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Composite Particles of Zero Mass
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(Received March 8, 1957}

A neutrino theory of spin-zero particles of zero mass is constructed in terms of bilinear neutrino operators.
The restrictions of a two-component neutrino theory are shown to reduce the possible 6elds from three to
one. Further, by using a two-component neutrino theory it is shown that it is impossible by using bilinear
expressions to form a theory of light and that using quadrilinear expressions cannot produce a theory of
gravitation.

I. INTRODUCTION
' 'N an article in 1938 Pryce' showed that the neutrino
~ - theories of light formulated up to that time were
subject to a grave fault. They were not invariant under
spatial rotations. The proposal of Lee and Yang' that
the neutrino is to be described by a two-component
equation suggests that the question be reinvestigated.
This is done below.

It should be remarked that since the original argu-
ment uses only invariance properties with respect to
the proper inhomogeneous Lorentz group and since the
two-component theory merely describes an invariant
decomposition (with respect to this group) of the four-
component theory, the same conclusions must follow.
There are, however, two impressions prevalent which
we shall show to be false.

The erst impression is that a composite neutrino
theory is tied to one dimension. After some formal
preliminaries in Sec. II, this is shown to be false in
Sec. III by an explicit construction of a spinless,
massless 6eld in three dimensions using a two-compo-
nent neutrino theory. To see the reflection properties
of the spinless 6eld constructed, we consider the same
problem using a four-component neutrino theory in
Sec. IV. From the results obtained there, it follows that
the field constructed with the two-component neutrino
describes an equal "mixture" of scalar and pseudoscalar
particles.

The second impression is that the diKculty with the
"neutrino theory of light" arises because light is trans-
versely and neutrinos are longitudinally polarized.
However, the two-component neutrino has the same
type polarization as light. On the basis of the theorem
provided in Sec. V, it can be concluded that the "two-
component neutrino theory of light" still does not work.
Another consequence of this theorem is that one cannot
construct a "neutrino theory of gravitation" by using
four two-component neutrinos.

II. PRELIMINARIES

while all other anticommutators vanish. Under trans-
lations in. space and time, a(Prnr) and b(Prnr) will
transform as expfiPr(nr r—t)] while a*, b* transform
as expt —iPr(nr r—t)]. We choose our convention so
that under rotations around the direction n~ the
transformation of a is:

+(Plnl)~+ (Prnr) e +(Plnl) ~

Then the other operators will transform so that

a*(Prnr) —&u'*(Prnr) =e'"a*(Prnr)

f (Plnl)~f (Prnr) e f'(Plnr)

b*(P,n, )-+b'*(Prnr) = e '"b*(Prnr).

(2a)

(2b)

(2c)

(2d)

that for particles of mass zero and spin s the spin must
be either parallel or antiparallel to the momentum. If
invariance under spatial reQection is also required, both
possibilities must occur. We shall refer to the case where
only one or the other are present as a "two-component
theory" mhile the presence of both will be a "four-
component theory. "

It is assumed that we are given a 6eld describing
massless particles of half-integral spin s quantized
according to Fermi-Dirac statistics. The question we
wish to discuss is the following: Can we construct
operators from the given 6eld operators which will
describe an integral-spin Geld quantized according to
Einstein-Bose statistics?

First let us consider two-component theories. Corre-
sponding to a momentum of magnitude E1and direction
n1, we have absorption and emission operators for the
particles which will be denoted by a(Prnr), a*(Prnr)
respectively. There will be similar operators for the
antiparticle which will be written as b(P&nr) and
b*(P,n,). The commutation relations are

[a(Pgnl), a*(P2n&)]+= Lb(P&n&), b*(P2ng)]+
=b(Prnr, P2n2), (1)

As Wigner has shown, ' invariance and irreducibility
under the inhomogeneous proper Lorentz group requires

*Permanent address: Physics Department, University of
Michigan, Ann Arbor, Michigan.' M. H. L. Pryce, Proc. Roy. Soc. (London) A165, 247 (1938).' T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).' K. P. Wigner, Ann. Math. 40, 149—204 (1939).

. Suppose we attempt to construct operators for anew
field which are to be bilinear combinations of the above.
If g(kn) is to be the absorption operator for a particle
of momentum kn, energy k, it must transform as
expLik(n r—t)] under space-time translations. There
are three types of terms that can occur in the expression
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for $(kn). These are

C*(Pini) C'(Ping),

C(Pini) C'(Pgni),

C*(pin])C*'(Pine).

(3a)

terms of the form ni, ni, Pi, Pi can be written as

a*(pi)a(Pi)5(pg —Pi, k), —~ &Pi,pg(~, (9a)

(3b) while the terms of the form n&, p& are just

(3c) a*(Pi)a*(pi)5(—Pi—Pi, k), —~ &Pi,p&(00, (9b)

(Here C, C' can be either a's or b's. ) What restrictions
.are implied by the translation properties' If terms of
the form (3a) appear, we must have

ind the terms n4, p4 are

a(pi)a(pi)8(pi+Pi, k), —~ (Pi,pg(~. (9c)

From operators of the form (9) we can clearly only
form absorption operators for particles of spin 0 and
spin 2s. For spin 0 only the form (9a) can occur, while
for particles of spin 2s only (9c) or (9b) can occur
depending on whether we are describing particles which
behave as e '"' or e+'"' under rotation.

With a four-component theory of our particle of spin
s, the situation is quite analogous except for a certain
increase in freedom. Instead of a single absorption
operator for a particle of momentum Pn, there are two,
which we denote by a~ and a2. Under translations these
have the same behavior, but they have opposite be-
havior under rotation. Thus if we take as a convention
that a~ behaves as e ", then a2 will behave as e+'".
The possibilities expressed by (9) are increased since
each a can either be an a~ or a2. For example, for
absorption operators for a particle of spin zero, we can
have instead of (9a) the four possibilities

(4a)kn =P2n2 —Pyny,

P2 P],

Squaring Eqs. (4) and subtracting gives

0= 2pipp(1 —ni ni).

Hence na=n~. From Eq. (4a) we see this common
direction must be n. The only expressions of the form
(3a) that can occur are then

C*(Pi)C'(P2) 8 (Pi—Pi, k), (6a)

where we have suppressed the common direction n.
Similarly the only expressions of the form (3b) must be

C(pi)C'(Pg)5(pi+Pi, k), (6b)

while there can be no terms of the form (3c). Intro-
ducing particle and antiparticle operators explicitly,
we thus have the eight possibilities

ai (Pi)ai(P2)~(P2 ply k)y

a2 (pi)a2(P2)~(P2 ply k)yl

ai (pi)a2 (P2)b( P2 pl) k)y

ai (pi) a2 (P2)b (P2+Pi k) ~

(10a)

(10b)

(10c)

(10d)

~ii a (pi)a(P2)~(P2 ply k))

A2 b (pl)b(P2)~(P2 pi) k)y

~,=a*(p,)b(P,)S(P,—P„k),
n4=b*(pi)a(pi)5(pp —Pi, k),

Pi ——a(p, )b(pg)8(p, +Pi, k),

Pi——b(pi)a(pi)5(pi+Pi, k),

p3 b (Pi)b (Pi)8 (Pi+pi k),

p4 ——a(p, )a(pi)8(p, +Pi, k).
I

Here, of course, all P's are restricted to be positive.
A notational simpli6cation is obtained by defining a' s
for ne

III. CONSTRUCTION OF A SPIN-ZERO FIELD

We wish here to construct the absorption and
emission operators for a massless, spinless 6eld in terms
of bilinear combinations of a two-component spin-s
field. The considerations of the previous section shows
that the absorption operator P(k) for momentum kn
must be of the form

$(k) =pi a*(p)a(P+k) f(p, k). (11)

The anticommutation relations are simply
are then. automatically satisfied. Here the c numbers+» & ~ & ~ (ga) f(p, k) are to be determined so that

(Sb)
Lk(k), 0(k') j-=0, (12)

[a(P),a(P') 3+=o,

gative P by It is fortunate that only spin-s operators corresponding

( ~ p~) b8(~ p~) 4(
~ p~) b([p~) (7) to the direction n appear. The conditions

Lp(kn), $(k'n')$ = L((kn), P(k'n')$ =0 for n&n'

Ke note that these definitions are consistent with the
rotational properties expressed by Eqs. (2). Thus,
under rotations around n, all a's transform as e "~
while all a*'s transform as e+".The eight possibilities
listed above can now be lumped in three groups. )All

B(k),P(k') j =B(k,k'). (13)

For simplicity a box normalization has been assumed
so that integrals over momenta can be reduced to sums
over integers. Following Pryce, ' P is taken to mean

where R is some large fixed number. It is
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assumed that all particle and antiparticle states are easily obtained. Let
empty for suKciently high momenta, i.e.,

1

a(IPI)+=a*(—IPI)~=0, IPI)Q, ~h~~~Q(R. (14) ~1(»= k~ai*(»ai(P+k) (»a)

Using Eqs. (11) and (9) we obtain

L)(k),$(k')] =Qpf f(P,k)f(P+k, k')

f(P+—k', k)f(P,k') ){a*(P)a(P+k+ 0') ) .

1
C2(k) = p a2*(P)a2(P+k),

P
(19b)

+ai*(P)a2*(—P—k) }. (19c)

1

The condition of Eq. (12) is obviously satisfied if (2k)' p
f(P,k) is independent of k, i.e.

f(P») =f(k) A general solution' is

Hence

~(k)=f(k) 2 a*(P) a(P+k).

With Eq. (17) we 6nd

(17)
provided

$(k) &1C1(k)+&2C2(k)+&3C3(k)

I~11'+ l~2l'+ Ia3I'=1

/21/33 +/21 /23+/22/23 +/12 &3

(20)

(21a)

(22a)

Two distinct cases arise:
Lk(k), F(k') j=f(k)f*(k') Z {a*(P)a(P+k—k')

(1) u3 ——0. The condition of Eq. (22a) is automati-

a*(P+.k/)a(P+k)~ cally fulfilled and we only have the normalization
condition

Changing variables in the second term gives lail'+ I~2I'=1 (21b)

Q a*(P+k')a(P+k) = P a~(P)a(P+k —k').
(Z) rr3/0. SinCe the ChOiCe Of phaSe Of $ iS alWayS

arbitrary we can choose it so that n3 is real. In addition
to the condition (21a), we then have the reality
condition

Using the conditions of (14) and the commutation
relations, we And

&1+/11 +&2+&2 (22b)

3

Q a*(P)a(P+k —k')
—8+0'

Hence

L((k),P(k')] =
~ f(k) ~'kli(k k')

+1~+1 ~2) +2~~2 +11

It should be noted that the solution for the "two-
component theory" obtained in the previous section
merely corresponds to the special case of Eq. (20) with
Q2=CK3=0 and N1= 1.

k/ (k k/) p 3/ (p) (P+k k/)
This relationship may be used to determine the

parity properties of the field described by Eq. (18).
Under spatial reflection, the operators a1 2 of the four-
component theory transform so that

Therefore the condition (13) yields3

and thus'
f(k) = 1/Qk,

$(k) = Q a*(P)a(P+k).
k P

IV. SPIN ZERO FROM A FOUR-COMPONENT THEORY

An analogous procedure can be followed here. Instead
of Eq. (11) an arbitrary combination of terms of the
form of Eq. (10) may be tried. A general solution is

4 An arbitrary multiplicative phase factor is certainly always
possible.

This is identical with the one-dimensional solution obtained
by Max Born and N. S. Nagendra 5ath, Proc. Indian Acad. Sci.
A3, 318 (1936).

Hence C»~+C3'= —C3 and describes a pseudoscalar
6eld. C» and C 2 are merely interchanged under reflection.
Instead of these operators, we can introduce the
combinations

C, (k) ={Ci(k)+C2(k))/v2,

C„(k)= {C,(k) —C, (k))/VZ.

These clearly have the transformation properties sug-
gested by the subscripts: C, describes a scalar field and
C~, a pseudoscalar Geld. Expressing the field described
by Eq. (18) in terms of these operators gives

$(k) = {Cs(k)+Cps(k))/V2. (23)
8 The relative phases of the two terms in Eq. (19c) could be

chosen arbitrarily. However, this merely mirrors the lack of
uniqueness of operators defined only by the anticommutation
relation (8).
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From this we can conclude that the spinless field
resulting from a two-component theory describes a
particle with "mixed parity. " It is a superposition of
equal amounts of a scalar and a pseudoscalar Geld.

(Tacitly we know that F=O unless P1+P2+ +P
=k, but we shall not need this. ) Since the a's all
anticommute, it is clearly no restriction to assume

(1) F=O if any P;=P;, 2W j; (26a)

(2) F(P1,P2 ''' P ) &F(p] P2', ,P„') (26b)

if P1', P2' .P ' is merely some permutation of P~, P2,
~ P . [The+ (—) signholdsif thisisaneven (odd)
permutation. ) Let us see if the commutation relation

[~,e5-=1
can. be satis6ed by an appropriate choice of E. This
requires that the commutator be independent of
operators a.

For the commutator, we have

F(P.,P.,",P-)
P1P2 ~ ~ Pm I'1 I'2 ~ ~ ~ +m

V. FIELDS OF SPIN ms

Given a two-component field of spin s, we can now
ask whether we can construct the 6eld operators for
particles of integral spin ms by using nz of the original
operators. Thus for m=2, s=~ we would have a
"two-component neutrino theory of light" and for
no=4, s= ~ we would have a "two-component neutrino
theory of gravitation. " This we will show to be im-
possible, in the sense that the transformation properties
discussed in Sec. II determine the form of the possi-
bilities we can try to such an extent that the relevant
commutation relations cannot be satis6ed.

The minimum requirement we can ask is to form the
appropriate operators for a two-component theory of
spin nzs by using m spin-s operators. Thus let us try to
construct the absorption operator $ for a particle of
momentum kn which under rotation about n behaves
as e '"".(We shall omit the index k since the impossi-
bility can be proved by using only one k.)

The same arguments as in Sec. II shows f must be a
superposition of terms of the form

a(P1)a(P2) . a(P„)b(P,+P2+ +P, k);
—~ &P„P2, ~ ~, P„&~. (24)

Hence the most general possibility for $ within the
present context is

F(P1,P2, ,P )a(P1)a(P2) a(P„). (25)
&1&2~ ~ ~ I m

[, 5~—222N(P1)N(P2) ~ ~ .N(p 1), (32)

where the equivalence is understood to mean an
equality only so far as terms of the form X&S& S
are concerned. Finally then

[P,&~5 222(212!) —Q ~
F(P1,P2, .P ) )2

XN(P1)N(P2) N(P~1). (33)

Hence, if these operators are not to occur in [$,P5
we must have

(34)

Let us restrict our attention to those terms in (2/)
which are not trivially zero and are diagonal in the
spin-s field occupation numbers. These arise only from
terms with P&', P~', P ', some permutation of Pq,
P2, -. P . By using the properties expressed by Eq.
(26), these can all be rearranged so that P1'——P1,

P '=P . Therefore

[k,k 5 (d»g»»)=222! Z ~F(pl, P2)' 'Pm)
~

&1&2~ ~ ~ &m

X[.(P,).(P,),.*(p„).*(p=,) . 5 . (28)

The commutator under the sum in Eq. (28) is

L, 5=a(P1)a(P2) "a(p--1)a*(p-1)" a*(P1)
—a*(p )a(P1)a(P2) a(P 2)a*(P 2)

Xa*(P1)+a*(p„)a*(P 1)a(P1)a(P2)

Xa(P 2)a*(P 2) a*(P1)— ~ . (29)

(It has been assumed that 222 is even. ) On inserting
Eq. (12a) into (28), we shall successively interchange
the names of the summation variables. Thus corre-
sponding to the second line of (29) we interchange P
and P ~, corresponding to the third line we interchange
P and P 2, etc. Equation (28) remains the same but
now the commutator under the summations sign is

5= (p) (p) " (p=) *(p -) - *(p)
(p 1)a(P1)a(P2) ' ' 'a(p 1)a (P 2)

Xa (P1)+a (Pm—1)a (Pm —2)a(pl)a(P2) ' ' '
Xa(P 1)a*(P 2) a*(P1)—. . (30)

If we consider only terms of highest order in the
occupation number operator (¹¹N 1), we can
freely commute the operators in Eq. (30) so that for
these terms all the rows are equivalent to the first, i.e.,

222a(p, )a(P2) ~ ~

Xa(p 1)a*(p„,) ~ ~ a*(P1). (31)

This last expression can in turn be expressed in terms
of the occupation number operators,

F2 p p p p p Then $ vanishes identically.
Putting m= 2 and 4, respectively, we see that neither

Xa*(p„')a*(P,' . .a*(p,')5. (27) a two-component neutrino theory of light using bilinear
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expressions in neutrino operators nor a two-component
neutrino theory of gravitation using quad rilinear
expression in neutrino operators is possible.

VI. CONCLUSION

The situation can be summarized as follows:

(I) Using a four-component theory of half-integral
spin fields, we can form three essentially independent
fields of zero spin using bilinear expressions.

(2) The restriction to a two-component theory re-
duces these to one spin-zero field. This field is a parity
mixture with equal amounts of scalar and pseudoscalar.

(3) Expressions of ntth order in the operators of a
two-component theory of spin s cannot produce
operators for spin nts (nt even).

This situation may be compared with that starting
with an integral spin-s Geld. Bilinear operators of
either a two- or four-component theory cannot be
constructed which will describe either spin 0 or spin 2s.
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The recent results on nonconservation of parity in decay
processes involving neutrinos do not provide an unambiguous
solution of the r-8 puzzle. In fact the 2m and 3x decay modes of
8 and r involve no neutrinos, whereas the Lee-Yang two-compo-
nent neutrino theory attributes the nonconservation of parity to
special properties of the neutrino. However, even if the r and 8
:are diferent particles with opposite parities, the neutrino decay
modes (p,r), (e,v, v), and (y,v, v), which presumably violate
yarity conservation, will cause mixing of the two particles r and
8—in the sense that the states with definite lifetimes will be
certain linear combinations, E~ and E2, of ~ and 8. Both E'j and

E2 will then decay into both 2~ and 3~ as well as the neutrino
modes, but with difI'erent lifetimes. An explanation of the apparent
equality of lifetimes of r and 8 may be that under present experi-
mental conditions only the long-lived component E2 is observed.
If this is the case, interference effects between the El and E2
components should be found in experiments performed at shorter
times. Conversely, absence of such effects would constitute strong
evidence that v and 8 are identical.

Phenomenological expressions are derived by the Wigner-
Weisskopf method for the decay rates, including interference
effects; and various experimental possibilities are discussed.

I. INTRODUCTION

'HE recent spectacular developments concerning
parity nonconservation in P decay and sr- and

p,-meson decay' ' have not as yet led to a dear under-

standing of the familiar problem that motivated them,
namely, the ~-0 puzzle. It is of course now possible to
suppose that the puzzle has vanished: that ~ and 8 are
one and the same particle, which may decay, with
violation of parity conservation, into both the 2x and
3w modes observed in E-meson disintegrations. But in
the processes where parity nonconservation has been
established experimentally, neutrinos are always in-

volved among the decay products; arid it appears that
the parity conservation law is violated here in a very
special way "attributable" to special properties of the
neutrino. 3 No equally natural and compelling picture
for parity nonconservation in decay processes not
involving neutrinos has as yet been put forward. It is

*This work was supported by the Office of Naval Research
and the U. S. Atomic Energy Commission.
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thus still conceivable that the r and 0 mesons are
diGerent particles. If this is so, one is still faced with
the familiar problem of understanding, among other
things, the apparent equality in their lifetimes.

It was in fact this problem that represented one of
the major dif6culties with the parity-doublet scheme
introduced by Lee and Vang. 7 We may now, however,
re-examine this scheme in the light of the apparent fact
that parity conservation is always violated in decay
processes involving neutrinos. 4' Suppose, as did Lee
and Yang, that 7. and 0 are members of a parity doublet,
and that between them they account for all the decay
modes observed among E mesons; for the charged E
mesons: E2„, E3, K„„, E, „, E„„.In the original
scheme parity conservation was of course assumed. Let
us now abandon this conservation law, but onLy' for
those processes insoLsing neutrinos. Even in the original
scheme, it was always conceivable that 7. and 0 could
both contribute to neutrino decay modes, but they
could do so only to states of opposite parity. Now,
however, it appears that both ~ and 0 could contribute
to neutrino processes involving the same states. If this
were the situation, it would give rise to a "parity"

' See, e.g. , Report of the Sixth Annlal Rochester Conference on
IIigh Energy Physics (Interscien-ce Publishers, Inc. , New York),
Sec. V, p. 2.

T. D. Lee and C. N. Yang, Phys. Rev. 102, 290 (1956).


