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Relativistic dispersion. relations for photomeson production, analogous to the pion-nucleon scattering
dispersion relations, are formulated without proof. The assumption that the 33 resonance dominates the
dispersion integrals then leads to detailed predictions about the photomeson amplitude. An attempt is
made to keep first order (in v/c) nucleon recoil efiects Exc.ept for the latter, the predictions oi the cutoff
model are generally reproduced.

A. INTRODUCTION

'HK preceding article' has applied the relativistic
dispersion relation method to a discussion of low-

energy pion-nucleon scattering; the purpose of the
present paper is to extend the dispersion approach to
photomeson production. Two distinct problems mill be
faced: First the general dispersion relations for photo-
meson production must be formulated, and second a
way must be found for approximately evaluating at
low energies the integrals which occur.

Sections 8 and C of this paper will be concerned
with the formulation of the dispersion relations while

D and E describe an attempt to evaluate them on the
basis of the assumption that the 33 resonance domi-

nates all integrals. In Sec. F a formula for the complete
low-energy photoproduction amplitude is written down

and discussed.

3. KINEMATICAL CONSIDERATIONS

The mass shell restrictions, PP=Ps' ———Ms q'= —1
and k'=0, means that only two independent scalars
can be formed from our three independent vectors.
We choose

and

v= I' k/M—= I' tI/M, —

vi= —
q k/2M.

(2 3)

and that
vov.+v.vo =24»

(iv pi+M)Ii=0,

(iv p&+M)Ns ——0,

(3 1)

'(3.2)

(3.3)

To form further invariants, one must use the photon
polarization c and (or) the nucleon Dirac operator v.

3. The most general 5-matrix element must be a
function of I orentz invariants so it is useful to enumer-
ate all the independent invariant quantities involving e

and y. Remembering that

2. Let the four-vector momenta of the incident
photon and outgoing pion be denoted by k and q, re-

spectively, while those of the initial and 6nal nucleons
are pi and ps. Momentum-energy conservation,

pi+k= ps+q,

means that of- these four momenta only three are inde-

pendent. %e choose to consider the combination

~=l(p+p)
together with k and q as the three independent four-

vectors.
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Commission.

t Dispersion relations for photomeson production have also
been studied by A. A. Iogunov and B. M. Stepanov, Doklady
110,3 (1956) and by E. Corinaldesi, Nuovo cimento IV, 6 (1956).
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where e~ and u2 are the Dirac spinors associated with
the initial and final nucleon states, it follows that the
only independent invariants involving y are y e and
v k. The reason is that v pi and v ps can be moved
via (3.1) either to the extreme right or the extreme left
of the 8-matrix element, where they may be eliminated
by use of (3.2) or (3.3). The quantity v q can be re-
placed by v (pi —ps+ k) from momentum conservation.
The only independent scalar products involving e, in

(2 2) addition to v e, are P e and q e, since k e=0.
The matrix element must, of course, be linear and

homogeneous in e but from (3.1) it follows also that it
can at most contain y k linearly. Because y k anti-
commutes with y ~ all factors of y k may be brought
together and by (3.1) reduced to the zeroth or first
power. A substantial further restriction on the form of
the matrix element results if we consider in addition the
requirement of gauge invariance.

4. Stated concisely, gauge invariance demands that
if e is formally replaced by k the matrix element must
vanish. Taken together with the considerations of the
preceding section, this requirement allows only four
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TABS,z I. Matrix elements of 9'(+ ) for the four possible
charge configurations.

y+p ~me+p y+m —+7rO+e y+p —+7r++n y+77,~7r +p
g'(+)
g(—)

g (0)

1
0—1

0
V2
v2

independent functions of y and ~: y ey k, P ey k
—y eP k, q ey. k—y. eq. k and P eq k—q. eP k. It
will turn out that a certain linear combination of the
6rst and second of these forms is more convenient than
the second alone. Also a factor y5 must be added to
each because the meson being produced is pseudoscalar.
We are thus led to de6ne the four fundamental forms:

3fg=iy5y ey k,

Ms=2iys(P eq k Pkq e—),

Me=ps(y eq k —y kq c),

(4.1)

(4.2)

(4.3)

H =MgA+ MOB+M oC+ Ml&D, (4.5)

where the quantities 3, 8, C, D are functions of v and
v~ as well as the nucleon isotopic spin v. It is under-
stood, of course, that (4.5) is to be sandwiched between
initial and final nucleon spinors in the standard manner
Q2HQy.

5. The isotopic spin analysis has already been given
by Watson. ' If one denotes the isotopic spin index of
the outgoing pion by P, there are three independent
nucleon isotopic spin combinations possible:

up&+&= ,'(rprs+rsrp)=-bps, (5.1)

4p' &=s(rprs rsvp)=sf~—p, rs] (52)

(5 3)

These particular combinations are chosen so as to be
either Hermitian or anti-Hermitian. For future refer-
ence we present in Table I values of the matrix elements
of 8'(+" for the four possible charge configurations.
Note that the superscript (&,0) bears no simple rela-
tiori to the charge of the meson being produced.

It is now possible to make the isotopic spin depend-

' For purposes of orientation, one may remark that the non-
relativistic limits of these forms are as follows: M'g~koo". a,
3E~~g ae (k—q) 3II~~ qX (k)(e)+ioPe e, and 31&~
q (h)& e), where o', q, h, and &a are as defined in Sec. (7).

'A discussion of the limitations imposed by gauge invariance
essentially equivalent to that given here has been published by
Z. Koba eZ oL, Progr. Theoret. Phys. Qapan) VI, 849 (1951).' K. M. Watson, Phys. Rev. 95, 228 (1954).

Mr& 2ys(y eP——.k 7kP e —iM—y ev k). (4.4)

The factors i and 2 are for convenience in subsequent
calculations. '

Combining all results to this point, we see that the
complete invariant photomeson transition matrix ele-
ment may be written

y (+)~y (+) y (—)~ g (—) g'(o)~g (o)

Finally observe that under crossing

~—'&s Vy
—+&

(6 2)

so that in order to satisfy the crossing requirement
A(+ ', 8(+'), C( ), and D(+') must all be evenfunctions
of v while A( ), 8( ), C(+'), and D' ) are odd functions.

The standard symmetry considerations have now
been exhausted but one general principle still remains
unexploited —the unitarity of the 5 matrix. It is well
known4 that, for photoproduction, unitarity relates the
phase of an outgoing state of well-defined angular
momentum, isotopic spin, and parity to the phase of
the corresponding scattering amplitude. The above de-
composition of the photomeson amplitude into twelve
parts H;, however, does not correspond to an eigenstate
expansion. In order to apply unitarity, it is necessary
to find the relation getween the amplitudes H; and
eigenamplitudes.

7. Let the complete photoproduction amplitude be
denoted by f, such that the differential cross section
for meson production in the barycentric system is

do q—=-l(2l~l»l',
dQ k

(7 1)

where the matrix element indicated is taken between
initial and final Pauli (not Dirac) spinors. For a given
isotopic spin configuration, it is then possible to write
F as follows

e qe (kXs)
P=zo' Rft+ F2

ze kq s zzr qq s
~s+ r4, (7 2)

qk

ence of the amplitude explicit by writing

A (v, vr, r) =.A &+& (v, vr) dp&+&

+3&—
&(v, v&)up& &+A&'&(v, vt)8p"&, (5.4)

with a similar decomposition for 8, C, and D. The
problem has thus been reduced to 12 invariant func-
tions of the two variables v and v~. These will be re-
ferred to in general as H;(v, vt) where jruns from 1 to 12.

6. Now let us investigate the consequences of cross-
ing symmetry. The most convenient expression of this
symmetry arises from an exchange of incoming and
outgoing videos lines in the Feynman diagrams, which
one can show is achieved by setting pt= —ps, ps= —pr
and taking the transpose conjugate of the nucleon spin
and isotopic spin operators. The photon and meson
variables are untouched. Since P-+—P and since each
of the y's which occurs anticommutes with each of the
others, we see that under crossing

MA~MA) MB~MBq M~ —MC) MD~MD. (6.1)

The chosen isotopic spin operators also have a pure
crossing symmetry. Evidently



RELATI VI STI C D ISPERSION RELATION APPROACH 1347

= (W—M)B+ (C—D), (7.10)

where fi . f4 are functions of energy and angle in the Fg

barycentric system and il and k are the meson and
photon three-momenta. The angular dependence may
be made explicit through an expansion involving deriva-
tives of Legendre polynomials:

Fi ——P tJMi~+Er+]Pr+i'(x)
L=O

+I (1+1)Mr +Ei ]Pi i'(x), (7.3)

2W
t M+E,i i&4

P4 4n. ——
W —M r M+Eif q'

= —(W+M)B+ (C D). —(7.11)

S2=Q $(l+1)Mr++LMr ]Pi'(x),
Z=l

P3 ——P t Ei+—Mi+]Pr, i"(x)
1

(7.4) As in the scattering problem, W is the total energy
in the barycentric system. However, here we must
distinguish between the initial nucleon energy Ej
= (k'+ M') ' and the final nucleon energy E&——(q'+ M') &.

Some identities helpful in deriving the above relations
+$8, +M, ]P, ,"(x), (7.5) and in further calculation are as follows:

r4 ——P LMi+ —Ei+—Mi —Ei ]Pi"(x).
Z=1

(7.6)

Here x is the cosine of the angle of emission in the bary-
centric system and is related to ~i by

v=
t (W' —M')/2M] —vi,

vi ——(1/2M) (kor, —k q),

or, =k+ (1/2W),

(7.12)

(7.13)

(7.14)

x= (kor, —2Mvi)/kq, (7 7) k/(M+Ei) = (W—M)/(W+M), (7.15)

if or~= (q'+1)'. The derivation of formulas (7.3) to
(7.6) is lengthy but can be carried out by straight-
forward methods which have nothing to do with meson
theory.

The energy-dependent amplitudes M&+ and E&+ refer
to transitions initiated by magnetic and electric radia-
tion, respectively, leading to fj.nal states of orbital
angular momentum / and total angular momentum
l& 2i. Superscripts (&,0) may be added to each quantity
in formulas (7.2) to (7.6) in order to designate the iso-

topic spin character of the transition.
It is possible to express the operators Mg M~,

defined by (4.1) (4.4), in terms of the spin combina-
tions introduced in (7.2) so long as the initial and final

states do not contain antinucleons. Hy a straightfor-
ward comparison, one then arrives at a set of linear
equations connecting the four amplitudes 3, 8, C, D to
the four amplitudes Ii i F4'.

8"'—M'= 2kB'. (7.16)

The preliminary machinery is now complete. To
proceed further we need a new physical principl-- in
this case to be provided by dispersion relations,

1 1
«&;(v,») =~;I

& vs —v vir+v)

where

1
+— dv' ImH, (v', vi) +, (8.1)

~~ &0 v vv +—v

vs ———vi ——k q/2M, (8.2)

C. THE DISPERSION RELATIONS

8. The assumptions which led in the case of scatter-
ing to the forms given by Kqs. (3.1) and (3.2) of the
preceding paper lead to a similar result here. That is,

Ii g=4n
W—M $(M+E2) (M+Ei)]i vo

——1+ (1+k q).
2M

(8.3)

2Mvg=A+ (W—M)D+- (C D), —
O' —M

( +
P,=4

W —M EM+Ei) q

2M py= —A+ (W+M) D+ (C D), — —
W+M

(7.8) These last two forms are the same as for scattering if

k q is replaced by q~ q2. The principal value of the
integral in (8.1) is as usual to be understood; obviously
the plus signs are to be used with the even H s and
the minus signs with the odd ones.

The poles at & vir in (8.1) correspond once again to

(7 9) the renormalized Born approximation, with the Pauli
magnetic moment term included explicitly. The residues
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turn out to be:

RPA' "j= ,'&—„f—„ (8.4)

scattering phase shifts, the complication seems un-
avoidable. By a lengthy but straightforward calcula-
tion we find

I'
RL&&+, 'j=

I lie f
&2Mv, &' " "'

RLC'"'j=RLD"'j=kf. (»' ~~.), (8 &)

RK'"'j=RÃ"'j=2f ( v '+~~.), (87)

where p, I „'and p~„are the rationalized anomalous static
nucleon moments (no form factor) and e„and f„are the
rationalized and renormalized electronic charge and
pion-nucleon coupling constant, ' respectively. That is,

yp„'= 1.78e,/2M, p.y„=—1.91e„/2M,
e„'/47r = 1/137, f,2/4&r =0.08.

(, )
(9.1)

W'+M W —M

(8.5) ReFi(W, vi) =Fi +—)' dW' ImFi(W', vi)
&+1

1 W'+W —4Mvi/(W —M)
X

W' —W W"+W' —2M' —4M vi

1 W' —W+4M vi/(W —M)
"

—ImF2(W', vi)
W'+ W W"+W' —2M' —4M vi

i0) F(W', ) F W' 4M
+f /Im +(1) W' —M

An important special characteristic of the photo-
production problem, when electromagnetic radiative
corrections are ignored, is the linear dependence of the
amplitude on e and p,. In other words it is possible to
consider those parts of the amplitude generated by e

separately from those generated by the magnetic
moment. ' We make this separation explicit by writing

A'~"=A '+"+A '+", etc., (8.9)

doubling the number of independent amplitudes but
simplifying the Born terms. In other words,

RLA &+"j=RLB &+'ig

=RLC, &+'&j=RLD, &+'&)=0, (8.10)

while the residues for 3, y o) 8 (y 0) C (+ o) and D (y o)

are as given in formulas (8.4) to (8.7).
Practically all the general remarks made in the pre-

ceding article about the scattering dispersion relations
apply also to (8.1). One must assume that each of the
amphtudes H, (v, vi) vanishes for infinite v and that a
continuation to the nonphysical range of the variable
vi (which corresponds to «' in the scattering problem)
is possible. Fourth-order perturbation calculations give
support to these assumptions. ' In what follows, the v&

continuation will be made via I egendre polynomials
even though considerations pointed out by Symanzik'
indicate this method to be questionable.

9. The first step in the implementation of (8.1) is
the change of variable from v to H/' and the replacement
of A, J3, C, D by Fi F4, using (7.8)—(7.11). These
changes produce relations much more complicated than
(8.1) but if unitary is to be employed so as to express
the imaginary parts of the amplitudes in terms of

~ A physical basis for this separation may be seen if one reAects
that the nucleon anomalous magnetic moment is independent of
e in the sense that it can be changed by the addition of new (heavy)
meson fields. Formally the separability of e and p parts is made
possible by the linear character of the photomeson unitarity con-
dition. In contrast to the case of scattering, where the imaginary
part of the amplitude is given by a quadratic form, the imaginary
part of the photoproduction amplitude is a bilinear function of
scattering and production amplitudes —so long as electromagnetic
radiative reaction is ignored.

6 K. Symanzik (private communication).

ReF2(W vi) Fp+ dW
l

ImF2(W
1&r+i

1 W'+W —4Mvi/(W+M)
X

W' —W W"+W' —2M' —4M vi

1 W' —W+4Mvi/(W+M)—ImFi(W', vi)
W+ W W"+W' —2M' —4M vi

(0) 'F g(W', vi) F4(W', vi) 4M vi
+I IIm

' +(1) P"—M W'+M

1
ReFg(W, vi) =FP+—, dW' ImFS(W', vi)

1 —W'+ W —2M+4M vi/(W' —M)
X 8"—t/t/" W"+W' —2M' —4Mv i

+ImF g (W', vi)
W'+ W

—2M —W' —W+4M vi/(W' —M)

W"+W' —2M' —4M vi

W2 ImLFi(W', vi)+F2(W', vi)$

X , (9.4)
W"+W' —2M' —4M vi

+ ImF4 (W', v i)
W'+W

2M —W' —W+4Mvi/(W'+M)

W"+W' —2M' —4M vi

W2 ImLFi(W', vi)+Fg(W', vi)$

X —

, (9.3)
W"+W' —2M' —4M vi

00

ReF4(W, vi) =F4~+ ~ dW' ImF4(W', vi)

1 W'+ W+ 2M+4M vi/—(W'+M)
X

W' —W W"+W' —2M' —4M vi
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where in each case the upper signs go with the isotopic
superscripts (+) and (0) and the lower signs go with
the superscript (—).

The Born terms induced by e are

FI.B= F~—.B=2d.f. ~ (9 5)
W' —M' 8"—M' —4M'

2M(W —M)
F3, = ', Brfr-

2Mv, W+M W' M'—4M—v,

1 2M 2M(W+M)
F4.B= ~2e,f,

2M'~ O' —M 8"—M' —4Mp~

while those induced by p, are

F B Lf~

2M(W M) —83Pv—i/(W M) '—
(9.8)

W'+M—'+4M vi

more generally valid than the method of derivation
indicates. The approach described here should be re-
garded only as a 6rst attempt.

D. EVALUATION OF THE DISPERSION INTEGRALS
IN THE STATIC LIMIT

11. To gain an orientation in the photoproduction
problem, where the details can be very complicated,
we begin by writing down the static (M= ~) limit of
the dispersion relations for the electric dipole amplitude
leading to a 6nal S state and the electric quadrupole
and magnetic dipole amplitudes leading to 6nal I'
states. These relations are obtained by projection from
(9.1) (9.4), using (7.3) (7.6) in order to identify
the individual multipole amplitudes. Introducing ~
= IV—M and then setting M= ~, one 6nds

ReE0+(kd) =Eo+B+ ckd'—

1
X —ImEkkI. (kd')

M .kd kd kd +kd

—W'+M'+4M vi

FSy, =F4v =~gfriir
4Mvi —W'+M'

2M 2M(W+M) —8M'vi/(W+M)
X

TV—M
, (9 9)

(9.10)

(1) MI (kd') —Mi+(kd')—
2/ )Im

(o) k'q'

6 (kd' l EI+(kd')
)Im —

, (11.1)
kd (2kdI

where the abbreviation p, „means p, „„'—p„„ in the case
of isotopic superscripts (+) and (—) and means

pv, '+p„„in the case of superscript (0).
10. From this point, the most sensible path to

follow is not clear. We shall assume that the polynomial
expansions (7.3)—(7.6) are legitimate (even though
under the dispersion integrals values of x outside the
range —1 to +1 are involved) and by projection we
shall form dispersion relations in which individual
multipole amplitudes occur on the left-hand side. In
each case on the right-hand side, under the integral,
an in6nite sum of multipole amplitudes will occur and
a method must be found for evaluating this sum.

Pn exact evaluation is, of course, out of the question
until an understanding of very high-energy phenomena,
including E-particles and hyperons, is achieved. The
success of the cuto6 model, ' however, suggests that if
only the sub-Bev range of the integration is considered,
sensible results may be obtained. The dominance of the
low-energy 33 resonance is presumed to be responsible
for this circumstance.

We shall consequently keep only /=0 and /=1 (5
and P) amplitudes under the integrals and in addition
neglect multiple-meson production. Furthermore we
shall everywhere expand in powers of 1/M and keep
only terms of zeroth and first order in 1/M. It is
conceivable that the main results to be obtained are

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).

Ei+(kd) Ei+ kd t-" dkd'

Re —= +— '

kg kg

E.(')- 1
X Im —& ', (11.2)

k g -Gd kd kd +kd.

Mi (kd)
—MI+(kd) Mi B—Mi+B

Re

1 ~" M, (~') MI+(~') 1—
+— dkd II11

.kd kd kd +kd

6
t 0) EIP(kd')

+—
~ (Im, (11.3)

kd' (1j k'q'

Mi (kd)+2MI+(kd) Mi B+2M
Re

1
I

" Mi (kd')+2MI+(kd')
+—

~' dkd' Im

1
X & —,(11.4)

kd' —kd kd'+kd

where the isotopic spin convention is the same as in
Eqs. (9.1)-(9.4).
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&i+,0) = f~—
1.Py +In'

(12.1)

~l B(+,0) 0 (12.2)

(12.3)

&(+,0)+.Mi &(6,0)

0

(12 4)

where f, Ati„', and p„are now nonrationalized constants.
The Born terms associated with e are more complicated
so we postpone their consideration. It is worth mention-
ing here, however, that a well-dined group of the
1/M corrections to the static limit of the e terms turns
out to have precisely the same form as (12.1) (12.4)
with ii„' replaced by e/2M and p„equal to zero. In
other words, if the tota/ nucleon moments are used in
(12.1) (12.4), rather than the anomalous moments,
a well-defined group of 1/M effects is correctly included.

It is evidently consistent with Eq. (11.2) to set Ei+„
equal to zero, a result which agrees with the cutoff
model' and with one's intuition. Further, with no
electric quadrupole, Eqs. (11.3) and (11.4) become
equivalent to those of the cutoff model for the ampli-
tudes referred to in reference 7 as BC~ and K~, except
that the cutoG factor here is missing. If, however, all
important contributions to the dispersion integrals
occur for co less than the cutoff energy ( 1 Bev), the
solutions of the cuto6-model equations must approxi-
mately satisfy Eqs. (11.3) and (11.4). These solutions
of the dispersion equations are probably not unique
and we do not understand at present how to justify
their selection without using the cutoG model as a
guide. It would be surprising, however, if any other
solutions should be physically interesting so long as the
neglect of high-energy effects is correct.

13. The solutions of the four equations for M~+„(+)
indicated by the cutoG model are simple multiples of
the corresponding I'-wave scattering amplitudes:

1 pg) p py pi+i — h i%i = fi (+i/g& (13 1)
kq 2f 2f

The I' amplitudes fi+&+' are defined by formula (2.20)
of the preceding paper and comparison of the static
dispersion relations (4.2) of the preceding paper satisfied
by fi~i+' shows immediately that (13.1) is consistent

12. The Born terms associated with p are very simple
in the static limit:

p& p&

with (11.4). The group of four amplitudes Mi~, „&+& is
precisely equivalent to BC~ in reference 7 if the full
nucleon magnetic moments are used. '

Reference 6 gives no closed form solution for 3C~, the
amplitude equivalent to 3f~+, „")here, but from a prac-
tical standpoint the Born approximation should be
adequate. The Born term to begin with is small (since
y~+p„=0 88e/. 2M, in contrast to y„p„=—4.69e/2M),
but also the dispersion integrals, in equations for iso-
topic type (0) amplitudes, contain only I=-,'contribu-
tions, which are uniformly small at low energies. VVe

shall therefore make no eGort to improve the Born
approximation for Mj~, „(0).

14. The remaining equation (11.1) for the electric
dipole amplitude generated by p, has no counterpart in
the cutoG model even after the electric quadrupole
term is dropped. We are correspondingly uncertain as
to the correct method of treatment, but the argument
can be made that under the dispersion integral only the
large J=~, I=—,

' magnetic dipole amplitude need be
considered; in particular the electric dipole terms under
the integral, which are proportional to S phase shifts,
may be dropped. We are then led to the results

E~ .'+'(~)
f( u I -—)—

2 t" Mi, „&+'((u')—Mi+, „&+&(o)')
dc' Im (14.1)

X'~
y

&~..' '(~)
=0, (14.2)

~~ "'(~)
f(I .+~-)— (14.3)

The contribution of the 33 resonance to the integral
in (14.1) is of such a sign and order of magnitude as
to make a substantial cancellation of the large Born
term. It is impossible at present to make a reliable
calculation of the remainder but it may be quite small.

15. I et us turn our attention now to the e amplitudes
in the fixed nucleon limit. The Born terms here are well
known, ' at least before decomposition into multipoles:

e (k —q)q e
P.s&+"=ef 1 ia s+2i . (15.1)

(k—q)'+1.Oi

The multipole analysis of (15.1) is perhaps not so well

lt should be observed that in the cutofF model the nucleon
moments occurring in the formula corresponding to (13.1) carry
a form factor, whereas here we have only the static moments.
This puzzling circumstance, shown below to persist even when
1/Jj/I effects are considered, is presumably due to the basic in-
adequacy of the cutofF model with respect to Lorentz and gauge
invariance.
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known but is straightforward, the first four terms being

.0 ( 2q '-l
(16.4)

J-'e). . '~"=ef 1 Fe,

.G.

(15 2) and

(16.5)

'0

.0-

B(g,O} ~ B(g,o}
0

=ef 1 F))r,

.0.

=0,
8(+,0)+2~~ 8(+, )0

(15.3)

(15.4)

Equation (16.3) is substantially simpler than the
corresponding Eq. (39) obtained in reference 7 on the
basis of the cutoff model. The earlier equation con-
tained two variables rather than one and was conse-
quently less tractable. Presumably the physical con-
tent of the two equations is the same although this
fact has not been proved.

The unitary condition tells us that Q~ has the phase
e'"' while Q; has the phase e"». The type of argument
used in reference 7 then says that if there were a cutoff
a solution to (16.3) could be found of the form

where

1( 1—v' 1—v)

2 E 2v 1+v)

1 3 ( 1—v' 1—v)
F,=—1——

~
1+ ln

&o' 4v' ( 2v 1jv~

(15.6)

(».7)

Qr(~) =grFo(~)y —bra(~) d~'

q""(q") nrFa(~') Gor(~')
X +, (16.6)

(0 (d —co le co +co

where v'(q") is the cutoff factor,
3 ] 1—v' 1—vyF~= )1+—

4q' L 2v 1+v)
(15.8)

~E3

e'~» sinb13

q'"(q')
(16.7)

if v= q/~ is the outgoing meson velocity.
Higher e multipoles are not negligible but are pre-

sumably well approximated by the Born terms alone.
That is to say we need to add to (15.1) only the dis-
persion integrals associated with Eo+, „E~+,„and M~~, „
as given in Eqs. (11.1)—(11.4). The estimation of these
integrals is the dHFicult part of our problem.

16. Equation (11.2) for the electric quadrupole
amplitude is relatively simple, since it contains no
coupling to the electric dipole and magnetic dipole
amplitudes. To analyze this equation, we first introduce
eigenamplitudes of total isotopic spin through the
relations

P,+,(-)= ~g,+,k ~g,+,4 (16 1)

One of course sets E~+, ,('} equal to zero. Then defining

and Ger(sr') is an unknown function to be determined
by the crossing requirement,

Q. ( ~) = Z'~—» Q'(~—) (168)

The introduction of a cutoff at this point is, of
course, not really legitimate since we are supposed to
be considering a local theory. At the present time,
however, we do not know how to discuss solutions of
equations of the type (16.3) in the absence of a cutoff.
Therefore, to make any progress at all, we are forced
to assume that those features of the cuto6 solution
which persist in the limit as the cutoG is removed are
features of the local theory. It will be seen below that
there is no cutoff parameter in our final formulas.

Satisfaction of the unitarity requiremerit by (16.6) is
easily seen if the delta-function part of the integrand
is separated out. This leads to a term

Qr =3F)+„r/kq, (16.2) ze'~'3 sin813qIF q, (16.9)

Eqs. (11.2) lead to

co & dM

ReQ~((o) =))rFq+-
7ia ] CO

ImQr (o)')

Q7 +M
(16.3)

which when added to the Born term gives back the
latter multiplied by a factor e'"3 cosb13. The principal
value part of the integral is of course real and by itself
leads to a contribution which satishes unitarity.

The part of the principal value integral proportional
to q~Iig converges without the cutoG factor and is
roughly independent thereof. Calculation shows this
part to be small; the reason is the rapid decrease
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( 1/o&') of Fo at high energies plus the extra factor
of o&/o&' which somehow crept into the quadrupole
integral. In configuration space one would say that
electric quadrupole mesons arise from the outer surface
of the nucleon and do not suGer a strong interaction
after production.

Because the known part of the principal value inte-
gral in (16.6) is so small as to be marginally detectable
by present experiments we have not made an eGort to
solve for Gqz. Ke believe that Gqy can be determined,
however, by numerical methods if not by analytic, and
improvement in the experimental determination of the
quadrupole amplitude wiH make such a calculation
worthwhile. For the moment we shall be satisfied with
a.dding the delta-function term (16.9) alone as the
quadrupole correction to the Born approximation.

17. The same type of analysis as the above can be
carried out for the magnetic dipole equations (11.3)
and (11.4). In terms of eigenamplitudes of isotopic
spin and angular momentum, de6ned by

BR =M&. /kq, (17.1)

e:(-)-e (- )
+ Im (17.2)

where n= 1 for I gy J g j Q 2 for either I= ~~ J= 2

or I=-,', J=~; and a=3 for I=-,', J=-,', we 6nd

ReOR. (&o) = P Fsr(o&)

1
t

Im5R (o&') Im5Ks (o&')

+— do&' +Q A p
o& o& && 0& +o&

of o&/o&', present in the quadrupole integral, is missing.
However, the Born term in the important 33 state is
smaller here by a factor 3 ~ We therefore propose to
add as the magnetic dipole correction to the Born
approximation just the delta-function term

se" sin&& $,Fsr. (17.5)

Further study of Eq. (17.2) should certainly l&e made
to see if a better determination of the dispersion
integral is possible.

18. The final and most diAic ult of the static limit
dispersion relations is (11.1) for the electric dipole
amplitude. The cutoG model is almost useless here as
a guide and, as in the case of S-wave scattering, it
seems necessary to concede ignorance and include some
arbitrary quantities in the amplitude .

First of all, any attempt to evaluate the parts of the
dispersion integral in (11.1) which involve Mi and Ei
will give results proportional to the cutoG, if the cutoff
model is used to estimate E~ and M ~. The part of the
integral involving Eo can be estima ted by an iteration
of the Born term but current knowledge of the energy
dependence of S phase shifts is so inadequate that
nothing more than an order of magnitude estimate is
believable. Of course, unitarity requires part of the
correction to the Born term to be of the form (16.9)
and (17.5).

.Because the Sphase shifts are small in the low-energy
region under consideration, it is legitimate to replace
sin8, by 8, and cosh, by 1. We then write the electric
dipole amplitude generated by e as

0
("&(&0)=

I
IFs

(17 3) ef
'

E1,'ef —2-
1. (

a ($i—$s) q po&QT (+&

+sF.I, I+I I, (» 1)
(-s, (2B(+Ps)) ((g'X( &j—8 16

&&

——(1/9) —2 7 4
4 4

(17.4)
where E'+) and E ( ) are unknown real numbers which
we hope are roughly energy independent. LThe other
un](nown electric dipole amplitude (14.1) may be in-
cluded in the definition of N(+&.j Order of magnitude
theoretical estimates suggest that the quantities E (+)

are probably no larger than 0.2 in absolute value and
they may be negligible. As discussed below, experi-

' Assuming small 5 phase shifts everywhere and the approxima-
tion to E&+, an&i 3f&+, , described above, Eq. (11.1) leads to

cv&+& =— d(u' —,'Ls& (ca') —h3 (co') ~
1 CO GP

+3Lsin8&3 cos()&3—sinS33 coal&33)&O(~') —(4/9)L2 sins&) cosh&&

—2 i 6„-5„+ l. 5, 8„—) 8„-H„&F & '))
+terms given by (14.1),

x& &=— —, ~L2(&&(~')+so(~')~ »
7I 1 CO

+3/2 sinh'&3 cos()«)+sin83g c s833$oFQ(M )

The I= -,', J=
~ equivalence to J= ~, I=

~ is a char-
acteristic of the static limit and will not persist in a
fully relativistic treatment.

It is interesting to note the appearance of the electric
quadrupole term under the integral in (17.2). The
magnetic dipole equations derived in reference 7 from
the cutoff model were completely decoupled from the
quadrupole, but at the same time, of course, they con-
tained two variables rather than one. The source of
these diGerences deserves further study but we have
nothing to report now.

If the approach used to discuss the q uadrupole
equation is applied to (17.2), one again arrives at the
conclusion that. the principal value part of the integral
analogous to that occurring in (16.6) is probably so small

as to be barely detectable. This time there is a logarith-
mic dependence on the cutoG because the extra factor
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ments indicate that both S&+& and S& ) are smaller
than 0.1.

In contrast to the situation regarding dispersion cor-
rections to the electric quadrupole and magnetic dipole
amplitudes, it seems likely that an evaluation of E&+'
will require a major advance in our understanding of
pion physics. In particular, the theory of 8-wave
scattering must be placed on at least as 6rm a footing
as that for the P wave before progress can be expected
with the electric dipole calculation.

E. I/M COKRECTIONS TO THE STATIC LIMIT

19. Because the accuracy of many experiments on
photopion production is now ~10% or better it is
worthwhile to attempt to improve the static limit by
considering first-order nucleon recoil sects, at least
for the large parts of the amplitude. Let us survey the
static limit results in order to identify the large terms.

First of all there is M~~, „&+', which in the static limit
is given by (13.1). This amplitude is large, partly be-
cause p,„—p is large and partly because the large 33
scattering amplitude is contained in the h factors. In
contrast M&~, „&'& is small because p~+p„ is small and
the 33 amplitude is absent. All the electric dipole
amplitudes generated by p are small and the electric
quad'rupole vanishes completely in the static limit. "
Of the p,-generated amplitudes, then, we need to correct
o»y m„,„(+).

Among the e amplitudes the Born term (15.1) must
be considered large and requires correction. All dis-
persion integral additions to (15.1) are small, however,
so that 1/M modifications are unnecessary. The recoil
problem for the e part of the problem is then very
simple: One simply calculates the 1/M parts of the
standard Born approximation.

The results of this calculation are surprisingly trivial.
As mentioned in Sec. (12) a group of the 1/M e terms
simply augment the anomalous proton moment, by an
amount t,/2M so that if the full proton moment is used
in all formulas involving p,„' these corrections are
accounted for. A second 1/M correction is easily
identi6ed with the current due to motion of the final
state nucleon. This contribution turns out to be

1+T3 1 .
ef r» ie qq s,

2 M(g

which is a mixture of 5 and D waves vanishing at
threshold and acting only when the final particle is a
proton. The remaining correction is simply to multiply
the entire Born term (15.1) by a factor (1+co/M) '.

The latter statement requires the quali6cation that
in (15.1) as well as formula (7.2) the quantities q and
k are the exact (or at least accu. rate to order 1/M)
values of the meson and photon momenta in the bary-

"The vanishing of EI+,„ is maintained in order 1/M.

centric system. Confusion is possible here because the
three quantities &o=W—M, co,= (qm+1)&, and k are all
equal in the static limit but differ in order 1/M. Also,
of course, the laboratory and barycentric systems are
indistinguishable in the static limit.

The factor (1+co/M) ' is often considered to be
associated with phase space but because of our starting
definition (7.1) of 8 we here associate the factor with
what we call the amplitude. There is, of course, no
physical content in this departure from conventional
procedure.

20. The essential part of the recoil problem, then,
lies with the magnetic dipole amplitude induced by the
nucleon magnetic moment. By a straightforward calcu-
lation, keeping 1/M terms, the relations which replace
(11.3) and (11.4) for the p case turn out to be

M&, „&+&((o)—Mi+, „&+&(u)
Re

f(y,, &J,„) (1——cv/2M)

0

1 p" M&, „&+&(s)')—Mi+, „&+&(co')

+— ' d(o' Im

1 1 1/Mi
+! !, (20.1)

(g'+(o ( 0 )

Mi, „&+&(cv)+2M&+, „&+&((o)
Re

f(& n I -) ( —~/—2M&

(d 0 1 )
1 p" Mi, „&+&(&u')+2M&+,„&+&(co')

+— d(u' Im

1 1 (1/M )
&& & +! ! . (20.2)

.M M 6) +ld ( 0 )
These equations should be compared to the P-wave
scattering equations (4.1) of the preceding paper,
which we reproduce here for ease of reference:

2f' (1—cg/2M'
!Re[&I&+& ((g) —h; &+& (cg)]=—

E —(a/2M )

X — —~ +—,(20.3)
.o)' —cv s)'+co M
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2f'( —co/2M )
!ReLh;~+& (ar)+2h,*'+'((o)j=—

L 1—a)/2M)

into the right-hand side of (21.1) to see how well it
reproduces itself. The error is a constant,

1 f'
+— ' d(u' ImLh;&" & ((o')+2h; &+& ((u') )

1 1 t" M&„'((u') —M&„'(co')
Qco3' x" g k'q'

(21.4)

1+-
M CO +(d M-

which can be approximately evaluated, if one assumes
a sharp 33 resonance at co=2, to be

It should be added that Eqs. (20.3) and (20.4) differ
from Eq. (4.1) of the preceding paper in that they con-
tain contributions to the integrals from the small
P-wave scattering amplitudes, which are of course
numerically negligible.

Both in the scattering relations, (20.3) and (20.4),
and in the photoproduction relations, (20.1) and (20.2),
orbital angular momenta of 2 units and higher have
been discarded under the dispersion integrals. The
legitimacy of this neglect is not clear but, with the
present state of knowledge about scattering phase
shifts, it seems the only practical course to take.

Notice that even when one includes 1/M corrections,
the 6rst and the third of the above four photoproduction
relations have the same form as the 6rst and third of
the P-wave scattering relations. The simple propor-
tionality (13.1), then, would continue to satisfy these
two magnetic dipole equations. However, the second
and fourth dispersion relations dier between scatter-
ing and photoproduction when 1/M terms are kept.
Let us see how much alteration in (13.1) this difference
requires one to make.

21. The dominant amplitude in both scattering and
photoproduction belongs, of course, to the 33 state.
By taking appropriate linear combinations of the above
equations, one finds for the 33 amplitudes the relations

M&„'((a) 2 f(p,—p„) 1 t."
Re =- +— da&'

hq 3

ImM&„'(cu')/h'q' 3 ImM&„e((o')/h'q'
X +2 Aae

CO Gl p=s M +(d

3f( n
—&.)

3M
(21.5)

The error (21.5) numerically is no larger than 1/M2
corrections which have systematically been dropped, so
we shall assume (21.3) and thus in general (13.1) to
be of adequate accuracy.

Presumably the reason that a factor (1+co/M) ' is
not needed in connection with (13.1) as it was for
(15.1) is that such a factor is already contained in the
scattering amplitudes h .

h&++& =-', (h&g+2hg3+2h»+4h33),

h'+ & =-', (hi&.—h»+2hsi —2h33),

h& +& =-', (h&&+2h&3 —hag —2h»),

3 (h11 h13 h31+h»)y

(22.1)

(22.2)

(22.3)

(22.4)

as well as the constant

l&.= (g„g„)/4M f', w—here g„=1.78, g„=—1.91.

One then has

1—P&+'=ie s{-',i(8g—53)Fe+coE&+&}

F. COMPLETE PHOTOPRODUCTION AMPLITUDE TO
ORDER 1/M. DISCUSSION

22. We summarize the results of the preceding con-
siderations by writing down complete expressions for
the three fundamental amplitudes f'+&, f& &, and f&".
To facilitate the writing, the following combinations
of t'-wave scattering amplitudes are introduced:

M&„'(h')+2M&„'((a')
+ Im

3M

4P 1 t- !Imh, (~)
Rehg (a)) =——+— des'

CO 5 J 1 I (I) Q7

(21.1)
+ie sq k{ 7th~+ & —~~ie ~»sin—b»(Fo —~~F~)}

+ie kq s{l&,h&+ & ——,'ie"» sin833(Fo+-', F~)}

+q (kX a) Ph&++&+ (4/9)ie"» sinB»F~}

Imhe (ru') 1
+p Ass +—Imha((g'), (21 2)

(u'+co M

Mls (~) Ijn Ijn
hg(ar)

2f
(21.3)

where the indices 1, 2, 3 have the signi6cance explained
in Sec. (17). One may now substitute the simple trial
solution

+io qq s . (22.5)
2%co

The dominant terms here are those containing the 33
scattering amplitude multiplied by A, . All other terms
may be regarded as perturbations. Omitted from (22.5)
are "small" P scattering amplitudes multiplying Pq
and F~, which arise from (16.9) and (17.5). These
could be included without difhculty but numerically
they are no larger than 1/M' corrections.
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Next we have

1
5.(—)—

ef
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ze e+2z
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—zo qq e . (22.6)
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Here, in addition to terms containing 'Ahg, the Born
part of the e amplitude is very important.

Finally there is

This amplitude has no large part at all and may be
considered as a perturbation on 5&+) and 8& ). The
chief signi6cance of 5"' is that it gives rise to a differ-
ence between the cross sections for positive and negative
meson production.

23. In a paper to be published later, the above ampli-
tudes are used to calculate various experimentally
measurable cross sections. It turns out that with the
unknown terms iV&+) and E& ) set equal to zero and
f'=0.08, no serious discrepancies between theory and
experiment are apparent up to the resonance energy.
This value for f is in good agreement with determina-
tions based on scattering experiments.

In closing, it should be emphasized again that the
results given above by no means represent a de6nitive
evaluation of the dispersion relations (8.1), even if one
assumes the latter to be valid. Our central assumption

g.+g.—S&')= —ie a
ef 2M

gz+g~—zzr «X(kXe) +zzr qq s . (22.7)
2M') 2'

has been that under dispersion integrals, the only
signi6cant contributions arise from the 33 resonance,
but beyond this many further approximations have
been made. The extent to which the cutoG model has
been used as a guide also should not be ignored. There
is as yet no real justi6cation for the identification of the
cuto6 equations with dispersion relations.

The practical results of this paper seem so similar
to those of reference 7 based on the cutoff model that
it is worthwhile to emphasize the differences. As men-
tioned already in reference 8, these differences are at
least partly due to the lack of I orentz and gauge in-
variance in the cutoff model.

First there are trivial modification which could be
guessed on the basis of plausibility considerations.
These are the "phase space factor" (1+&v/M) ', the
imaginary parts of the electric dipole amplitude pro-
portional to S phase shifts, and the nucleon recoil
current contribution (19.1). The absence of the cutoff
factor also could, of course, be guessed. Nontrivial new
results are the real electric dipole terms S~+), E& ) and
the corresponding term in P&" which is responsible for
the threshold negative to positive ratio. Only the latter
is predicted quantitatively but a qualitative under-
standing of X&+) and E& ' has been achieved. Also the
absence of magnetic moment form factors from the new
results should be noted. Finally it should not be for-
gotten that simpler equations for calculating "secondary
scattering" corrections have been achieved even though
these equations are as yet unexploited.

With luck, if we have made no serious mistakes, the
Anal amplitude written above may have an accuracy

5—10% in the subresonance region. It will certainly
deteriorate rapidly above resonance. Some further
improvement of the theoretical formula should be
possible but a basic limitation will necessarily remain
due to electromagnetic radiative eGects, which among
other things destroy charge independence. The fact
that radiative corrections are strong enough to produce
a 4% difference in mass between neutral and charged
pions shows that we must already be close to the
minimum error possible within the charge-independent
framework of calculation.


