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TABLE I. Summary of nuclear calorimetric experiments. The
observed values, which represent the average of several measure-
ments, are reproducible to about 10%

Polarization before mixing
Expt. Fluorine Lithium

Polarization after mixing
Fluorine Lithium

(a) s)dp

(b) Mo
(c) Saturated
(d) Ido
(e) —N p

(f) Saturated
(g) —Mp

(h) —IrIo

Mo'
Saturated

Np'
—~o'

~o'
—Mp'

Saturated—Mp'

0.95 Mo
0.42 Mo
0.42 Mp
0.27 Mp
0.05 Mo—0.16 Mp—0.29 Mo—0.71 Mp

0.95 Mp'
0.51 Mo'
0.43 ~o'
0.20 Mp'
0.00 3Ep'—0.17 Mp'

—0.34 3Eo'
—0.73 Mp'

E have performed experiments, to be described
below, which may be explained only by utilizing

the concept of spin temperature. The first group, which
may be described as experiments in nuclear calorimetry,
are studies in the changes of polarization produced by
the thermal mixing of the spin systems of two nuclear
species contained in the same sample. The process of
mixing is performed by taking the sample from the
strong magnetic field Bo into the earth's field and
returning it into the field H() in a time short compared
to the spin-lattice relaxation time. The two spin
systems, isolated by their di6'erent Larmor frequencies
in the strong field, are no longer isolated in the weak
field and find a common temperature. Hence this
process is irreversible in the Khrenfest sense and
thermodynamically reversible only in very special
cases.

These experiments are summarized in Table I, where
310 and Mo' stand for the equilibrium polarizations of
the species in question. The sample used was a single
crystal of LiF, for which, in Hv, Ti(Li")—4.5 min,
T,(F")—1.4 min, and in the earth's field, Ti(common)—6 sec. 'She observations were made with a Varian
V-4200 spectrometer, adjusted for U-mode observation
with Hi=1 gauss at 8 Mc/sec, with which the level
populations could be examined, reversed by fast
passage, or saturated.

The results of the experiments described by Table I
can be understood in terms of ordinary calorimetry by
assigning to each system a specific heat proportional
to y'I (I+1) and by making allowance for the relaxation
which occurs during the course of the experiment and
for the incomplete reversal of the magnetization by
the fast-passage operation. This simple analysis is
valid as long as the mixing field is high compared to
the internal local fields because the energy of the
spin-spin interaction may then be neglected Experi-
mentally we have found that mixing begins to take
place in a field of 75 gauss which. is about ten times
the rms local field. Experiments (a) and (h) can be rec-
ognized as the reversible processes observed by Pound'
and Pound and Purce112 and appear here as a special
case of the mixing of two systems at the same tempera-
ture. Experiments (d) through (h) are believed to be the
first examples of calorimetry carried out with systems
at negative temperatures. '

The results of Table I suggest that it is possible to
"pump" a nuclear system with a long spin-lattice
relaxation time into a polarized state by cooling it at
regular intervals by thermal contact with a system
which has a shorter T&. This was demonstrated by
using a powdered sample of CsCl for which Ti(Cs)=9
min, Ti(Cl)—3 5 sec in strong fields, and Ti(common)—20 sec in the earth's field. Commencing with Cs
unpolarized, the sample was quickly removed from and
restored to the strong field at six-second intervals,
chosen to allow time for the Cl to polarize, for a period
of two minutes, after which the Cs showed a poIarization
of 0.7 Mp, which otherwise would have taken about ten
minutes to obtain. It is interesting to speculate that
in favorable cases it may be possible to measure the
magnetic moment and thermal relaxation time of an
isotope which is not otherwise observed by measuring
its heating sects upon an observed isotope.

An experiment of quite a different kind demonstrates
that, for the case of equally spaced levels, the mechanism
of mutual spin-Aips seeks in a time T~ to establish a
spin-temperature for the spin system. This mechanism,
unfortunately overlooked by Proctor. and Robinson, '
has been shown to account for the complete saturation
of the nuclear magnetic energy levels of Na" in NaCl
caused by intense ultrasonic waves at twice the Larmor
frequency. This may be understood in the following
step-wise fashion: the pure quadrupole transitions
caused by the ultrasonic waves tend to saturate the
levels related by Am=2, resulting in a polarization
0.2 Mo. However, in a time T2 a Boltzmann popula-
tion is re-established, allowing further u1trasonic
saturation to take place. Equations (4) and (6) of
reference 3, describing the saturation for the cases
of dipolar and quadrupolar relaxation, become identical
and correspond to sM'/Mo ——(1+12WTi/7) ', where W
is the quadrupole transition probability. This expression
has been experimentally verified in this laboratory for
alt values of M.
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Further experimental results and a theoretical
discussion wi.l be published at a later time.
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is replaced by the Poisson-bracket relation. A is retained
insofar as it enters in the kinetic energy of the 6eld,
describing the DeBroglie wave character of the asso-
ciated particles. The classical equation of motion has
special, exact, separable solutions of the form f= f(x)
Xexp( —iEt/h), where f(x) and E are obtained from
the nonlinear eigenvalue problem

A2
'Pf+ ~ V(x—x')

I f(x ) I'd'x' f(x

EVENT work has contributed to the understanding
of properties of helium II. Yet there is room

for a unified theoretical approach to the problem of
interacting bosons for both solid and liquid states.
In particular the liquid is like the solid as regards
cohesive energy and packing. One is interested in
computing these from 6rst principles, as well as in the
connection between the vibration spectrum of the
solid and the excitation spectrum of the liquid, the
elucidation of the liquid solid transition under pressure,
scattering of excitations, etc. The treatment of these
diverse phenomena requires construction of wave
functions for the system of interacting bosons, which are
reasonably accurate and simple, from a uniIied point
of view. In the following we report on one such uni6ed
approach, based on an elementary physical picture.
The procedure is an outgrowth of the small-oscillation
theory of the interaction of a particle and a scalar 6eld. '

The Hamiltonian for a system of bosons of mass M
with the two-body interaction potential V (thus
neglecting the detailed electronic structure of the
atoms) will be written in the formalism of second
quantization:

X V(x—x')f(x)P(x') d'xd'x',

where f(x), ft(x) are operators satisfying the
Bose-Einstein commutation rules such as Lp(x),
ft (x') )= 5(x—x'). Associated with B are the Heisenberg
equations of motion for the time-dependent operators
P(x, t) and Pt(x, t):

We may consider B as governing the motion of a
nonlinear, three-dimensional classical wave field. The
commutation rule for the canonically conjugate
variables,

V(x)=(0+0')(&/2)' and P(x)=(f—0')(@/2)',

We note that there is always a solution of uniform
density, namely,

(ED' E t

f(x) =
I

—I, E= V(x)—d'x.
L'J

But if V(x) is negative in some region of space, there
may be other solutions, such as a periodic solution with
8 lower than for the uniform solution. In the classical
theory there are solutions in the vicinity of each exact
solution in which the Geld carries out small oscillations.
writing Q=(q+q')(h/2)', tl=~-' ""If(x)+q(x, ~)1
and linearizing the equation of motion, we obtain

+2f V(x—x') f(x')Q(x'). d'x' .

The character of the oscillation spectrum depends on
V(x) and on the underlying solution f(x). For the
uniform solution one obtains Bogolyubov's' spectrum
yielding phonons for long wavelengths, free-particle
behavior for short wavelengths.

The classical analysis may be used to 6nd eigen-
functions by noting that three elementary canonical
transformations are involved; a time-dependent one
introducing a phase, a linear shift P~f+P, and a
normal-mode transformation. These are then simple
unitary transformations in the quantum theory, the
6rst adding a term to H. We are thus led to the set of
approximate eigenfunctions,

4 =exp(S2) exp(S3)CO( S~ ).
4 0 are eigenf unctions of the number operators E~=f~tf~.
Qi~ is a Fourier component of f(x).$

f
(f(x)y (x) —f'(x)Ad'x,

and S& is a quadratic form in f, ft. From the set we
construct eigenfunctions of the total .number and


