
HIGH ELECTRON DENSI TIES

for three diGerent initial mode separations. The results
are shown in Fig. 3, in which the arithmetic mean of the
actual shifts of the resonant frequency of the two modes
is plotted along the abscissa. Qualitatively, the agree-
ment with Eq. (12) is good, in that the additional shift
is proportional to the square of the density, as shown in
Fig. 4, and is approximately proportional to the pressure
squared. Quantitatively, the observed shifts are smaller
than those predicted by Zq. (12). The reason may be
that the coupling coefficients of the two modes were not
the same, and because it was necessary to introduce into
the cavity a tuning stub to vary the initial separation of
the modes, the fields of the two modes were not normal
to each other in the immediate neighborhood of the
stub. However, there can be no doubt that the higher
mode sects the lower one and causes the shift in its

resonant frequency to be greater under the inQuence of
the plasma than it would be if the second mode were not
present.

From the preceding discussion, it is clear that with the
TEp11 mode set up for measuring high electron densities,
the T'M»& mode, or indeed any mode close to it, is not
desirable. In practice, all TM and all asymmetric TE
modes can be suppressed by cutting azimuthal slots in
the wall of the cavity.

To summarize, even though it is not possible to pre-
vent the plasma from shielding the microwave field, by
arranging the field at right angles to the density
gradients, electron densities of the order of 10"cm ' can
be measured by the conventional microwave method, if
proper care is taken to eliminate the eGect of higher
modes on the measuring mode.
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The forces of hydrodynamic reaction in liquid helium II have been studied. Since the superQuid com-
ponent, being inviscid, may not be expected to contribute to such forces, a measurement of these may pro-
vide direct information regarding the concentration of the normal component in the liquid. Experiments
along these lines are suggested and it is hoped that they may throw light on the phenomena of "critical
velocity" and on the irrotational nature of the superQuid motion.

L INTRODUCTION

T is well known that according to the two-fluid
- ~ model, liquid helium II is looked upon as an inti-
mate mixture of two components, the normal and the
superQuid. Here, the former is regarded as behaving
like any other ordinary liquid whereas the latter is
taken to be a perfect inviscid one, at least for low enough
velocities. ' It is evident that in order to make a direct
determination of the concentration of the normal com-
ponent one should look for those hydrodynamic prop-
erties in which the viscous nature of the Quid is straight-
away eGective. In the present paper we have attempted
to suggest certain lines along which it may be interesting
to perform experiments in order to obtain such informa-
tion directly. In this connection, we propose to study
the forces of reaction which would come into play when
liquid helium II Qows past a solid body or, alternatively,
when the body is made to move through an otherwise
stationary bath of the liquid.

'L. Tisza, Nature 141, 913 (1938); F. London, Phys. Rev.
54, 947 (1938).' K. R. Atkins, Advances in I'hysics (Taylor and Francis, Ltd. ,
London, 1952), Vol. 1, p. 169.

In the general hydrodynamical theory of an inviscid
Quid one meets with the apparent paradox that the
Quid offers no resistance to the motion of a solid body
through it. However, this is far from being true in the
case of real Quids and in fact one does obtain a resistive
force, the so-called profile drag, when account is taken
of the skin-friction forces (due effectively to the finite
viscosity of real fluids) and the dissipation of energy
through the eddying wake. Clearly, the drag force
should be absent in the case of the superQuid whereas
one should obtain a finite contribution from the norma)
component. Hence, measurements on the drag force
mould be of interest, as discussed in detail in Sec. II.

Another hydrodynamic force in which the two com-
ponents of liquid helium II may be expected to behave
di6erently from each other is the well-known cross-
wind force experienced in a uniform stream by a solid
body with circulation around it. Here again the super-
Quid may, for velocities less than a certain critical one,
remain free from participating in the rotatory motion
and the observed force may give direct information
regarding the normal concentration in the liquid. The
expected results in this case are elaborated in Sec. III.
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II. DRAG FORCE

(a) Theoretical Observations

It is mell known that the drag force may be expressed
by the equation

D=CD'(-,'pV')A (pVf/q)", (1)

where the symbols have the following meanings: 2 is
the area of the body projected on a plane normal to the
direction of motion; / is a characteristic linear dimen-
sion of the body; p and p are the density and coe%cient
of viscosity, respectively, of the fiuid; U is the uniform
velocity of the body relative to the regions of the Quid
far removed from it; and finally, C&' is a dimensionless
constant depending upon the form of the body. The
quantity C&'(pV//g)" is defined as the drag coefficient
Cn, a function of the dimensionless combination p V//q-
the Reynolds number cV&. Evidently, the Reynolds
number for any Row may be considered as a criterion
for deciding the relative importance of the inertia
forces on the one hand and the viscous forces on the
other. In the limit of small lV~, the index e in Eq. (1)
tends to —1, whence we get

D~qV/ (since A ~ P), (2)

indicating that the drag force is independent of the
density, that is, of the inertia of the Quid and is deter-
mined directly by its viscosity. On the other hand,
when Eg is large, e approaches zero, and one obtains

(3)

from which it is obvious that in this case the density of
the Quid, and not its viscosity, is the dominating
factor. For intermediate values of Sg, the dependence
of D on various factors is also intermediate between
the two extremes expressed by Eqs. (2) and (3).

Next, it is generally held that the two components of
liquid helium II may be assumed to be capable of
maintaining independent velocity fields' and therefore
would require separate hydrodynamical equations to
represent their Qow. Also, these equations contain
certain extra terms representing the thermornechanical
Row under a temperature gradient besides the ordinary
Qow under the pressure gradient. Consequently, in
addition to the velocity and pressure fields, one has to
investigate simultaneously the temperature field as
well. This has been done by Woldringh4 for the case of
Qow around a spherical obstacle under the usual as-
sumption of Stokes, that is, that the terms of second
order in velocity (which represent the effect of inertia)
may be neglected in the solution of the equations. His
result for the drag is

D= 6~g„uVq,

which is similar to that of Stokes derived in the single-

' J. G. Daunt and R. S. Smith, Revs. Modern Phys. 26, 172
(&954).

4 H. H. Woldringh, Physica 18, 277 (1952).

Quid hydrodynamics, except for the dimensionless
factor q which is ordinarily not very much different from
unity. Here, V is the relative velocity of the body and
the normal component (at large distances, of course)
and g„ is its viscosity. As expected, the result is inde-
pendent of the density of the Quid. Evidently, the
conclusions arrived at by Woldringh are true only for
small values of the Reynolds number for the Qow of
the normal component, that is, of p„V//g„.

It is, however, important to remember that the
viscosity of the Quid under investigation is so low that
for ordinary experimental conditions, the magnitude of
the Reynolds number would probably be fairly high.
In that case, the inertia terms in the equations of the
two-Quid hydrodynamics would no longer be negligible
and the treatment given by Woldringh would not hold.
One should, however, expect that the normal com-
ponent of liquid helium would behave like any ordinary
liquid even at high values of S&, an expectation sup-
ported by the similarity of the results obtained by
Stokes and by Woldringh at small values of Ez. Conse-
quently, in the limit of large E&, the contribution of the
normal component to the drag force experienced by
the solid body would be of the form

D=Cg)(-', p V')A, (5)

where p„ is the density of the normal component; CD
is a constant independent of. the Reynolds number in
this domain and may be expected to be of the same
order of magnitude as in the case of experiments with
ordinary Quids. '

On the other hand, the superQuid component, en-
visaged as a perfectly inviscid Ruid, may not be ex-
pected, for velocities less than a certain critical value,
to contribute to the drag force. This is the we11-known
result that follows from the theory of inviscid Row and
becomes a paradox in the case of a real Quid. The net
drag therefore consists merely of the contribution from
the normal component as given by Eq. (5) and is di-
rectly proportional to its density. If measurements of
this force are made at various temperatures, its varia-
tion would give directly the relative fraction of the
normal component in liquid helium II,

Dr/D~ =p./p, (6)

for velocities less than the critical velocity of Qow U, .
For velocities greater than V„ the superQuid is no
longer inviscid and such a variation of D as given by
Eq. (6) may not be expected.

At the absolute zero of temperature, all of the liquid
helium becomes superRuid so that it offers to the solid
body no resistance at all; evidently, the d'Alembert
paradox would be valid in this case.

' In case there is circulation around the body and the latter is
of a finite span, there would be a contribution to the profile drag
due to the induced drag arising from the cross-wind force. The
dependence of D on p„, however, would remain unchanged because
the superRuid, being incapable of bearing vortices, may not be
expected to convey the induced drag as well.
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where

n= no[1 —exp( —Bx)jl,

B= ,' (CD/a) (p„/p'), —

and the terminal velocity is

gt'ga& (p' —p) '
no= -I

3EC ) p„

(b) Suggestions for Experimental Studies

Experiments which may be performed in order to
investigate the resistive force that comes into play
whenever there is a uniform relative motion between
a solid body and a Quid may be classified into two
groups, depending upon whether it is the solid body
that moves through the Quid, which is otherwise sta-
tionary, or whether it is the Quid that Qows past the
solid body which stays as an obstacle in the stream.
The important experiments in the first group are con-
cerned with the free fall of the bodies under the action
of gravity and involve measurements of the terminal
velocity acquired by the body when the gravitational
pull, the buoyancy of the Quid, and the hydrodynamic
resistance are in equilibrium. Those in the second group
are concerned mainly with the measurement of the
reaction as it is communicated from the obstacle to the
balance beams through wire suspensions.

(f) Freely Fallistg Bodies

At first sight it might appear worthwhile to try to
use fine particles, such as lycopodium powder, but the
possibility of experimenting with such minute bodies is
easily ruled out when we recall that our primary aim
is to determine the normal fraction of liquid helium II
and hence to investigate only that region wherein the
drag force depends directly upon the density, and not
upon the viscosity, of the Quid. The Reynolds number
EJs (= Vlp, /sl„) must, therefore, be of the order of 10'
and may be as high as 10'. Since the magnitude of
rt„/p„ is of the order of 10 ' to 10 ' cgs units, Vl should
preferably lie in the range 1 to 10 cgs units. Further, U
must not exceed the critical value (which may be of the
order of 1 crn/sec); otherwise the superfluidity exhibited
by a, part of the liquid may disappear and our previous
considerations may accordingly cease to hold. Conse-
quently, fine particles with diameters of the order of
10 ' cm would not work for our purpose; they would
throw us into the Stokes region or, more probably,
into the intermediate region.

We, therefore, resort to spheres of ordinary sizes
(diameter 0.5 cm). Let p', p, and p„be, respectively,
the effective density of the sphere, the total density of
the liquid and the density of the normal component.
If a be the radius of the sphere, the equation of motion
becomes

(-;sra'p')ndn/dx= ssra'(p' —p)g —Cr, —',p„n'sra', ('7)

with the solution

this terminal velocity is almost fully attained when Bx
becomes of the order of 5, that is, for ao (20/3)
X (a/CD) (p'/p. ).

Now CD 0.5 in the region where it is independent of
Ãg. Let 2a=0.5 cm. We then get

&o=36L(p' —p)/p $'*, &o (10/3) (p'/p ) ~

Since eo has to be of a magnitude low enough not to
exceed the critical value, the experiment can be success-
fully performed only if (p' —p) is made as small as
possible in comparison with p . This means, of course,
that p' should be as close as possible to p, which may be
achieved by choosing a material of smaH density or
better by making the sphere hollow. This will not
aAect the drag or the buoyancy forces but will effec-
tively reduce the density of the sphere.

At this stage it seems worthwhile to point out that
better velocities can be obtained by using a disk, of
radius a and thickness f, instead of a sphere. The ter-
minal velocity in this ca,se would be given by

2gt ((p p) l

. Cn k p„)
Here CD 1..1 and, with 1=1 mm, one obtains

no =13L(p'—p)/p. l'.
In the present case, ho~ever, another difhculty arises

which is the following: A disk as thin as the one taken
here and falling at such a high Reynolds number as
104 is very likely to execute oscillations and the motion
therefore may not be steady. This would aGect not only
the reckoning of the time of fall but also the value of CD.
However, the latter eGect is not important in the pres-
ent context as long as C~ does not vary appreciably
with Eg.

(Z) Mi crobalarsce Measssrerrsersts

Here, the solid body which is to serve as an obstacle
in the path of the uniform stream of liquid is secured
by suspensions in such a way that it is held fast in
position (see Prandtl'). The forces acting upon the body
are made to act on the balance beams and are thus
measured. Observations may be made by noting the
change in the apparent weight of the body when the
liquid is in motion in comparison with its weight when
the liquid is at rest.

The drag force in the case of a disk or a sphere of
radius a, under the condition of high Reynolds number,
is given by

a=CD m-a' —,'p V2,

which is equivalent to the weight of D/g grams. There-
fore, the effective mass change recorded would be

vasss= (1/g)Cn sra'-,'p V'. (10)

L. Prandtl, Essentials of Fluid Dymamics (Hafner Publishing
Company, New York, 1952), p. 254.
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In a typical case, with 2u=0.5 cm, and V=1 cm/sec,
the mass-equivalent is of the order of 10 micrograms,
which is well within the range of measurement. Its
variation with temperature would give the variation of
p„with T.

where the symbols have their usual meanings. A familiar
example of this case is provided by the Magnus eGect
in which the circulation is created by setting the cylinder
in uniform rotation about its axis, which is perpendicular
to the direction of V. If co is the angular velocity of
rotation and a the radius of the cylinder, the circulation
I' would be given by

(12)

Again, in the case of liquid helium II the contribution
to I. would come from the normal component alone
because the superQuid, being inviscid, may not be set
into rotational motion at all, or, at any rate, may show
considerable time lag in picking up the circulation from
the rotating cylinder. ' I would then be proportional to
p„, the density of the normal component and not to p,
the total density. Consequently,

Lz/Li p„/p. ——(13)

~ S. Y. Butler and I. M. Blatt, Phys. Rev. 100, 495 (1955).

III. CROSS-VEND FORCE

Next, we consider those cases of Row in which the
hydrodynamic reaction has a nonzero component in a
direction perpendicular to the relative velocity —the
cross-wind force. In this connection it is well known
(the Kutta-Joukowski theorem) that for an infinitely
long cylinder of any cross section having a circulation
r around it, the cross-wind force per unit length,
measured perpendicular to the undisturbed stream, is
given by

I.=pF V,

The experimental determination of the cross-wind
force may also be affected by the method of balance
measurements t see Sec. II, (ii)j. In this case, however,
a cylinder of length / and of radius a is more suitable.
Let it rotate about its axis with angular velocity co and
Iet the stream Row past it with an undisturbed velocity
V. The (lift) force is then given, when one uses Eqs.
(11') and (12), by

I'=/ 2~tea'p V.

In a typical case, with a=0.5 cm and 1=1 cm while
~a V 1 cm/sec, the mass equivalent of I.' is of the
order of j.00 micrograms. Again, the measurements are
to be made at various temperatures and at various
speeds of rotation and/or of the stream flow.

This set of experiments mould be important in that
they may be expected to throw light upon the irrota-
tional character of the superAow. It would be interesting
to find out whether the superQuid picks up circulation
from the rotor or not. It may be that it does not do so
at velocities (of rotation) less than a certain minimum

one, and that beyond this minimum it starts contribut-
ing to the cross™wind force thus losing its "quiet"
character. However, if it shows superQuidity below co„
may be that in this very domain (i.e., cv(rv, ) it may
lose superQuidity if given considerable time to acquire
the "equilibrium" state (see also reference 7). One may
thus obtain reliable information regarding the nature,
equilibrium or metastable, of the superQuid state.
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