this problem, and for many
helpful discussions. *

APPENDIX. PROOF OF EQ. (32)

We prove that Eq. (32) holds for any configuration
of points (rr, ,r~) contained in the volume V. Here
R; is the distance from r; to its nearest neighbor among
the r;, taking into account the periodic boundary
conditions.

We consider the function

F(») = Z f'(r),

each pair (i'�)we have

r$—rj'= r—ri' r—r

Therefore

0 &
I P R -s(r-r, ) Is

—2(r r;) (r——r;) &RP. (77)

=Q R 4(r—r;)'+Q R 'R '(r r~)—(r »t)—,

XL(»—«,)'+(»—;)'—R 7= Z R;-'
i=1

and hence

From Eq. (79) it follows that

F(r) = Q $1—2R, '(r —r )'7&t«t —(ttt 1)=—1. (79)
j=l

f;(r) =maxI 1—2R '(r —r )' 07 (76) ~~F(»)dr & V. (80)
Let the point r be Axed, and let the m points r, for
which f;(»))0 be temporarily labeled (ri, ,r ). For

~Note added se proof. R. Jastrow —LPhys. Rev. 98, 1479
(1955)j, and R. B. Dingle (Phil. Mag. 40, 573 (1949)j, have
calculated the ground state energy using a trial wave function
of the form IIf(ri —r,), the product being taken over all pairs of
particles. This wave function is undoubtedly a closer approxima-
tion to the true ground state than our Eq. (35) which takes into
account the interaction only between pairs of nearest neighbors.
However Jastrow is not able with his wave function to obtain a
rigorous upper bound to the energy. His expression for the energy
is a series of cluster integrals which he is obliged to break oR'

without controlling the error. The purpose of the present paper
was to show that the "nearest-neighbor" type of wave function
permits a new approach to the description of many-body systems
with strong interactions, in which the familiar difBculties asso-
ciated with cluster-integral expansions do not arise.

On the other hand, Eq. (76) gives

F(r)dr = g f;(r)drJ -iJ
~Bs/R

L1—2R; 'x'74s x'dh
i=l ~0

(2s.V2) tv

IZ( 15 ) ~i

Equations (80) and (81) together imply Eq. (32).

(81)


