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momentum operators by applying projection operators
and we form an orthogonal set. For the uniform
solution,

St=i+ (LkAtg kt+CC).
k»0

Noting that the method has a variational aspect, L»
need not be taken from the small-oscillation analysis
but may be freely chosen to describe average large-
amplitude effects. We obtain improved ground-state
energy and single- and multiple-excitation spectra.

For the solid-like solution, f(x) is periodic. We expand
f=pttk pk (x), where fak, altsf=b, pbk, l. Here
are a complete set of Bloch tight-binding orbitals for
which k takes on values in the first zone; cr labels the
zones. For k= 0 the pk are periodic; for k/0 they have
a modulating factor. Thus if the linear shift is performed
only for the ao, the ground-state expectation values of
physical quantities are periodic. If shifts for kAO are
required, the expectation value of the correlation
operator ceases to be periodic.

The connection between the two solutions is seen
by referring to the quantum problem of a particle in a
well with several minima (or stationary points).
Because of the tunnel effect, good approximate wave
functions are superpositions of functions appropriate
to the classical separate regions. By analogy, we take

e=(P(Ã)O'(P)
'

G(E) expS, (E)
~ expSs(E)C ( gk )dR.

The coeKcients of the linear and quadratic forms
depend on R; the integral over R includes a discrete sum;
(P(E) and (P(P) are projection operators of total number
of particles Ã with total momentum P. Detailed calcu-
lations of properties. of liquid and solid helium based on
the present approach are in progress.

' E. P. Gross, Phys. Rev. 100, 1571 (1955).' N. Bogolyubov, J.Phys. (U.S.S.R.) ll, 23 (1947).
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INCR the discovery of the isotope eGect, it has been
known that superconductivity arises from the

interaction between electrons and lattice vibrations,
but it has proved dificult to construct an adequate
theory based on this concept. As has been shown by
Frohlich, ' and in a more complete analysis by Bardeen
and Pines' in which Coulomb eGects were included,
interactions between electrons and the phonon held
lead to an interaction between electrons which may be

expressed in the form

itcof M, f'

k,k, s, s' (E„—Eki)' —(~)'
XC k'—s, s'&k', s'& k+s, s&k, s++Couls (1)

where ~M„~' is the matrix element for the electron-
phonon interaction for the phonon wave vector x,
calculated for the zero-point amplitude of the vibrations,
the c's are creation and destruction operators for the
electrons in the Bloch states specified by the wave
vector k and spin s, and Ho,„l represents the screened
Coulomb interaction.

Early attempts' to construct a theory were based
essentially on the self-energy of the electrons, although
it was recognized that a true interaction between
electrons probably played an essential role. These
theories gave the isotope effect, but contained various
difhculties, one of which was that the calculated energy
difference between what was thought to represent
normal and superconducting states was far too large.
It is now believed that the self-energy occurs in the
normal state, and results in a slight shift of the energies
of the Bloch states and a renorrnalization of the
matrix elements.

The present theory is based on the fact that the
phonon interaction is negative for ~Ek—Ek

~
(hie.

We believe that the criterion for superconductivity is
essentially that this negative interaction dominate
over the matrix element of the Coulomb interaction,
which for free electrons in a volume Q is 2n. /eQ'.tcIn
the Bohm-Pines' theory, the minimum value of z is
a„somewhat less than the radius of the Fermi surface.
This criterion may be expressed in the form

—V= (—( ~
Ms

~
'/Aco)+ (4sr /Qe)t)cA„(0. (2)

Although based on a diferent principle, this criterion
is almost identical with the one given by Frohlich. "

If one has a Hamiltonian matrix with predominantly
negative oG-diagonal matrix elements, the ground
state, O'= Pa;|t;, is a linear combination of the original
basic states with coeKcients predominantly of one sign.
A particularly simple example is one for which the
original states are degenerate and each state is connected
to n other states by the same matrix element —V.
The ground state, a sum of the original set with equal
coefGcients, is lowered in energy by —nV. One of the
authors made use of this principle to construct a wave
function for a single pair of electrons excited above the
Fermi surface and found that for a negative interaction
a bound state is formed no matter how weak the
interaction. '

Because of the Fermi-Dirae statistics, diQiculties
are encountered if one tries to apply this principle
directly to (1). Matrix elements of Hr between states
speci6ed by occupation numbers (Slater determinants)
in general may be of either sign. We want to pick out
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a subset of these between which matrix elements are
always of the same sign. This may be done by occupying
the individual particle states in pairs, such that if
one of the pair is occupied, the other is also. The pairs
should be chosen so that transitions between them are
possible, i.e., they all have the same total momentum.
To form the ground state, the best choice is kg, —k4„
since exchange terms reduce the matrix elements
between states of parallel spin. To form a state with a
net current flow, one might take a pairing kg, —k+qg,
where q is a small wave vector, the same for all k
and such that both states are within the range of
energy Ace. The occupation of the pairs may be specified

by a single spin-independent occupation number,
m~=0 or 1. Nonvanishing matrix elements connect
con6gurations which difFer in only one of the occupied
pairs. ' It is often convenient to specify occupation in
terms of electron pairs above the Fermi surface and
hole pairs below.

The best wave function of this form will. be a linear
combination

b(ki k„)f( m„. e,„. ),

where the sum is over all possible con6gurations. In
our calculations, we have made a Hartree-like approxi-
mation and replaced b by b(ki)b(k2) b(k„). We have
also assumed an isotropic Fermi surface [so that b(k)
depends only on the energy e of the Sloch state in-

volved), and that V is the same for all transitions
within a constant energy A~ of the Fermi surface,
c=o. A direct calculation gives for the interaction
energy

Wr = —4[%(0))'V ~ I'(e)I'(e')dade', (4)

where E(0) is the density of states at the Fermi surface.
The kinetic energy measured from the Fermi sea is

Wx ——41V(0)) g(e) &de,

0

where g(e) is the probability that a given state of energy
~ is occupied by a pair, and

I'()=( ()L1—g()j)~.

One may interpret the factor I' (c)I'(c') as representing
the eGect of the exclusion principle on restricting the
number of configurations which are connected to a
given typical configuration. Matrix elements corre-
sponding to k~k' are possible only if the state k is
occupied and k unoccupied in the initial con6guration
and k' occupied and k unoccupied on the final configura-
tion. The probability that this occurs is

g(~)L1—g(~') jg(~')[1—g(~)3=[1'(~)7[1'(~')3' (7)

Since matrix elements have probability amplitudes

rather than probabilities, the square root of (7) occurs
in (4).

A variational calculation to determine the best
g(e) gives

2E(0) (Ace)'

exp[2/X(0) Vj—1
(8)

Thus if there is a net negative interaction, no matter
how weak, there is a condensed state in which pairs are
virtually excited above the Fermi surface. The product
$(0)V is independent of isotopic mass and of volume.
The energy W varies as (Aid)', in agreement with the
isotope effect. It should be noted that (8) cannot be
obtained in any Gnite order of perturbation theory.
The energy gain comes from a coherence of the elec-
tron wave functions with lattice vibrations of short
wavelength, and does not represent a condensation in
real space.

Empirically, energies are of the order of magnitude
of X(0)(kT,)', and of course kT, is much less than an
average phonon energy Ace. According to our theory,
this will occur if X(0)V(1, a not unreasonable assump-
tion. In this weak-coupling limit, the energy may be
expressed simply in terms of the number of electrons,
n„virtually excited in coherent pairs above the Fermi
surface at T=O'K

The pairing k2= —ki corresponds to q=0 for all pairs
and insures that if ki' is unoccupied, so is k2'. T}lls is
also true if all pairs have the same q.

%ave functions corresponding to individual particle
excitations may be made of linear combinations of
states in which certain occupation numbers, correspond-
ing to real excited electrons or holes, are specified and
the rest are used to make all possible combinations of
virtual excitations of kg, —kg pairs. Because of the
reduction in phase space available to the pairs, the
interaction energy is reduced in magnitude. For small

W= ——,'e,2/X(0),
where

n, = 2X(0)Ace exp[ —1/E(0) Vj. (10)

It is a great advantage energy-wise to include in the
ground state wave function only pairs with the same
total momentum. Suppose that instead one had chosen
a random pairing, kig, k2&, with ki+k2= q and consider
a typical matrix element (ki,k2

~
Hi

~

ki'k2') which
vanishes unless ki'+k2' ——q'= q. We shall assume that
the q's of all pairs are small so that if ki and k2 are both
within Ace of the Fermi surface, so are ki' and k2'. If
we construct a wave function made up of a linear
combination of states with such virtual excited pairs
and determine the interaction energy, we would And

an expression similar to (4) but with (7) replaced by
the much smaller quantity:

g(t'1)g(~2)[1 g(cl )3[1 g(E2 )jg(t1)'
Xg(~2 )[1—g(ea)3[1—g(e2)3. (11)
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excitations the consequent increase in total energy is
proportional to the number of excited electrons. This
means that a Gnite energy is required to excite an
electron from the ground state. The same applies to
real excited k, —k pairs. If f(e) is the probability that
a Bloch state of energy ~ is occupied by an excited
electron above the Fermi sea, and 1 f—( e—) the
probability that there is a hole below, one finds for
the interaction energy an expression similar to (4) but
with Li'(e)]' replaced by g(e)(1—

t f(e))'—g(e)}. For
small excitations above T=O'K, the total pair energy
may be expressed in the weak-coupling limit as

(12)

where n, is the number of electrons in the virtually
exciied states at T=O and e, is the number of actually
excited electrons. This leads to an energy gap' (i.e.,
the energy required to create an electron-hole pair):

Ea i)W/ritz, = 2r——z,/X(0) at T=O'K. (13)

Taking the empirical W= H, '/Szr and—estimating
(0) from the electronic specific heat, we find Eg h-—

X13.8'K for tin. This is to be compared with the
experimental value of about k)(1T.2'K. Calculations
are under way to determine the thermal properties at
higher temperatures.

Advantages of the theory are (1) It leads to an
energy-gap model of the sort that may be expected to
account for the electromagnetic properties. s (2) It
gives the isotope effect. (3) An order parameter, which
might be taken as the fraction of electrons above the
Fermi surface in virtual pair states, comes in a natural
way. (4) An exponential factor in the energy may
account for the fact that kT, is very much smaller than
ptoo. (5) The theory is simple enough so that it should be
possible to make calculations of thermal, transport,
and electromagnetic properties of the superconducting
state.

~ This work was supported in part by the 0%ce of Ordnance
Research, U. S. Army. One of us (J.R.S.) wishes to thank the
Corning Glass %'orks Foundation for a grant which aided in the
support of this work.
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HE suggestion of Overhauser' that the saturation
of the spin resonance of the conduction electrons

in a metal should give nuclear polarizations of the
order of PH/ItT(P =Bohr magneton, H= magnetic
field) catalyzed thinking along these lines; it was soon
realized by many' that related dynamic polarization
processes are apropos to paramagnetic substances in
general. In fact, even earlier, Pound' had produced
enhanced populations by nuclear magnetic resonance
saturation in a system with quadrupole splitting.
Abragam4 discusses the nuclear polarization obtainable
by the saturation of the reso1ved paramagnetic res-
onance hfs lines in magnetically dilute crystals. In his
scheme the strongly allowed electronic magnetic
dipole transitions are saturated and the nuclear polariza-
tion is induced by suitable relaxation processes through
the hfs coupling. Ke wish to point out that in many
cases the saturation of certain so-called forbidden
transitions will produce a comparable nuclear polariza-
tion directly in the sense that the applied radio-
frequency field itself Qips the nuclei. Such forbidden
transitions are commonly observed in microwave
paramagnetic resonance, e.g. , in the case of appreci-
able nuclear quadrupole interactions and in cases
where the nondiagonal magnetic hfs terms are not too
small. As a speci6c sample of the latter, consider the
following spin Hamiltonian, ' appropriate for Co~
ions at low temperatures in a magnetically dilute axial
crystal in an external magnetic field:

3C=p[g„H,S,+g1(HQ,+H„S„)+HI,S,
+~(ID~+IvSv) 3+5Cr i~+X t.

The erst two terms are the electronic Zeeman terms
and are assumed to be much larger than the magnetic
hyper6ne terms in A and B. The energy levels are
shown schematically in Fig. 1 where we have taken
A~8, S=-,' and I=2, for illustration purposes. The
various states are characterized in zero order by
electronic and nuclear magnetic quantum numbers m
and M, respectively. However, the term in 8 mixes
the states so that to first order we have for the wave
functions P,=P(s,2), fs=g(s, 1)+(8/ H)P( —s,2)

f(—sz, 2) —(8/H. )iP(—',,1). The 5C„~, term gives
relaxation transitions between the various states, the
dominant ones being those shown for (hzzz= &1,
AM=0), corresponding to the electron spin-lattice
relaxation. The A(zzz+M) =0 relaxation transitions are
considerably weaker, as are also those for (8m=0,
53II= &1), not shown. For simplicity the latter
transitions are neglected; from reasonable assumptions
concerning relaxation mechanisms it can be shown


