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G. F. CHKw, t University of Illinois, Urbana, Illinois and Institute for Advanced Study, Princeton, Dew Jersey
M. L. GoLDBERGER, 1 Ferms Institute for nuclear Studies, University of Chicago, Chicago, Ilbnois

F. E. Low, University of Illinois, Urbana, Illinois and Department of Physics and Laboratory for 1Vuclear Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

Y. NAMm;, FerwI', Institute for nuclear Studies, University of Chicago, Chicago, I/lirlois

(Received February 21, 1957)

Relativistic dispersion relations are used to derive equations for low-energy S-, I'-, and D-wave meson-
nucleon scattering under the assumption that the (3,3} resonance dominates the dispersion integrals. The
I'-wave equations so obtained diRer only slightly from those of the static 6xed-source theory. The conclu-
sions of the static theory are re-examined in the light of their new derivation.

1. INTRODUCTION

& ISPERSION relations for the scattering of sr

mesons by nucleons have been given by many
authors. ' Proofs' based on the field theory formalism
have been given for the special case of forward scatter-
ing by Symanzik, Lehmann and Jost, and Bogoliubov,
for angles in6nitesimally near forward by Symanzik,
and for arbitrary angles by Bogoliubov.

In the neighborhood of the forward direction, the
dispersion relations express real parts of scattering
amplitudes as integrals over sums of partial-wave cross
sections. Since these quantities are at least in principle
measurable, one has at hand a multiple inhnity of sum
rules which may be compared directly with experiment.
This is the procedure which has been followed by
Anderson, Davidon and Kruse, ' by Haber-Schaim, 4 and

by Davidon and Goldberger. '
Another use to which the dispersion relations may be

put has been pointed out by Oehme' who showed that
in the static limit, provided higher waves than /=1 are
neglected, the equations of the static I'-wave theory are
obtained together with a similar set of static 5-wave

equations.
%e will here consider the problem in an intermediate

way, one which is motivated at the same time by the

success of the static I'-wave theory in correlating meson

scattering and photoproduction experiments and by the

observed dominance of the (3,3) resonance in dispersion

integrals. In effect we shall assume that the (3,3)
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resonance not only dominates dispersion integrals but
exhausts them. Once this assumption is made, the equa-
tions of the static theory follow naturally, since in the
energy range of the resonance the nucleon recoil ve-
locity is small, v/ &c~~. Including eRects of order v(c
gives us the contributions to the dispersion integrals of
the resonance region accurate to about 10% Our most
important conclusion will be that these assumptions
lead to effective range relations for the I'-wave phase
shifts; they do not make possible a determination of the
actual location of the (3,3) resonance, which must be
taken from experiment. Once the (3,3) phase shift is
known the 5-, D-, and small I'-wave phase shifts may
be directly calculated in our approximation. The
validity of the approximation is hard to estimate
without knowing the partial wave decomposition of
cross sections in the Bev region; order of magnitude
estimates based on known total cross sections indicate
that the resonant state is correctly given to about 10%
but that the contribution of high-energy cross sections
to a typical small amplitude, although less than 10%
of the (3,3) amplitude, is still comparable to the small
amplitude itself. More detailed studies of this question
are now being made.

In Sec. II we introduce the necessary variables and
describe the transformation from relativistically in-
variant scattering amplitudes to a partial wave de-
composition in the center-of-mass system. This material
is not new, nor is it related to meson theory; we include
it only for convenient reference. In Sec. III we give
dispersion relations and use them to derive equations
for S-, I'-, and D-wave scattering. The algebra in this
section is quite complicated. We advise the interested
reader (as opposed to the dedicated one) to read up to
and including Eq. (3.18), by which time the method of
calculation should be clear. The essential results of the
remaining algebra are contained in Eq. (3.20), (330),
(3.33), (3.34), and (3.35). In Sec. IV we discuss the
conditions imposed on the I'-wave scattering amplitude
by the I'-wave equations, and re-examine the solutions
of the static theory in the light of their new derivation.
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2. KINEMATICAL CONSIDERATIONS

Let the four-vector momenta of the incident and out-
going pion be q~ and q2, respectively, while those of the
initial and Anal nucleon are pi and pz. Momentum-
energy conservation,

spinor normalization is

(2 9)

Our considerations have shown that T may be
written

pi+ ql pz+ q21 (2 1)
T= A+i—y QB, (2.10)

P )(=Q )(=0,
P2+ g2 M2 Q2+ )(2 (2.3)

so that there are only two independent scalars, which
we may take as

v = P.Q/M —and (2.4)

The second of these variables is one-quarter of the
invariant momentum-transfer squared:

)('= —,
'

(qi —qz)'= —',(1'(1—cosg), (2.5)

where q is the three-vector momentum and 8 the scatter-
ing angle in the center-of-mass system. Also

v = vi, —(&('/M),

where vt, is the incident meson energy in the lab system.
Thus v is almost equal to the lab energy for moderate
momentum transfer.

To form further invariants, we must use the Dirac
operators. By virtue of the Dirac equation,

(iy pi+M)Ii=0,
(zy pz+M)zzz ——0.

(2.7)

Thus the invariants i& pi and ip pz may . be anticom-
muted through the matrix element until they act on
the initial or final spinor, respectively, where by (2.7)
they give a constant. The same is true for iy I~:=iy
~ (pz —pi)/2, so that only iy Q remains as an inde-

pendent scalar.
The 5 matrix can be written

means that only three of the four vectors are inde-
pendent. 7 tA'e choose to consider the combinations

I'=2(pi+pz), Q=z(qi+qz), ~=2(qz —qz)

as the three independent four-vectors.
The mass shell restrictions, pi =pz' ———M', qz'=qz'

=—i, mean that and
Ap„="()p A&+)+zz[rp, r )A&

Bp =pp B&+)+zzLrp, r ]B& &,

(2»)

(2.12)

where A &+) and 8&+' are simply functions of v and l~.".
It is frequently useful to express the (&) amplitudes

in terms of the total isotopic spin. One finds easily

A (+' = -', (A &'*'/2A &-:&)

A & =)', (A l &—) A-&l)), etc. (2.13)

Finally we state without proof the relation between
the A's and 8's and the conventional scattering ampli-
tudes in states of definite parity and angular momen-
tum. For this relation it is convenient to introduce the
center-of-mass variables

8'= total energy,

E= total nucleon energy,

x= cose.

In terms of these variables,

(2.14)

1 W+M W —M
A (6)— fz(k) f (6)

4zr X+M E M—(2.15)

i i i—B4(+)5= fi(k)+ fz(+)
4zr X+M E M—(2.16)

Here fi and fz are simply related to the scattering cross
sections in the center-of-mass system:

do e Q2e qi
f fi+ f»

dQ
(2.17)

where A and 8 are functions of v and ~', and are also
matrices in charge space. Charge independence limits
this last complication to a doubling of the number of
functions. Let P be the state of the final meson
(P= 1, 2, 3) and a that of the initial. Then

S=5f (2zl)zt& (p2+'q2 pl ql) where the symbol g represents a sum over final and
M' average over initial spin states. In (2.17) we have

xi ~
zzzTN&, (2.8) suppressed the superscripts referring to charge states.

(4EiEzcoz~z) Finally

where Ej and E2 are initial and final nucleon energies
and co~ and co2 the initial and final meson energies. The

(2.18)fi=2 f&+&(+i'(&) 2 f& I'& z'(&)—--
L=O l=2

7 In this paper four-vectors are represented by italicized sym-
bols, thus: p. Three-dimensional vectors are represented by
bold-face symbols, thus: p. The four-dimensional inner product is

p q=Zppqp=p q —poqo. Ke also set A=c=p=i, sphere p is the
pi-meson mass. The nucleon mass is N.

f =& (f-—f )&'(*),
/=1

(2.19)

where fi~ is the scattering amplitude in the state of
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parity —(—1)' and total angular momentum j=t+oi.
E&'(x) is the 6rst derivative of the conventionally
normalized I,egendre polynomial.

The f~ are normalized so that

(j+o) ™fi+=—«+,
4

(2.2O)

where 0~+ is the total cross section of the partial wave
involved. Thus, for energies below the two-meson
threshold,

sinb~+—gib&+lk (2.21)

where b~+ is the real phase shift in the state l~., above
this threshold a representation of the form (2.21) still
holds, but with complex 8g~.

ReA &+&(i,«')

E&'" j1 1
dv'ImA&+&(", «o)! ~ !, (3.1)

1—g/M Ev' —v v'+vj

3. DISPERSION RELATIONS

The form that the dispersion relations take depends
on the behavior of A(v, «') and B(v,«') for very large
values of v. In what follows we shall make a drastic
(and probably incorrect) assumption about this high-

frequency behavior: we shall assume that A and 8
approach zero suKciently rapidly so that all the inte-
grals we introduce converge uniformly (as functions of
«') in the neighborhood of «'=0. With this assumption,
we have

will contain arbitrary functions of ~' which do not
arise from resonant integrals, and which at present
cannot be predicted by dispersion theory. We shall
therefore take the point of view that the existence of
these arbitrary functions is one among many high-
energy eGects which we shall not attempt to evaluate;
we shall therefore use Eq. (3.1) and Eq. {3.2). Finally,
in order to simplify the results, we shall make the valid
approximation that the nucleon velocity is small in the
resonance region; we shall, however, carry our results
to include first order terms in this velocity (as opposed
to the static limit, which keeps only zero-order terms).
It should be understood, then, in the following that
although we shall continue to write integrals with an
infinite upper limit we really have in mind as an upper
limit the energy at which the (3,3) state fails to domi-
nate, say three or four hundred Mev lab energy.

We erst change the variables in (3.1) and (3.2) to
vz, and «' by means of (2.6). We find

l

oo

ReA &"'(v' «') = — dv~' ImA &+&(vg K)

1
X! ~, , I, (33)

&vg' vz, vg'—+vg —2«'/M j

g,'j 1 1
ReB&+&( 'v, «)=

2M ~vo —vs. vo+vr. 2«'/M j—
P j"

dv'' 1mB&+&(v'', «')

and !, (34)
vg'+vg 2«'/M j—

g,'j1 1
ReB&+&(v,«o) =

vs+v j

EI'" j1 1
+— dv'ImB&+&(v'«')

l

1—a /M &v' —v v'+vj jE+Mi jA+(W M)Bi—
(3 5)

Here v.= —(1/2M) —(«'/M) and g„' is the rational-
ized, renormalized (according to the Lepore-Watson
renormalization convention') pseudoscalar coupling
constant. Experimentally, g,'/4m=14. As usual the
symbol P stands for principal value.

In this paper we wish to exhibit the consequences of
augmenting Eq. (3.1) and Eq. (3.2) with the assumption
of the dominance of the (3,3) state. Put di6erently, we
shall investigate the eGects of (3,3) contributions to the
integrals in Eq. (3.1) and (3.2). Now if the integrals
in question do not converge su anciently rapidly to
make (3.1) and (3.2) meaningful equations, it is still
possible to obtain valid equations by subtraction at
some fixed value of v. The new equations so obtained

jE™&j A+(W+M)Bq-
!fo=I

E2W j( 4~ j (3.6)

As long as we intend to carry our calculation only to
a finite order in e/c (or equivalently 1/M), we save
ourselves a great deal of trouble by expanding in
powers of ~'. It will become obvious that 5-wave ampli-
tudes may be expected to be of order g„'/M=Mf„'
(although in fact they are greatly reduced from this
value for reasons that are still obscure), P waves of
order f,' (although the enhanced state here is of order
unity, of course) and D waves of order f„'/M, as long
as high-energy contributions to {3.3) and (3.4) are' K. M. %atson and J. V. Lepore, Phys. Rev. 76, 1157 (1949).

where vo= —1/2M.
Next we solve (2.15) and (2.16) for fi and f2 We.

find easily that
(3.2)
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negligible. In any case, these orders of magnitude should
be kept in mind as a basis for comparison of diGerent
terms. Here f 2 is, of course, the rationalized pseudo-
vector coupling constant, f„'=g„'/4M'

Let us write (2.18) and (2.19) in terms of x' rather
than the c.m. angle e. Including D waves (but no
higher), we have

tudes f(0), f'(0), etc., are of course still functions of
energy. Similarly,

6——fv ;=fi-'(0)+2q'fi" (0)+ F waves, (3.12)
(f2

fvr~fp;—=f~(0)+2q'f~'(0)+ F waves, (3.13)

( 2a')
fi=fs fn +—.~fv:-I 1—

q' j
2~') '

+-'fn-' 15l 1——
l

—3 +" (3 7)
E q'j

60
fn ;=—fi"-(0)+ F waves,

q4

6
(fn; —fn;) =—f2'(0)+ F waves.

g2

(3.14)

(3.15)

Finally, on the right-hand side of Eq. (3,3) we shall,
( 2~') at least for the moment, keep only the (3.3) state-

fnl)+' ' '' ( ' ) that is, we write

where q' is the c.m. meson momentum.
If we set ~'= 0 in (3.7), we obtain

fi(0)=fs+3fv;, (3.9)

since fn« fs in the region of interest. Differentiating
(3.7) with respect to 2 and then setting ~'=0, we find

I—ImA '+& (vr.
' ~')

4g

3(W'+ M) (1—2~'/q') 8"—M

E' M E'—M
Imf3&+', (3.16)

where again D waves have been neglected. Combiniog
(3.9) and (3.10), we find

3(1—2"/q')

E'+M
Im f3&+&, (3.17)

A' —M.

fs——fi(0)+ ~q'f&'(0)+ D waves. (3.11) f3"'=Sf» f3' '= —sf». (3.18)

The prime here stands for diBerentiation with respect
to x'. The argument zero also stands for ~'. The ampli-

We first calculate the resonance contribution to the
S-wave amplitudes:

1 E+M
Refs'+'=fi'+'(o)+-'q'fi'+"(0) =—' LA'+'(0)+kq'A '+"(o)+(W—M) (&'+'(0)+-'q'&'+"(0))]

4m 2$'

E+M (W M)g' ( 1 — 1 q'/M ) P t" 1 (3(W'+M)(1 q'/q")—
l+ — 4vn' Imf g&+& (vn')

2M ( vo —vt, vo+ vi (vo+ vr, ) j vn' vn & E'+M—
W —M (3(1—q'/q")

+(W—M)
lE'—N E'+M

1 ) ) 1 (3(W'+M) (1 q'/q") W' —M-
+E'—M j j vn'+vn ( E'+M 8'—M

(3(1—q'/q") 1 & i q'/M (3(W'+M) W' —M—(w M)l — ll~ l +
E'+M E' Mjj (vt, '+ vi,)' 4 E—'+'M E.' M—

3 1—(W-M)
l EE'+M E'—Mj j

where g' is tke nonrationalized coupling constant,

g'= g'/4

~e next express everything in terms of center-of-mass energies, using the relation vt, ——(W —M'-' —1)/2M.
There results, to the desired order in 1/M,

M g~ ( &o i ( cu ) 2M p ko ( 2' cv) ( 2ar' ar)
l~l 1+ I + „„l

1+ +—l~l 1+ - ——
I Imf "'(~') (320)

W 2M ( 2Mj h 2Mj s ~& q" E M Mj E M Mj
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where &o= W—M, o&'= W' —M, and terms of order 1/M
relative to those kept are left out.

We see that the strong energy dependence of fa pro-
duces no reaction on the S-wave energy dependence,
which to a high degree of approximation is given (ex-
cept for the trivial phase space factor M/W) by a
constant for f(+) and a constant times co for f( &.

It is a simple matter to add the low-energy contribu-
tion of the S-wave amplitude under the integrals. Here
we may be very careless in taking nonrelativistic limits,
since the term f2/(E M) —in Eq. (2.15) and (2.16)
receives no contribution from S waves. Thus, to lowest
order in 1/M,

fs=& (&('= 0)/4)r,

so that Eq. (3.20) becomes

(3.21)

Refs(+) —
I

X—(+)— X( ' I&I X(+)+( ~ l (
2M ] &. 2M )

I'p 1
(&t~' Imps(+) (~') ~, (3.22)

M CO M +ld.

where explicit expressions for ) (+' are provided by
Kq. (3.20):

g' 2M ('kv' ( 2(u')
X(+)= —

I
1y

I
Inlfs(+) (&d'), (3.23)

2M ~ & q'2E M)
g' 4M td(o'

+ ~
Imf3( ) (o)'). (3.24)

2M m ~ q"

nance. Ke prefer not to take such an agreement seri-
ously since the approximate constancy of high-energy
cross sections (as observed in cosmic rays) argues
strongly against the validity of Eq. (3.1) as it stands,
so that at least one subtraction must presumably be
made in Eq. (3.1).

Of course, if one is primarily interested in calculating
threshold scattering the partial wave reduction we have
performed is unnecessary since only S waves contribute
at zero kinetic energy. The constants ) &+' should there-
fore be calculated directly from (3.1) and (3.2). The
result of such a calculation for X&+' is inconclusive,
whereas for X( ', as carried out by Haber-Schaim, ' it
yields a number in surprisingly close agreement with
(3.25). This presumably means that in practice no
subtraction need be carried out to make (3.1)& & a
correct equation.

We turn next to the derivation of I'-wave equations.
We calculate first

y, (+) fz, (+)~f (6)(0)+Lq2f (k)~(0)

1 (E Mi—
I( —a &+&(o)——,'q2& &+&'(o)

4&rE 2W )
+ (w+M)L&'+'(0)+-'q'&'+'(0) 3 (3.27)

The Born approximation to (3.27) is easily found,
since (3.19) and (3.20) inform us that

1 (E+My
I (W—M) L~"'(0)+kq'&""(0)j I s--

4 (2Wi
M ( g ) ( co ) ( cv

1— & 1+
WE 2M) . ( 2Mj 4 2Mj

Thus

(E—M~
I(W+M)l &"'(0)+lq'&""(0)jl--

(3.25) E 2W
f(I) (q=o) = —0.11,
j(&)(q=o) =+0.16. (3.28)

These are the Oehme' equations. Now the contribution
of the S-wave integrals in (3.22) at threshold is small,
so that 'A&+) may be determined by experiment.

According to Orear, 9

thus

and
f(+) (0)= —0.02, f( '(0) =+0.09,

~(+&=0.0j., X(-)=o.a. (3.26)

These numbers for ) (+' are in fact not inconsistent
with (3.23) and (3.24) integrated over the (3.3) reso-

q' ( ~q ( ~) ( co)
I~I 1+—I,

(u &. 2M 3 E 2M) ( 2M)

where f'= g'/4M~0 08
The contribution of the (3.3) integrals is, however,

di6erent from the S-wave case:

q'f' (
Re (fp~ (+) fp~ (6))

co

&'I. +~1.—

9 j.Drear, Phys. Rev. 100, 288 (1955).

q' I' I"d»'
I+I 1+ I +

2M) 4 2M) ( 2M) 4M m. "g W

1 3(W'+M) (1—q'/q") W' —M (3(1—q'/q'2) 1
pre, (+)(»') — — + (W+M) I

VI, —VI, M+E' E'—M M+E' E'—M&.
3(W'+M) W' —M (3(1—q'/q")

(1—q'/q") — —(W+M) IE'+M E'—M E'+M E'—M&

q'/M 3 (W'+M) W' —M ( 3 1—(W+M)
I

——, I (3.29)
(»'+~r) . E'+M E,' MES'+—M E'—M) .
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Again we express vt, and vr,
' as functions of o) and o)' and expand in powers of (d/M and o)'/M. The result is

q'f' t' ~l ) ~& c
Re(fp:"'-fv—:"')-= —

I
1— I~ I

1+
o) ( 2M) E 2M) E 2M

P I"do)' ( 1 1 1
+q' — (—Imf3(+)(o)')

I +—W I. (3.30)
q" Eo) o) M o) +o))

Notice that except for the added constant 1/M, all 1/M corrections under the integral have gone into the energy
variable o)= W —M. That is, the form of (3.30), except for the added constant, is the same as in the static theory";
the diGerence is in the meaning of the variable cu, which is now obviously the appropriate one for describing low-

energy I'-wave scattering.
Next we calculate fv;.

6——Refp:=f~""(0)+2q'f)"'"(0)
g2

or

pE+M i
ILL (~)'(0)ykq'a (*)"(0)+ (W—M) (a(+)'(0)+2q'a(+)" (0))j, (3.31)

2W )

6 (E+M ) g' ( 2/M 4q'/M' ) P (."——Ref/;(+)=
I I

W, (W—M) I + I+— dv ' Imf, (+) (vL, ')
q' & 2W ) 2M' ( (vo+vr, )' (vp+vt. )') m& (

1 i 6(W'+M) 1 6(W—M) 1i 1 ~ 6(W'+M) 1 6(W—M) 1i—+
vt.

'—vt. ( E'+M q" E'+M q") vt, '+ vt. E E'+M q" E,'+M q")
2/M ~3(W'+M) W' —M t' 3 1» —,'q' ) 24&

+
(vt.'+ vt,)' & E'+M E' M-&E'+M E' M) J (vr, '+ v—g)' ( Mq")

W'+M W-M, 4;/M, 3(W+M) W M
Xl — l~ I +, —(w —M)I, —, I I

. (3.32)
E E'+M E'+M J (vt, '+ vt.)' & E'+M E' M—k,E'+M E'—Mi j

An entirely analogous reduction of this equation gives or

fv, (+)
—6 Re

4f' P ("do)'+-
J,

6 6 2
Xlmf p-;-'+'(o)')

(d' —o) M o)'+o)
(3.33)

—(fos (6)—fn s (6))

1 q4 f' 1 ( do)' Imf3(+) (o)')-
(3.35)

3 m o)' n-" q" (o)'+o))'

4. DISCUSSION OF RESULTS

Before going on to a discussion of these results, let
us find expressions for the D waves:

60
fn, (+)~f,(+)'(0)

The P wave equations -may be rewritten (using
(2.13))

8 f'q' 3 16 q' t'd(d' Imf»(o)')
Ref»= —— + f'q'+-

M 9 1lI) q o) +o)

or

q' 4f' 2 t.do)' 1m'(+) (o)')
fn~(+)= — +—

~

— (3 34)
15M o)2 n& q" (o)'+o))'

6
(fn +' fD~'—+')-:f2-' "(—0), —

g2

'0 G. P. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

3
Refw=Ref3) ——4 Ref)i— f'q',

4M

4 f'q' q' ( do)'
Ref» ——— +—P

3 o) s "q"
1/

Xlmf„(~ ) +—+-I I . (4.1)
-o)' —(0 M 9 (o)'+o) )
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and look for solutions subject to the one-meson approxi-
mation and to the condition that the (3.3) resonance be
properly located. These may or may not be such that
the (3.3) resonance integral dominates for low values
of ar, depending on v'(q) and, in the event of the existence
of several solutions, "on which one is chosen. All those
solutions which have substantial non(3-3) resonance
contributions to the right-hand side of (4.2) for small co

we throw out. This will include all of those solutions
having zeros in the low-energy region since these will

necessarily also have extra resonances which will con-
tribute to the integrals.

As shown in reference 10, the solutions of (4.2) for
~ not too large are roughly of the form

X qs/(o
(4.3)

independent of the shape of the cutoff function (pro-
vided it is singular enough to produce the observed
resonance), and provided there are no zeros of f . As
shown in reference (11), however, any zeros whose

"Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 453 (1956).

These equations are almost the same as those of the
static theory' (with the same assumption, of course,
that the resonance region dominates so that the con-
tributions of the "small phase shift" states may be
neglected). To obtain the static equations from (4.1),
one simply replaces q' by v'(q) q' where v'(q) is the cutoff
function, &a by (1+q')' )the reader will recall that
here co is the total center-of-mass energy: o&=q'/2M
+(1+q')'*j, and finally one drops the explicit 1/M
terms in (4.1). Since all of these changes are small ones
in the resonance region, we have in (4.1) a "derivation"
of the static theory and a method of partially under-
standing its agreement with experiment.

I.et us repeat this last point, since it is an important
one. The reason the static theory agrees with experi-
ment is that in the integrals on the right-hand side of
the dispersion relations the resonance region dominates,
so that Eq. (4.1) holds; Eq. (4.1) is in turn a conse-
quence of static meson theory, provided that there also
one assumes the dominance of the resonance integral
for low-energy phenomena. What we have achieved,
therefore, is not really a complete derivation of the
static meson theory, but a set of instructions on how

. that theory must be used and which of its results are
believable.

Let us replace Eq. (4.1) by the static equations Lsee
reference 10, Eq. (40)j:

q'"(q) q"'(q)
Ref =X + "q v(q)

Imf ((o') 2 p 1m'(cu')
X +Z, (4.2)

cv' —(u s cu'+(v

corresponding resonances do not contribute to the
right-hand side of (4.2) must be on the real axis, but
quite far from co=0, so that they result only in new
e6ective ranges for the three states.

If one actually tries to solve Eq. (4.2) for the location
of the resonance, one 6nds

1/rss co——„=1/f'cv „ (4 4)

Xq' q' t
d(o' Imfss(o)')

fss +
CO 7l ~ g 'M GO

—Z6

with X= (4/3) f' or, for a narrow resonance,

(4.5)

(4.6)

Xq' Xq' Xqs/I=—+
G7 M~ CO 1 (d/Q)q

(4,7)

where (4.6) follows from (4.5) provided v~„—~&)I'
where I' is the width of the resonance; in going from
(4.6) to (4.7) we have actually integrated (4.3) over
the resonance, again assuming the width to be small.
One may also derive (4.7) directly from (4.5) by noting
that for ~&&co„fss=0; thus the integral in (4.6) must
equal X.

Thus the effective-range formula is approximately
consistent with (4.1) for any resonance energy; the
equation does not, therefore, determine the resonance,
since the left and right sides are approximately equal
for any co„. Thus small terms in the equation, such as
1/9, or 1/M, or f', or the high-energy contribution, will

actually determine the precise location of the resonance.
In this way we can reconcile the cuto6 dependence of
the resonance energy predicted by Eq. (4.4) and the
dominance of the resonance integrals in Eq. (4.2).

We conclude that the shape of the resonance curve is
determined by our considerations once the position of
the resonance has a given value; this position how-
ever, we have not been able to determine from 6rst
principles.

For the small phase shifts, @re have only to do the
integrals over Cko'. We find easily

g f q'/~
11=

3 1+co/Mp (4 g)

where ~,„ is the cuto8 energy. The location of the
resonance at a moderate energy with a small coupling
constant f'=0.08, therefore, necessitates a high cutoff,
cu,„»1.This circumstance in turn insures the approxi-
mate constancy of the e6'ective ranges r .

This set of statements may be approximately deduced
directly from Eq. (4.1). In particular, if we consider
1/9«1 and 1/M))1, then the equation for fss becomes



CHEW, GOLD BERGER, LOW, AN D NAM BU

where we have again set I', 1/M, and 1/9 approximately
equal to zero.

I.et us summarize: the assumption of the dominance
of the (3.3) contribution to low-energy dispersion
integrals, together with the experimental location of
the (3.3) resonance, leads to the following results:

(1) The P-wave phase-shifts approximately satisfy
eRective-range formulas

28 ( ca

9 &or+(o,)
32( cu

Say'*=-XD 4——
i

9 E~+(g,)

(4.11)

(4.12)

(4.13)

X q'
cot8 —j.—o)v, (4.9)

with

Xii= —(8/3) f', X8g=-',f', Xig= Xai= ',f', —-
f33—1/(0 Yii:A/3 rgi f33

(4.10)

'~The D-wave phase shifts given here have been previously
obtained by V. Wataghin (unpublished). We would like to thank
Dr. Wataghin for informing us of his results.

Also, to order 1/M, f» f3i, as i——n the static theory.
(2) The S-wave amplitudes should be approximately

given by the two zero energy scattering lengths, ) &+);

since we have not considered the addition of any arbi-
trary constants, the only interesting fact that emerges
is that even to order 1/M the strong energy dependence
of the (3,3) state has no reflection in the S-wave energy
dependence.

(3) The D-wave phase shifts are approximately
given by"

[with Xii=(1/15)(f'/M)g'/co'j, as one finds simply
by carrying out the integrals in (3.34) a,nd (3.35) in
the zero-width approximation. Now X~=0.21' at co =~„,
so that the D wave phase shifts are all very small.
Since, however, 8D,& is of the order of magnitude two
degrees at ~ao„, and since the weighting factor for a
j=5/2 state is 3, the present analysis in terms of P
and 5 states is unreliable as far as the small I' phase
shifts and 5 phase shifts are concerned in the resonance
region.

Finally, which of these results wi)l survive the addi-
tion of contributions from high-energy cross sections?
It is our tentative opinion that only the (3.3) amplitude
will stand this test, since the others, with the possible
exception of fii, are so small that very small corrections
can change them by their own order of magnitude:
the present theory predicts b»=8» —4' at the reso-
nance, which is just the order of magnitude of the
high-energy contributions we have estimated from the
known total cross sections at 1 Bev. The chances of
the present theory adequately describing 8», 6», and
the D waves are thus very small. A slight consolation
is perhaps that the argument can be turned around,
and eventual measurement of 5~3 and 63~ used to provide
information on the high-energy cross sections.


