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The limitations of the conventional microwave cavity method of
measuring the electron density are derived. The conventional
method permits the electron density to be measured over a range
of approximately two decades. The upper limit of the measurement
of the electron density, roughly 5&(10' cm ', is caused by plasma
resonance due to the macroscopic polarization of the plasma and
by the overlapping from higher order modes. The lower limit of the
measurement of the electron density, roughly 5)&10' cm ', is
determined by how accurately the resonant frequency can be
measured. The macroscopic electric polarization can be eliminated
and the overlapping modes suppressed by designing the cavity so
that the probing microwave 6eld and the plasma have rotational

symmetry around the same axis. The electric polarization limit is

then replaced by a magnetic polarization limit and the available
range is increased approximately one additional decade at 3000
Mc/sec. By decreasing the frequency from 3000 Mc/sec to 1
Mc/sec and by measuring the Q or the losses of the plasma in a
properly designed solenoid instead of a cavity the magnetic
polarization limit can be raised even more. At 1 Mc/sec and at a
pressure of 1 mm Hg the electron density corresponding to the
magnetic polarization limit is 10"to 10"cm '. The lower limit for
the measurable electron density or the conductivity is determined
by the sensitivity of the detecting arrangement, and the noise
originating in the electron-ion plasma and is probably 104 to 10~

times less than the maximum measurable electron density.

INTRODUCTION

HE microwave method of measuring various as-
pects of the behavior of the electron-ion plasma

has become a rather important tool during the last ten
years, In spite of its popularity no integrated effort has
been made to find its limitations. It now seems rather
necessary to determine the present limitations and
possible extensions, especially since some of the con-
clusions derived from measurements with the method
are disputed.

The presence of an electron-ion plasma inside a
microwave cavity causes its resonance frequency to
shift. In a first order approximation the frequency shift
is directly proportional to the average electron density.
The microwave cavity method has primarily been used
to measure the electron density during the afterglow
period of the microwave gas discharge. The frequency
shift as function of time has in those cases been inter-
preted as directly proportional to the average electron
density without regard to the limitations that neces-
sarily follow with an approximation. An interpretation
of this kind cannot be accepted until it has been shown,
either experimentally or theoretically, that the approxi-
mation is applicable within the range of the measured
electron density.

It is the purpose of this paper to show that the fre-
quency shift is not always directly proportional to the
average electron density within the range of electron
density as measured by the conventional microwave
cavity method. The limits of the simple theory, which

applies when there is a linear relationship between the
average electron density and the frequency shift, will be
derived and it mill be shown that some of the limits can
be removed by a proper design of the cavity and choice
of mode. The resonant frequency of a microwave cavity
containing an electron-ion plasma depends on the
macroscopic polarization of the plasma, the losses of the
plasma, and the presence of excited higher order modes.

1

To And the limitations of the simple theory, in which
these phenomena can be neglected, it is necessary to
derive a theory for resonance where these phenomena
are included to a erst order approximation.

GENERAL THEORY

The power loss in the walls of the microwave cavity
can in general be neglected when compared with the
power loss in the plasma. The plasma is then for all
practical purposes contained in a cavity with perfectly
reQecting walls. The necessary resonance criterion for
the cavity containing the plasma can be obtained from
the complex form of Poynting's theorem. The equation
describing the energy balance of the cavity as a whole is
obtained by integrating Poynting's equation over the
volume of the cavity. The energy balance equation for
the cavity therefore becomes

(EX8*)s———joi(ps(H H*)v
—o(E E*) )—(E J*), (&)

where E is the electric field (Ee is the conjugate complex
field), H is the magnetic field, and J is the current
density in the plasma. The inside surface and the volume
of the cavity are denoted S and V respectively. The
average signs, used in the expression above, are defined

(E&&H*),= (E&&H*) dS .

"8

(H H*) =— H H*dV.
J~

The resonance of the cavity is observed through a
coaxial line or wave guide which is connected to the
cavity through a small loop, probe or iris. The area of
this opening is S' and the inside surface of the cavity is
totally rejecting except for this small area S'. The
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vXEa= j~zzoHap

VXH, = j&veo&,

—0
(3)

v H.=O,

surface integral &EXH~&s is therefore equal to the
integral (EXH*)s .

The expression (1) is rather inconvenient for a
demonstration of the inhuence of the electron-ion plasma
on the resonance of the cavity. For this purpose it is
more suitable to introduce the applied fields E, and H„
the scalar potential g„, and the vector potential A„
de6ned as follows:

It can be shown that all individual terms in Eq. (8) are
real. The 6rst two terms inside the curly brackets on the
right-hand side constitutes the Lagrangian for the
applied field while the three remaining terms inside the
same brackets is the Lagrangian for the plasma. The
cavity containing the plasma therefore acts like two
coupled oscillators, one represented by the applied
fields E, and H„ the other represented by the electron
ion plasma. Resonance is obtained when the integral
&EXH*)s. is real. The general criterion for resonance
can now be written as follows

1.
2(W —W )+».+—(j* A,&

—(p*4.& =o, (1o)
C

The total fields E and H are then

E=E.—v4.—(j~/") A.,
H=H. +eovXA„.

The ions in the plasma are for all practical purposes
stationary when compared with the electrons, and since
the magnetic field 8 can be neglected in the momentum
balance equation for the electrons, the relation between
the current density J and the electric field E becomes

j= e'n/Lzn(v„, +jco)j,
where n is the electron density, J the momentum
transfer collision frequency of the electrons, and or the
radian frequency of the applied held. The area 5' or the
hole in the cavity can be made arbitrarily small as only
the resonance of the cavity is observed. Provided the Q
of the cavity containing the plasma is su%.ciently high,
the presence of the hole can be entirely neglected and
the boundary conditions are then

E,XdS=O, H, dS=G, A~=0, &~=0. (7)

One more condition must be imposed on the 6elds. The
scalar potential g~ and the vector potential A~ must
both be identically equal to zero when the space charge

p and the current density J are zero.
With the restrictions and definitions mentioned above

it is now possible to transform the energy balance
Eq. (1) of the cavity into the following more descriptive
form

(EXH*&s =—ju zzo&H 'H )v —eo(E E *)v+2T

where 8"II is the peak stored energy in the applied
magnetic Geld and 8'& is the peak stored energy in the
applied electric field. The electromagnetic oscillator
represented by E, and B in reality consist of an infinite
number of oscillators represented by the various electro™
magnetic modes that can be excited by either the
coupling mechanism (loop or iris) or by the nonuniform
electron ion plasma. Before the resonance criterion can
be evaluated in terms of the frequency of the applied
field, it is necessary to find the relative distribution of
the stored energies of the various modes. This can easily
be done if the orthonormal set of eigenvectors (E, and
H;) devised by Slater' are used. If Ws, and Wzz, are
respectively the peak magnetic energy and the peak
electric energy of the ith mode and if the cross coupling
between modes as caused by the nonuniform plasma is
neglected, it can be shown that

z o( */c)'(E;XH*&e
(11)

((o,2 —oP)'+ ((o(o;/Q, )' & co )
where ~; is the radian resonant frequency and Q; is the
Q of the ith mode. Ordinarily the lowest mode (i= 1) is
used for measuring the average electron density with the
microwave method. The source term &E,XH*&s. is
constant, that is, independent of the mode number as
long as the wavelength is very large compared with the
dimensions of the coupling mechanism. The expression
8"&—8'E can then easily be expressed in terms of the
peak stored energy Wzi and Qi of the first mode, the
resonant frequencies f,, and the frequency f of the
probing signal. In a first-order approximation where f is
very close to fi, one finds that

+ &j*.A.&v (I '0,&
——2 -2'.,—(8)

2

where T„ the total peak kinetic energy of the ordered
motion of the electrons, is

where

W —W pfq'=—
i
—

I
—1+

Wzzz & f ) Qz2
(12)

g2

2', = — &nE E~&v.
2nz (~e2+ z „')

I J. c. slater, Microzoame Electron~as {D.van Nostrand com-
pany, Inc., New York, 19%),pp. 59-63.



LI M I TATIONS OF M I CROWA VE CA VI TY METHOD

The 6rst-order approximation of the resonance criterion
can now be written as follows:

in the first case can be written as follows:

(fi t &e (Vmp' &v

f

—
I
—1+ 1+&I —

I( f) Wsi E co) Wiri

1(j*A.)v {t'~.) =0. (14)
c 2Tg

With the definitions and the restrictions mentioned
above, it also can be shown that

(fi)'
&yi

where

~v'
X 1+K rl+( —

)
7' P—n '=0, (17)

1+y' & lt J

t' 3(r )'3(r)
d'rd'~0

~ v„"v„~r—re(

i~I Hj*.A.)v —( *~.)v I+(j* E)v=(j* E.)v. (1~)
c2

Introducing this result into Eq. (10), one obtains the
same resonance criterion as can be obtained from
Slater's formula for the impedance of a microwave
cavity. ' However the expression (14) above illustrates in
a much more convenient way the inhuence of the
electron-ion plasma on the frequency shift of the cavity.

LIMITS OF THE SIMPLE THEORY

The resonance criterion (14) is in general very difficult
to evaluate in terms of the average electron density. In
order to 6nd the relative importance of the various
terms in the resonance criterion, it is necessary to make
some simplifying assumptions. We assume first that the
cavity has some symmetry around the center. Its shape
may be cubical, cylindrical, or spherical. The mathe-
matics becomes particularly simple if we assume that
the plasma is uniform in the density and is confined
within a spheroidal surface determined by the following
equation:

a.oc +a„y'+a,s'= R', (16)

where a„a„, and a, are positive real numbers inde-
pendent of the coordinates and where R is a sort of
average radius of the spheroid. This spheroid of plasma
is placed in the center of the cavity with one of the
principal axes coinciding with one of the principal axes
of the cavity. The average radius E of the spheroid is
made suKciently smaller than the wavelength X of the
applied field so that in a first order approximation the
terms (co/c)'q v and (co/c)'A„of Eqs. (4) can be neg-
lected.

One can now distinguish between two fundamentally
di6erent cases. The 6rst case is obtained when the
electric 6eld E~, of the mode used for measuring the
electron density, is essentially uniform within the
plasma and parallel with one of the principal axes of the
spheroid. The second case is obtained when the mag-
netic 6eld Hi is essentially uniform within the plasma
and parallel to one of the principal axes of the spheroid.
The erst order approximation of the resonance criterion

v J. C. Slater, Microwave Etectronics {D.Van Nostrand Coni-
pany, Inc. , Neve York, 1950), Vol. 78.

fj=
ey

co mt{)2

The density e„is the electron density for which plasma
resonance would occur at the radian frequency co of the
applied field in the plane parallel case. The factor 0, is
essentially the ratio between the volume of the plasma
t/"„and the volume of the cavity modified by the
nonuniform electric field. The factor Pi is the polariza-
tion factor for the principal axis i, which is parallel with
the field Ei (P,=-,' for the sphere). The factor 5 depends
on the shape of the plasma and the current distribution.
In the first case, when E is essentially uniform within
the plasma and the plasma is confined within a spherical
surface, 6 can very easily be calculated and is Sn/5.

The frequency shift resulting from the presence of the
plasma is proportional to the average electron density,
represented by the normalized electron density p, only
if the plasma terms within the bracket of the expression
(17) can be neglected. The first plasma term inside the
bracket is caused by the presence of excited higher
modes. The closer the excited modes are in terms of the
frequency the more important is this term. The factor EC

has been derived assuming that the higher modes are
excited only by the coupling mechanism (iris or loop). In
practice, however, higher modes may be excited by the
nonuniform or asymmetric plasma. The E evaluated
from (13) must therefore be considered as a minimum
value. It is difficult to find the exact theoretical value
for K arid it should therefore be considered as an ex-
perimental parameter characteristic for each experi-
mental setup. To the author's knowledge this correction
term, which is caused by the overlapping from higher
modes, has not been considered in any previous publica-
tion. Judging from the designs of the commonly used
cavities it seems that a reasonable range for K in previ-
ously reported works should be from 1 to 100 with a
probable value higher than 10. With an allowed error of
five %, the maximum measurable electron density
corresponding to the overlapping mode limit (O.M.L.)
is determined by the following expression:

1 (1+y'~
20K E y' )
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The next term that causes a deviation from the linear
relation between the average electron density and the
frequency shift is due to the macroscopic magnetic
polarization of the plasma while the third term is caused
by the electric polarization of the plasma. These two
terms are roughly equal when the electron distribution
is described by the fundamental diffusion mode. The
term caused by the magnetic polarization can be neg-
lected when the eGective radius of the plasma is small
compared with the wavelength X. The maximum meas-
urable electron density corresponding to these two
terms is obtained by neglecting the magnetic polariza-
tion term and counting only the electric polarization
term. This limit, which properly is called the electric
polarization limit (E.P.L.) is therefore determined by
the following expression:

q( 1/20P;. (20)

This formula has the same form as in the previous case.
The term due to the magnetic polarization has changed
somewhat but is of the same order of magnitude as in
the previous case. The electric polarization term has
disappeared and one must here consider the inhuence of
the magnetic polarization. The corresponding limit
which should be called the magnetic polarization limit
(M.P.L.) is given by the following expression:

The macroscopic electric polarization is causing the
ordinary plasma resonance. %hen E&() and thus the
magnetic polarization term can be neglected, resonance
for the uniform plasma, confined within a spheroidal
surface, is obtained when 2T,=(p*y„)i.

The plasma resonance mechanism or the macroscopic
electric polarization can be avoided under certain cir-
cumstances. When the divergence of the plasma current
is zero the oscillating space charge is also zero and the
term (p*q „)i is then eliminated. This corresponds to the
case where H& is essentially uniform inside the plasma.
In order to avoid the oscillating space charge completely,
it is necessary that H, and the plasma have rotational
symmetry around the same axis. If Hi and the plasma
have rotational symmetry around the y axis (a,=a„),
then the first-order approximation of the resonance
criterion can be written in the following way:

is important to notice that the magnetic polarization
limit is independent of y or the pressure.

Two more limitations of the microwave cavity method
should be mentioned. As the frequency of a resonance
phenomenon is measured, it is necessary that the Q is
su%.ciently high so that the resonance can be recognized.
The corresponding limit, properly called the "low-Q
limit" (L.Q.L.) is determined more or less arbitrarily by
setting the lowest admissible value of Q equal to 10.The
low-Q limit then becomes

1 (1+y )
10 E np I (23)

Secondly, there is a lower limit for p, determined by
how accurately a frequency shift can be measured. With
the methods used until now the error in the frequency
measurement is approximately 1 part in 10' parts.
Allowing for a relative error of five %%uo, this lower limit
for q is determined by

4(1+y')
X10 (24)

t4

DISCUSSION AND SUGGESTIONS

The five limits derived in the foregoing are functions
of the normalized electron density p, the normalized
momentum transfer frequency p, the polarization factor
P, and the volume ratio a. The limits are illustrated in
Fig. 1 where they are plotted as function of p and p with
n=1, P= —',, 8=8ir/21, and )i/8=6. The shaded area
gives the allowed range of g and y values for the con-
ventional microwave cavity method. The most com-
monly used frequency is 3000 Mc/sec. The electron
density e„corresponding to this frequency is 1.12X10
cm '. The momentum transfer frequency v is pro-
portional to the pressure p and the proportionality
constantisof theorderof 10'to10'sec ' (mmHg) 'for
ordinary gases. For y less than 10 ', the upper limit of q
is caused by the electric polarization limit (E.P.L.) and
is approximately 5XTO ' corresponding to an electron
density of 6X10' cm '. The lower limit of g is de-
termined by the relative error in the frequency measure-
ment (F.M.L.) and corresponds to an electron density
of 5XTO' cm '. For p values around unity, the upper

1 phd'1
20 4E ) s.b

(22)

In this case 8 is essentially constant within the
plasma and the current density can then in the first
approximation be written as QXr, where Q is a vector
independent of the coordinates. As in previous cases 8

can easily be evaluated when the uniform plasma is
confined within a spherical surface and is then 8s/21. It

-2

FIG. 1. The limit of
the microwave method
a= 1, P=-', .
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where

n (1+jy) I
2 E1+p') ~,

(2c ) (map)

(25)

where c is the velocity of light, E is the radius of the
plasma, I.is the inductance of the solenoid, and n is the
ratio between the cross-sectional area of the plasma and
the cross-sectional area of the solenoid. The foregoing

' M. A. Biondi and S. C. Brown, Phys. Rev. 76, 1697 (1949).
4 J. M. Richardson and R. B.Holt, Phys. Rev. 76, 1697 (1949).' i. J. Varnerin, Phys. Rev. S4, 563 (1951).
6 K. B. Persson and S. C. Brown, Phys. Rev. 100, 729 (1955).

limit of g is the overlapping mode limit (O.M.L.) pro-
vided E is larger than unity. It can be seen from the
resonance criterion (17) that the frequency shift in this
range includes a term proportional to the square of the
electron density. This term could possibly explain some
of the unexplained electron-ion recombination coeS.-
cients that have been observed with the microwave
cavity method. ' ' Unfortunately the constant E, that
must be measured on the cavity containing the electron-
ion plasma, is not available in the papers that have been
published so far.

The conventional microwave method measures the
electron density at the most over a range of somewhat
less than three decades. If the electric polarization is
removed through a proper choice of mode, the electric
polarization limit (E.P.L.) is replaced by the magnetic
polarization limit (M.P.L.) The available range is then
extended approximately one more decade for y & 1.The
available range is moved towards higher electron den-
sities if n is decreased. This is, however, not too desirable
as some of the more interesting properties of the plasma
can be found only by using a large volume of the plasma.

Some of the difficulties with the limits can, however,
be resolved by abandoning the measurements of the
resonant frequency and replacing it with a measurement
of the Q or the losses of the plasma. This in general
means that we no longer measure the electron density
directly but rather the conductivity of the plasma.
Knowledge of the collision frequency v then gives us
the electron density. The sacri6ce is not too large, how-
ever, as direct measurements of the electron density can
be done only for low pressures, when y &1.The electric
polarization of the plasma is avoided if the applied field
and the plasma have rotational symmetry around the
same axis. This can be obtained in a cylindrical cavity or
in a solenoid. It is simplest to consider a long solenoid
and a long cylindrical plasma. The end effects can then
be neglected and the following 6rst-order approximation
of the change in the impedance Z of the solenoid is
obtained owing to the presence of the plasma:

approximation is good only as long as the following
inequalities are satisfied:

n &noy for y+ 1)

n&no for y&1,

~/~Z&1.

(26)

(27)

(28)

The last inequality insures that the undisturbed mag-
netic field within the volume corresponding to the
plasma is uniform. The first inequality applies when the
plasma conductivity is ohmic while the second inequality
applies when the plasma currents are primarily induc-
tive. It is obvious from the above formulas that the
maximum measurable electron density is determined by
the inequalities (26) and (27). H the plasma has a
radius of one centimeter, the corresponding electron
density no is 10' cm 3. The change in the impedance 5Z
is inductive and directly proportional to the electron
density provided y&1. The corresponding maximum
measurable electron density is equal to no. When p& 1
the change in the impedance is resistive and the corre-
sponding maximum measurable electron density is ng .
Since y= v /&o, it is obvious that the maximum meas-
urable electron density will increase if the pressure is
increased and if the frequency of the applied 6eld is
decreased. The minimum measurable electron density
depends on how small a change, AZ, that can be meas-
ured. If a bridge arrangement is used, it is not un-
reasonable to assume that the impedance can be
measured to 1 part in 10' parts. The corresponding
minimum measurable electron density is then deter-
mined by the expression

e 1~0 'no&(2(1+y')'/e (29)

The discussion above shows that the so-called micro-
wave cavity method has rather limited use. To be able
to investigate the high-density plasmas it is necessary to
use other methods. One way of avoiding the limitations
of the conventional microwave method is to measure the
losses instead of the frequency shift. In order to avoid
the effect of macroscopic electric polarization it is
necessary to use solenoidal applied electric 6elds and
plasmas with rotational symmetry. With the bridge
method, suggested above, including at least one solenoid,
the available range in the electron density is, at 1
Mc/sec and a pressure of 1 mm Hg, approximately
10"cm ' to 10"cm '.
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