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The conventional microwave method for measuring plasma electron densities is limited 'n its validity to
relatively low concentrations (~10° cm™3). Following a theoretical development by Persson, a method is
presented whereby much higher densities can be measured. The method is based on eliminating the effect of
ac space charge on the probing microwave field. This is accomplished by ensuring that the electric field be
everywhere perpendicular to electron-density gradients. A discussion is presented on the effect of neighboring

modes on the measuring mode in a microwave cavity.

HE conventional microwave method for measuring

plasma electron densities consists of introducing
the plasma into a resonant microwave cavity and
measuring the amount of detuning which the plasma
causes. The equations commonly used to relate the
amount of detuning to electron density and collision
frequency are!
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Here, n=ne*/mew? is a measure of electron density;
Y=vn/w (where v, is the collision frequency for mo-
mentum transfer) is a measure of the damping in the
plasma; Q denotes the unloaded Q value of the cavity;
f is its resonant frequency. The subscript zero refers to
quantities without the plasma and the absence of the
subscript indicates quantities with the plasma. Equa-
tions (1) and (2) are usually derived by considering that
the plasma is a medium with complex conductivity
o=né*/[m(vm+ jw)]. The imaginary part of o causes the
shift in the resonant frequency Af/ fo of the cavity, and
the real part of the conductivity causes the decrease in
the Q value of the cavity.

A question arises concerning the limits of validity of
Egs. (1) and (2). (These limits are discussed extensively
by Persson.?) In a more correct form, Eq. (1) can be
rewritten as
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Equation (3) is valid only when Af/fo is very small. It
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exhibits one of the approximations made in deriving
Eq. (1), namely, that E, the field in the cavity with the
plasma present, has been replaced by E,, the field
without the plasma. When the electron density is low
(n<1), the approximation is good, since the plasma does
not appreciably disturb the electric field. This is the
region in which the conventional microwave method is
very successful. As the density is increased, however, E
becomes appreciably different from Eq—for three rea-
sons: (a) ac space charge, commonly called “plasma
resonance,” makes itself felt as 5 approaches unity;
(b) as 9 is increased beyond unity, the plasma begins to
shield its interior from the field outside; (c) when both 7
and the pressure are high enough so that the Q value is
lowered, the overlapping of higher modes may also
cause E to be different from E, by adding to E, some of
the fields of the higher modes. The major effect, because
it usually enters first, is the ac space charge.

By proper methods of design, the space-charge effect
may not only be reduced but eliminated. This can be
shown theoretically as follows. By combining the first
Maxwell equation with the continuity equation and
assuming harmonic time variations as exp(jwf), an
equation for the space charge p is obtained :

V-E=p/e=—(VK)-E/K, 4)

the coefficient K being defined in terms of electron
density by K=140/jwe,. Equation (4) states that p
will be zero when the applied field E is normal to the
density gradient. If, therefore, by a proper experimental
arrangement, this condition is satisfied, the space-
charge effect will not limit the microwave method from
measuring high electron density.

A cylindrical cavity that oscillates in the 7'Eq;; mode,
with a cylindrical plasma column placed along the axis
of the cavity, satisfies the required conditions. The
electric field of the T'Eq; mode, in the absence of the
plasma, is given by

Eg:onl(Xoﬂ’/d) sin (WZ/L) 5 E.=E,= O, (5)

where x01=3.832 is the first root of J1(X)=0, a is the
radius of the cavity, and L is its length. Since the field
possesses only an azimuthal component, a plasma with
density gradients in the axial and radial directions, but
not in the azimuthal direction, will satisfy the condition
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p=0. The additional advantage of the T'Ey;; mode is
that its electric field goes to zero on the axis of the
cavity. Hence, even a dense plasma that is placed in a
small region where the field is weak will scarcely disturb
the field and will cause only a small shift in the resonant
frequency of the cavity. Accordingly, we can expect the
linear relationship between the frequency shift and the
plasma density, as given by Eq. (1), to be valid, even
for high densities.

In order to check this validity, the resonant frequency
of a TEy; cavity with a uniform plasma column whose
radius was one-tenth that of the cavity was computed
rigorously in the limit y=0. The result is plotted in
Fig. 1. It is seen that the frequency increases linearly
with density, for values of 5 that are at least as large as
10. At S band this corresponds to densities of the order
of 102 cm~3. It is only at densities higher than 10 cm=3
that the plasma begins to shield its interior, and the
frequency shift flattens off. It is interesting to note that,
for 7 as large as 20000 (=10 cm™?), the resonant
frequency is still different from the resonant frequency
of a cavity with a perfectly conducting metal post
instead of the plasma. There seems to be no way in
which to prevent the plasma from shielding the field at
microwave frequencies. However, as pointed out in the
preceding paper, this can be accomplished by lowering
the operating frequency w by several decades. The slope
of the straight line in Fig. 1 is equal to that given by
Eq. (1). This equation can, therefore, be used suc-
cessfully, at least for low pressures, for all values of »
less than 10 cm=3. The disadvantage of the T'Eo;; mode
is that it is insensitive to low electron densities. In order
to measure densities from 10 cm™3 down to the lowest
density measurable by microwave techniques, the 7' Eqyy
mode must be used in conjunction with a conventional
mode.

The behavior of the T'Ey;; mode was checked experi-
mentally; representative results are shown in Fig. 2.
The plasma that was used was the positive column of an
oxide-coated-cathode arc discharge in argon mixed with
mercury. Since the field in the positive column is not a
very strong function of the current through the tube, the
current through the tube is a good measure of the
average electron density in the plasma. The resultant
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F16. 1. Resonant frequency of a T'E;; mode cylindrical cavity as
a function of electron density in an axially located plasma column.
Plasma radius=0.1 cavity radius; n=ne?/mew?.
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Fic. 2. Shift in the resonant frequency of a 7'Ey; mode cyl-
indrical cavity as a function of current through an axially located
plasma column.

frequency shift is seen to be linear with increasing cur-
rent. The highest electron density achieved was about
310" per cm?®. One point on the electron-density scale
was measured by an independent method. This method
is based on the fact that when a plane electromagnetic
wave polarized in a direction perpendicular to the
plasma cylinder axis impinges on that cylinder, the
scattered wave exhibits a resonance when the real part
of the coefficient K (defined earlier) goes through minus
unity.® The two arrows indicate the discrepancy in the
value of 1 as measured by the two methods. The dis-
crepancy is approximately 15%,.

Since the T'Eg;; mode is degenerate in its resonant
frequency with the 7'My;; mode (in practice, the de-
generacy is removed by introducing into the cavity the
glass tube which will contain the plasma), it is necessary
to determine the effect on the measuring mode of other
modes that are present in the cavity. Following Slater,*
this effect can be exhibited through the input impedance
Z of the cavity as seen from some point on the line.

=22/ 0G5
+[ [omEas / (w f EEdv)]} (6)

where w, is the characteristic frequency of the ath
mode, E, is its characteristic field, E is the field in the
cavity when the plasma is present, and v, is related to
the coupling coefficient between the ath mode and the
line. In the absence of the plasma, when the cavity is
assumed to be lossless, the cavity presents a line spec-
trum with resonant frequencies at w=w,, a=1, 2, -,
provided that the v, are not zero. With the plasma
present, the resonant condition is different. Since we
allow the modes to interact, the electric field E is given

3T. R. Kaiser and R. L. Closs, Phil. Mag. 43, 1 (1952).
¢7J. C. Slater, Revs. Modern Phys. 18, 441 (1946).
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Fic. 3. Frequency separation of the two lowest modes in a rectan-
gular cavity as a function of plasma density.

by some linear combination of the characteristic fields
of all modes.

E=Y ¢.E.. (7
a=1

The characteristic fields are orthonormal, that is,

fEa-Ebdv=6ab. )

To simplify the discussion, we assume that there is no
cross coupling arising from the nonuniformity of the
plasma; that is, we assume that

f BB do= f o E 2. ©)

Equation (9) will hold if the plasma is uniform or, if the
mode configuration is such that the characteristic fields
that make up the measuring field E are normal to each
other. The second condition is actually well approxi-
mated in a rectangular cavity in which the three
fundamental modes have their fields at right angles. By
making the end walls of the cavity almost square, the
resonant frequencies of the two lowest modes are almost
equal, while the frequency of the third fundamental
mode used to produce the plasma can be made higher.
In this manner, the overlapping of modes is experi-
mentally confined to the two lowest modes. This de-
generates the infinite sum in Eq. (6) to the first two
terms and satisfies Eq. (9). With the additional defi-

nition:
-l—[ oEazdv/(waeofEa2dv)]

—J(————— +—a, (10)
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the resonance condition, given by the imaginary part
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of Z equal to zero, can be written as
YY)
[(w/@r'—w'/w)*+1/Q:%]
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(11)

When o, is much larger than w, or if v, is zero (so that
the higher mode is not coupled), the right-hand side of
Eq. (11) is small or zero, the resonant frequency is
w=wy’, and the simple formula given by Eq. (1) holds.
To obtain an idea of how much the resonant frequency
departs from «" when the modes do interact, let us
assume that the Q values and the coupling coefficients
are the same for both modes. Then, if we set w=w,’+Aw
and wy=w;+6w, the frequency shift Aw of the lowest
mode resulting from the presence of the higher mode is

(Aw/w) (1— Aw/dw) = (1/40%)/ (bw/w)
20+
(fw)

The extra shift is approximately proportional to density
squared, to pressure squared (if ¥%<1), and inversely
proportional to the original mode separation. If Eq. (1)
were used to calculate the electron density from the
measured shift, the relative error made would be

(Aw/w) _ /20490
/20149 TD (8ew/w)

and it may be appreciable at high pressures and electron
densities.

These ideas were checked experimentally in the rec-
tangular cavity (described earlier) by measuring the
separation in frequency of the two lowest modes as a
function of electron density for various pressures and
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F1c. 4. Frequency shift of the lowest mode caused by the higher
mode as a function of plasma density squared.
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for three different initial mode separations. The results
are shown in Fig. 3, in which the arithmetic mean of the
actual shifts of the resonant frequency of the two modes
is plotted along the abscissa. Qualitatively, the agree-
ment with Eq. (12) is good, in that the additional shift
is proportional to the square of the density, as shown in
Fig. 4, and is approximately proportional to the pressure
squared. Quantitatively, the observed shifts are smaller
than those predicted by Eq. (12). The reason may be
that the coupling coefficients of the two modes were not
the same, and because it was necessary to introduce into
the cavity a tuning stub to vary the initial separation of
the modes, the fields of the two modes were not normal
to each other in the immediate neighborhood of the
stub. However, there can be no doubt that the higher
mode affects the lower one and causes the shift in its
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resonant frequency to be greater under the influence of
the plasma than it would be if the second mode were not
present.

From the preceding discussion, it is clear that with the
T Eo;; mode set up for measuring high electron densities,
the T'M1; mode, or indeed any mode close to it, is not
desirable. In practice, all M and all asymmetric TE
modes can be suppressed by cutting azimuthal slots in
the wall of the cavity.

To summarize, even though it is not possible to pre-
vent the plasma from shielding the microwave field, by
arranging the field at right angles to the density
gradients, electron densities of the order of 10* cm— can
be measured by the conventional microwave method, if
proper care is taken to eliminate the effect of higher
modes on the measuring mode.
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The forces of hydrodynamic reaction in liquid helium IT have been studied. Since the superfluid com-
ponent, being inviscid, may not be expected to contribute to such forces, a measurement of these may pro-
vide direct information regarding the concentration of the normal component in the liquid. Experiments
along these lines are suggested and it is hoped that they may throw light on the phenomena of “critical
velocity” and on the irrotational nature of the superfluid motion.

I. INTRODUCTION

T is well known that according to the two-fluid
model,! liquid helium II is looked upon as an inti-
mate mixture of two components, the normal and the
superfluid. Here, the former is regarded as behaving
like any other ordinary liquid whereas the latter is
taken to be a perfect inviscid one, at least for low enough
velocities.? It is evident that in order to make a direct
determination of the concentration of the normal com-
ponent one should look for those hydrodynamic prop-
erties in which the viscous nature of the fluid is straight-
away effective. In the present paper we have attempted
to suggest certain lines along which it may be interesting
to perform experiments in order to obtain such informa-
tion directly. In this connection, we propose to study
the forces of reaction which would come into play when
liquid helium IT flows past a solid body or, alternatively,
when the body is made to move through an otherwise
stationary bath of the liquid.

1L. Tisza, Nature 141, 913 (1938); F. London, Phys. Rev.
54, 947 (1938).

2 K. R. Atkins, Advances in Physics (Taylor and Francis, Ltd.,
London, 1952), Vol. 1, p. 169.

In the general hydrodynamical theory of an inviscid
fluid one meets with the apparent paradox that the
fluid offers no resistance to the motion of a solid body
through it. However, this is far from being true in the
case of real fluids and in fact one does obtain a resistive
force, the so-called profile drag, when account is taken
of the skin-friction forces (due effectively to the finite
viscosity of real fluids) and the dissipation of energy
through the eddying wake. Clearly, the drag force
should be absent in the case of the superfluid whereas
one should obtain a finite contribution from the normal
component. Hence, measurements on the drag force
would be of interest, as discussed in detail in Sec. II.

Another hydrodynamic force in which the two com-
ponents of liquid helium IT may be expected to behave
differently from each other is the well-known cross-
wind force experienced in a uniform stream by a solid
body with circulation around it. Here again the super-
fluid may, for velocities less than a certain critical one,
remain free from participating in the rotatory motion
and the observed force may give direct information
regarding the normal concentration in the liquid. The
expected results in this case are elaborated in Sec. III.



