³ For details, and earlier references, see for instance L. Michel, thesis, Memorial des Poudres, 35, annexe p. 77 (1953).

⁴ Calculations related to possible observation of the polarization of the electron in μ -meson decay and nuclear β radioactivity, and the direct measurement of the polarization of the μ meson are in progress. ⁵ Electromagnetic radiative corrections to this decay are not

very small. In a recent paper on this subject, Behrends, Finkel-stein, and Sirlin [Phys. Rev. 101, 866 (1956)] have shown that Eq. (1) is still valid but that the parameters are slowly varying functions of the energy.

⁶ For the sake of completeness we give here the explicit dependence of the parameters on the g_i and g_i' . For ease of calculation, we have taken the order $\epsilon_{\mu\nu\nu}$ in the interaction Hamiltonian. When the two emitted neutrinos are distinguishable, we define $a_i^2 = g_i g_i + g_i' g_i', a_{ij} = g_i g_j' + g_i' g_j, c_i^2 = a_i^2 + a_i^2, c_i^2 = a_i^2 + a_i^2$ When the two emitted neutrinos are distinguishable, we define

their work.

Proton Polarization in (d, p) Reactions

J. SAWICKI

Institute of Theoretical Physics, University of Warsaw, Warsaw, Poland (Received January 15, 1957)

HE proton polarization in (d,p) reactions was calculated by Cheston¹ under the assumption that the final-state proton scatters in a spin-orbit potential. The transition operator T for the (d, p)reaction was taken to be the neutron-proton central interaction potential $V_{np}(|\mathbf{r}_n - \mathbf{r}_p|)$ in the zero-range approximation.

Recently Hillman² compared his data for the $C^{12}(d,p)C^{13}$ reaction with Cheston's numerical results for that reaction. However, it appears that Cheston's paper is in error.

Cheston neglects the proton spin-flip terms. To establish his Eq. (5) he says that with the quantization axis chosen along the vector $\mathbf{K} \times \mathbf{k}$ a proton "produced in a definite state of spin orientation (μ_p) in the original stripping act will maintain this orientation after scattering in the spin-orbit potential." However, if initially the deuteron spin projection $\mu_d = 0$, there is no definite orientation of the proton spin along the axis of quantization.

First, his Eq. (5) should read

$$\langle \psi(J,L,M_{J})\psi(l,m)X(\frac{1}{2},\mu_{n}) | T | \phi(L_{d},M_{d}) \\ \times X(\frac{1}{2},\mu_{n}')X(\frac{1}{2},\mu_{p}') \rangle \\ = \sum_{\mu_{p}'} C_{L_{j,\frac{3}{2}}}(J,M_{J}; M_{J} - \mu_{p}'',\mu_{p}'') \\ \times \langle \psi(J,L,M_{J} - \mu_{p}'')\chi(\frac{1}{2},\mu_{p}'')\psi(l,m) \\ \times | T | \phi(L_{d},M_{d})\chi(\frac{1}{2},\mu_{p}') \rangle \times \delta(\mu_{n},\mu_{n}').$$
(1)

Consequently, Cheston's Eq. (6) should read

$$\mathfrak{M}(\mu_{d} \rightarrow \mu_{f}, \mu_{p}) = \sum_{Ld, L, J, Md, ML} \sum_{\mu_{p}''} a(L, M_{L}) b^{*}(L_{d}, M_{d}) \\ \times C_{L, \frac{1}{2}}(J, M_{L} + \mu_{p}; M_{L}, \mu_{p}) \\ \times C_{L, \frac{1}{2}}(J, M_{L} + \mu_{p}; M_{L} + \mu_{p} - \mu_{p}'', \mu_{p}'') \\ \times C_{l, \frac{1}{2}}(j_{f}, \mu_{f}; \mu_{f} - \mu_{d} + \mu_{p}'', \mu_{d} - \mu_{p}'') \\ \times C_{\frac{1}{2}, \frac{1}{2}}(1, \mu_{d}; \mu_{d} - \mu_{p}'', \mu_{p}'') \langle \Psi(J, L, M_{L} + \mu_{p} - \mu_{p}'') \\ \times \Psi(l, \mu_{f} - \mu_{d} + \mu_{p}'') | T | \phi(L_{d}, M_{d}) \rangle.$$
(2)

With Cheston's transition operator T, the selection rule $M_d = M_L + \mu_p + \mu_f - \mu_d$, being independent of μ_p'' , cannot reduce the sum over μ_p'' to only the term $\mu_p''=\mu_p$ provided $\mu_d=0$. Thus whatever the a's and b's, i.e., independently of the system of reference, both μ_p'' contribute provided l>0. The only cases in which only $\mu_p''=\mu_p$ contributes are (1) no spin-orbit coupling in the final-state proton potential, and (2) l=0. Unfortunately, Cheston's numerical example involves $l=1.^3$

Further, Cheston writes for the distortion parameters $\beta(L,J) = \frac{1}{2}\eta(L,J)$. If, however, $\eta(L,J)$ are the usual average reflection coefficients, it should read $\beta(L,J)$ $=\frac{1}{2}\left[1-\eta(L,J)\right].$

Finally, it should be noted, in connection with Cheston's paper, that in the first Letter by the author on the (n,p) polarization problem,⁴ Eqs. (4) and (6) held only for $l_f = 0$.

The author wishes to acknowledge a helpful correspondence on the problem with Dr. A. M. L. Messiah and Dr. G. R. Satchler.

¹ W. B. Cheston, Phys. Rev. 96, 1590 (1954).

² P. Hillman, Phys. Rev. 104, 176 (1956).

³ Nevertheless it is probable that the spin-flip contribution is rather small

⁴ J. Sawicki, Nuovo cimento 2, 1322 (1955).

Singular State in Relativistic Cosmology

AMALKUMAR RAYCHAUDHURI

Theoretical Physics Department, Indian Association for the Cultivation of Science, Jadavpur, Calcutta, India (Received February 5, 1957)

S is well known, the isotropic cosmological solutions A of general relativity start from a singular state in the finite past. In a recent paper Komar¹ has investigated the question as to whether this singularity persists under more general circumstances and has found that such a singularity does occur unless one