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absorption process. ) Using the value Grs/4m=12, we
obtain gQ, ff—11.7X10 "erg cm', giving an absorption
rate of 6 sec ' in hydrogen. Verification or refutation
of this prediction would be proof, one way or the other,
of the presence or absence of any p-meson weak cou-
plings in addition to (A2) and (E2). It seems plausible
that experiments will either agree with this figure of
6 sec ' or will give a rate of about 140 sec ', the figure
expected on the assumption that ii absorption occurs
through a scalar Fermi coupling with gs=3X10 "
erg cm'. The major uncertainty in the figure 6 sec '
stems from uncertainty in the coupling constant G~.
It is however reassuring to note that the approximations
made in arriving at (18) will err in the same direction

as the approximations made in the derivation of the
Kroll-Ruderman theorem, ""from which we derive
the value of G».

We have here been concerned with the better known
particles and decay processes. But it is hoped that the
considerations presented will be of assistance in under-
standing the decays of the strange particles.

It is a pleasure to thank Professor S. B.Treiman for
his helpful advice and encouragement, and Professor F.
J. Dyson for a valuable discussion. This work was
performed during the tenure of a National Science
Foundation predoctoral fellowship.
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In the two-component theory, the neutrino that can exist in nature is characterized by one of the eigen-
values of the "chirality" operator, y5, which anticommutes with the parity operator. The chirality operator
is generalized so that it can be applied also to bosons. The E particle that can exist in nature is characterized
by a certain condition on the eigenvalues of the chirality operator. There is strong reason to believe that
the chirality quantum number thus introduced is closely related to the strangeness quantum number.

j.. INTRODUCTION

HE series of theoretical eGorts, which has origi-
nated from the tau-theta paradox, has culminated

in a return to the once-abandoned two-component
neutrino theory. ' The present paper is intended to show
that a unified point of view is possible in dealing with
both problems.

A special mathematical formalism is used in this
paper, so that an operator called "chirality, " which
anticommutes with the parity operator, can be applied
to both fermions and bosons. In the case of a spinor
particle, the eigenva1ues of chirality are &1, but they
are good quantum numbers only when the mass is zero. '
If we take one of the possible eigenvalues (say, —1 in

~ The word "chirality" (pronounced as kirality) seems to have
been coined by Kelvin and was extensively used by Eddington
(A. S. Eddington, Famdamenta/ Theory (Cambridge University
Press, New York, 1949, p. 111j.The usage of this term here may
be justified by two reasons: (1) Etymologically, it can mean
"handedness. " (2) Kddington used it also in the sense of the sign
of y5 though in.a diRerent context. .

~ W. Pauli, Bandbuch der I'hysik (Julius Springer, Berlin, 1933),
Vol. 24, p. 226; A. Salam, Nuovo cimento 5, 229 (195/);
T. D. Lee and C. N. Yang, Phys. Rev. 105, 16'7l (1957); L.
Landau, preprint, among others. Experimental tests, proposed
by Lee and Yang LPhys. Rev. 104, 254 (1956)j, played a decisive
role in this development.

~ This is true only when one uses p& as chirality operator. For
further discussions of a chiral particle of spin ~ with finite mass
and finite charge, see S. Watanabe, Nuovo cimento (to be pub-
lished).

the right-handed coordinate system), we obtain the
well-known two-component theory of neutrinos. If the
mass is finite, the chirality is indeterminate (zero on
the average). '

In the case of a boson, the eigenvalues are +2 and 0.
They are good quantum numbers even if the mass is
finite. The scalar particle can have only eigenvalues &2.
The eigenstates of chirality imply of course an indefinite
parity. Conversely, a boson with a definite parity (such
as pion) has an indefinite chirality (zero by convention).
In view of the fact that the same E particle seems to
be capable of decaying into two pions or three pions,
it is proposed to assume the IC particle to be in an
eigenstate of chirality. ' The tensorial rank of E particles
is assumed to be zero, i.e., of the scalar type. Each of
the two eigenstates of chirality (&2) provides further
two eigenstates, corresponding to two possible charges.
To accommodate the E particle and the anti-E particle
(either charged or neutral), one thus has four possi-
bilities to choose from. This leads to two alternative
assignments of E particles to chiral eigenstates. It is
still premature to decide which alternative is preferable.

According to the 6rst assignment, the E particle
(either positive or neutral) is identified, say in the right-

3The assumption that the theta and ttM t@u are the same
particle naturally leads to a unique lifetime for two-pi and three-pi
decay modes.
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hand coordinate system, with chirality +2, while the
anti-E particle (either negative or neutral) is identified
with chirality —2. In this choice, the X particle with
chirality —2 and the anti-E particle with chirality 12,
in the right-hand coordinate system, are declared to be
nonexistent in nature. According to the second assign-
ment, both E particle and anti-E particle are supposed
to have chirality +2, and corresponding particles with
chirality —2 are considered as nonphysical.

In the Grst assignment, the E particle and the anti-E
particle are the charge conjugate of each other. This
reproduces thus, in the case of neutral E particles, an
aspect of Gell-Mann and Pais' theory. 4 In this first
assignment, the theory can be made invariant sepa-
rately for charge-conjugation and for space-and-time
inversion. In the second assignment, the theory can be
made invariant separately for time reversal and for the
combination of charge conjugation and space inversion.
The latter is analogous to the two-component neutrino
theory. In either assignment, a E particle, by space
inversion, becomes a forbidden kind of particle. In other
words, to describe the same E particle in the right-hand
and left-hand coordinate systems, one has to use wave
functions with opposite chiralities (but with the same
charge).

In either assignment, an arbitrary number of E
particles (and/or anti-E particles) can interact with an
arbitrary number of pions.

Chirality as a physical quantity is perfectly well de-
6ned within the framework of the accepted concept of
space, yet it has not been exploited up to the present.
For this reason, it can be expected that this new variable
may be capable of giving a meaningful interpretation to
some empirical facts that have hitherto escaped expla-
nation. In fact, in the 6rst assignment, one-half the
chirality turns out to be equal to the "strangeness"
number of the E particle. In the second assignment,
one-half the product of chirality and charge is equal to
the strangeness. This might not be considered to be a
trivial coincidence.

This significant situation encourages a further specu-
lation that a hyperon is probably a compound particle
composed of a nucleon and E particles, in such a way
that the algebraic sum of the strangeness numbers of
constituent E particles gives the strangeness number of
the hyperon. Whether or not this particular scheme of
composition corresponds to reality, a composite picture
of hyperons gives a wide range of Qexibility to the
properties of hyperons. For instance, being a compound
particle, a hyperon need not satisfy the Dirac equation
rigorously, and it may exhibit complicated handed-
ness in spite of its being a fermion with a 6nite mass.
This might give a clue to a future explanation of the
fact that the A.-E production, for instance, can be
a strong interaction. ' In any event, it should be men-

' M. Gell-Mann and A. Pais, Phys, Rev. 97, 1387 (1955}.
~ As regards the property of the A particle toward space inver-

sion, see reference 18.

tioned that at the present stage the theory proposed in
this paper, is no more capable of explaining why a
parity-violating interaction should be "weak" than is
the two-component neutrino theory. Neither does it
give a reason why strangeness, as derived from chirality,
can give a measure of "weakness" of interaction. It is
hoped, however, that the mathematical methods used
in the present paper will prove to be a useful instrument
in unraveling problems pertaining to the distinction
between strong and weak interactions.

To avoid confusion of exposition, the erst assignment
exclusively is used in the body of the following text,
while Appendix 2 is reserved for discussion of the
consequences of the second assignment.

Q: y—+QyQ= —y.

The operator y4Q is called the parity operator:

8=—y4Q, I"= 1.

(2 3)

(2 4)

Its eigenvalues are therefore +1.Any operator X that'
anticommutes with I',

O' Xl+——0, (2 3)

will interchange the two eigenfunctions of I', and such
an X will be called a "parity conjugation operator. '"
The simplest X, which shows no preferential direction
ln space) ls 7g)

(2.6)

Hereafter, we shall put

X=—ys, X'= 1, (2.7)

and call it the "chirality operator. "The eigenvalues of
X are again &1. Any operator V that anticommutes
with X,

LX,I'j+=0, (2 8)

will interchange the eigenstates of X, and will be called
the "chiral conjugation operator. "I' is one of such I"'s,
but we do not specify for the moment which one of the
I 's should be chosen as the suitable chiral conjugation

s S. Watanabe, Revs. Modern Phys. 27, 40 (1955), Eqs. (2.74)
and (8.6).

Parity conjugation was also considered in Y. D. Lee and C. N.
Yang, Phys. Rev. 102, 290 (1956}.However, it was used only to
interchange the members of a parity doublet, and its eigenstates
were not considered there.

2. CHIRALITY AND CHIRAL CONJUGATION
FOR SPINORS

By space inversion (mirage), a spinor P(r, t) becomes
p4f( r, t), ex—cept for an arbitrary phase factor, i.e.,

M: f(r, t)~4QQ(r, t) =pe( r, t), —(2.1)

whereQcanbeconsideredasamatrix (Q=Q '=Qr=Q)':

(r'
~

Q (
r")= 6(r'+r"). (2.2)

Thus, for instance, operated on the momentum operator
(x'

~ P, ~

x")= i5' (x' —x"), Q leads to
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C: P~fy4C, P—~C 'y4P, (2.9)

where the bar means the complex (Hermitian) conju-
gate, and C is a matrix satisfying

operator. Since the two eigenfunctions of X are inter-
changed by space inversion (which changes the handed-
ness of a coordinate system), the name chirality for X
seems to be appropriate.

Charge conjugation of a spinor is performed by

We shall define eigenfunctions u;(k), (z= 1, 2, 3, 4),
where k is an eigenvalue of p, as given in Table I.
Expanding as usual in the form:

p(r, t) = V-& Q2 {Liz,(k)u, (k)+a2(k)u2(k)7
)&exp(ik r —ilElt)
+I bi(k)us( —k)+bs(k)u4( —k)7

Xexp( —zk r+ilElt)), (2.18)
we get

C 'y C= -y„ (zz= 1, 2, 3, 4),
Cr= —C, C=C '. (2 1o) ~(4,n4)«

Qk LÃ1(k) —F2(k)+~1(k)—M2(k)7) (2.19)

=P, I
—X,(k)+Z2(k) —m, (k)+m2( )7,

(m=0) (2.20)

X1,2(k) =a1, 2(k)411, 2(k),

~1,2(k) 51, 2(k)f 1, 2(k).
(2.21)

~(P) =2~4~2~.p./IPI, (~=1, 2, 3) (211)

It is easy to see that charge conjugation changes the
parity in c-number theory. In q-number theory, how-
ever, charge conjugation leaves the expectation value
of parity unchanged, on account of the interchange of ~' (tp, XQ)dr
4P with g in (2.9). Similarly, charge conjugation inter-
changes the eigenvalues of chirality in c-number theory,
but it leaves the expectation value of chirality un-
changed in q-number theory.

The "helicity" ("spirality, " according to Lee and where

Yang) operator 2i(P) is defined by'

whose eigenvalues are &1. zi(p) means twice the spin
in the direction of the propagation vector.

The "para-helicity" operator ).(p) is defined by

The charge conjugation brings Ni(k) to 3fi(k), i.e. ,
to a quantum with opposite charge but with the same
helicity. Thus:

with
t,/, =1, /, p, =0, (42=1, 2, 3). (2.13)

li(p) =zvg. t, (a=1, 2, 3) (2.12) C: 1V1(k)+~&1(k),

1V2(k)+~F2�(k).
(2.22)

H=zy4y, P +y4zrz, (a=1, 2, 3) (2.16)

the linear momentum P, and the helicity 4i(P) are used
to characterize eigenfunctions. If m= Q, the chirality X
commutes with II as well as with p, and zl(P), and
we have

&= —xeylpl, ~=0. (2.17)

Its eigenvalues are again &1.This quantity means the
magnetic moment (in a suitable unit) in a direction
perpendicular to the propagation vector.

It is easy to see that'

L~,~(p)7 =o, I:»n(p)7-=0 (2 14)

LP,li(P)7 =0, LX,li(P)7~=0. (2.15)

The last equation in (2.15) shows that X(p) is one of
the possible chiral conjugation operators.

As an illustration, let us consider the linear mo-
rnentum representation of a spinor field, in which the
Hamiltonian,

If the mass is 6nite, the helicity of a particle will de-
pend on the relative velocity of the coordinate system
used. However, in the case of a massless particle, the
helicity can be considered as an intrinsic property of a
particle. (The particle is a "helixon". ) For this reason,
the antiparticle (in the usual sense) of F1 should be
M~, and that of E2 should be 3I2.

Space inversion I' applied on the Hamiltonian results
in a sign change of y, and I' anticommutes with mo-
mentum P and helicity zi(P) (and X). Thus:

M: F1(k)~~F2�(—k),

cVi(k)~~&Vs( —k).
(2.23)

The para-helicity operator li(P) commutes with +
(without change of P) and with P, while it anticommutes
with zi(P) and X. Hence, the para-helicity operator as a

TAaLE I. The adopted assignment of the u's to the signs of Band
q(ir). The column for X applies only when m=0.

8 I„et us recall that a spiral is a plane-curve while a helix is a
space-curve. Therefore, in a 3-dimensional space, the former has
no handedness, while the latter has.

9 Two views are possible regarding the behavior of the sign. of
L, with regard to space inversion: It may change with the sign
change of P, or remain unchanged. The second view is adopted
in the first equation of (2.15).

u1(k)
u2(h)
u3(k)
u4(k)
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chiral conjugation has the following effect:

$&(k)~~Ps(k).

M, (k)~~Ms(k).
(2.24)

PPQPv SgvS (3.1)

3. BOSON FIELD WITH INDEFINITE PARITY

Ke shall begin with a spinor-theoretical considera-
tion. let S be the usual transformation matrix for the
spinors such that

Thus, the para-helicity is a particularly desirable chiral
conjugation, in the sense that it changes chirality
(m= 0) without changing the momentum.

In the case where m=o, it should be noticed that
although N3 and N4, respectively, correspond to chi-
ralities +1 and —1, the corresponding expectation
values of chirality are —1 and +1, in Eq. (2.20), due
to the emission operator instead of absorption operator
standing in front of sts and N4 in Eq. (2.18).

In the two-component neutrino theory, we separate
out, from a general ]t, two eigenfunctions of chirality:

where a„, is the transformation tensor for the coordi-
nates, including inversions. For later use, it should be
mentioned that"

and
C 'SC=oi(Sr) '

y4Sy4=a. g(S) ',

(3.2)

(33)
where o.r is +1 or —1, according as the number of
simple time-like reflections involved in S is even or odd."
We consider a four-four-matrix G with two Dirac
indices which transforms as"

s (1+X)4=4'[»~ X]t'&i] =+4'[i]i

-', (1—X)g=f(s), XP(s) = —P(s].
(2.25)

S: C -G'=SG8.

If we define another kind of matrix F by

(3 4)

p[r] corresponds to 1Vs and Mr, whereas P[s] corresponds
to Ã& and M2. Note that this is a classi6cation by the
eigenvalues of the I's, and not by the expectation values
in the sense of Eq. (2.20). An important hypothesis of
the two-component theory is that in nature there exists
only one or the other of f[r] and P[s].Namely, according
to a recent experiment, it seems that P[s] (i.e., A', and
Ms), in the right-handed coordinate system, is favored
by nature. In the terminology of the two-component
theory, if E~ is a neutrino, then M2 is called an "anti-
neutrino. " However, it should be noticed that this
antineutrino is not the antiparticle of a neutrino in the
sense of (2.22). A combination of charge conjugation
and chiral conjugation brings an allowed particle to
another.

If the mass of a particle is not zero, the chirality is
not a good quantum number, ' and therefore the average
of chirality can be expected to vanish. This can be seen
most easily by using H, p, and para-helicity X(p) to
characterize eigenfunctions. Indeed, an eigenfunction
~(p) of X(p) will satisfy

(e,Xs)= P v,XXs) = —(v,Xv), (2.26)

R: P(r, t)~P(r, —t)ysC,

4(r, t)~C 'v4(r, —t)
(2.27)

The meaning of this is that if we have P(r, t)OP(r, t),
then we first make f(r, t)Or/(r, t) and then apply the
above transformation. Space-inversion and charge-
conjugation are the same in field theory as in the
purely mathematical theory,

by virtue of Eq. (2.15), showing that the average
chirality is zero. Para-helicity cannot be used for the
neutrino, for it anticononutes with X.

Time reversal (R) in field theory is given by

P=G74, Q —Fp4 (3 5)

this will transform, by virtue of Eq. (3.3), as

S: F—+F'= o-&SFS-'. (3.6)

The transformation rules of G and F are, respectively,
that of yP and that of +t, where Pt=gy4, and the
bar means the complex (Hermitian) conjugate.

Expanding an arbitrary 6 by the sixteen bases of the
p system in the form

G= (S+iPys+sV„y„+id„yg„+i T„„y(„y„])y4, (3.7)

we can easily see, with the help of Eqs. (3.1) and (3.4)
that S, I', V, A, and T, respectively, transform like a
scalar (pseudoscalar of the second kind), a pseudoscalar
(of the third kind), a vector (pseudovector of the
second kind), an axial vector (pseudovector of the third
kind), and a tensor (pseudotensor of the second kind). "
The last term can of course be expressed as a pseudo-
tensor (of the third kind) by interchanging space-space
components with time-space components. Thus,

2 pv'y[p'yv] = 2 ax~'ys'y[~vx]p 2~x = 7 puepvcxp (3 g)

where e,.„],is + 1 or —1 according as (tr, v, Ir,X) is an even
or odd permutation of (1, 2, 3, 4).

The Hermitian conjugate of 6 is

6= (S+iPy +iV„y„+iA„y,y„jiI'„,y,„y., )y (3.9).
'0 S. Watanabe, Revs. Modern Phys. 27, 40 (1955), Eqs. (2.32)

and (2.33)."S.Watanabe, Phys. Rev. 84, 1008 (1951), Eqs. (A.4) and
{A.7).

12 The use of spinor matrices to represent tensorial quantities
originates from k. Cartan, Bull. Soc. Math. France 41, 53 (1913).
For an application of this instrument in the field theory of bosons,
see S. Watanabe, Sci. Papers Inst. Phys. Chem. Research (Tokyo)
39, 157 (1941).

'3 See, for instance, Table III of reference 11.Alterations ensuing
from the Geld theory pertain only to time reversal, and must
be the same as indicated in Table VI in S. Watanabe, Revs.
Modern Phys. 27, 26 (1955).
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S: Gy4~a gS(gy4) S '. (3.10)

The imaginary unit is attached in some of the terms in
Eq. (3.7), so that G may become Hermitian if S, P, V,
A, and T are all real. This, however, implies by no
means that an electrically neutral field can be expressed
by a Hermitian G. %e shall later see the reason for this.

From (3.4) we see that G transforms exactly in the
same way as G itself. Hence, gy4 transforms as an
F matrix:

Gyg= c2G. (3.22)

In lieu of Eqs. (3.19) through (3.21), we have here

G=G[(1+»)/2]+G[(1—y~)/2]=G(+)+G(-) (3 23)

Applying Eq. (3.19) on Eq. (3.7), we have

(,tG=[(S+ P)+'(P~ S)&+ (V.+A,)&.
+i(A p+ Vp)&A'I+i(Tp. +Tp')V(.v.t]y4/2 (3 21)

In a similar way, we define the "second chirality"
c2 by

%'riting
spA=4i, Q;A;, , (3.11)

we see from Eq. (3.6) that the spur of a product of e
F matrices transforms as

with

6(+)v~=6(+) 6(-)&5= —6(-) (3.24)

(+)—y 6(+)y 6(—) — y4G(-)y4 (3.17)

The parity here considered refers to each component,
and the parity of a field is, as is well-known, defined by
the parity of a certain component belonging to that
field. Decomposition of G in five terms in Eq. (3.7)
corresponds to a classification with respect to the rank
and the field parity.

H a field satisfies

y,g= ciG, (ci——W1), (3.18)

we say that 6 has "first chirality" equal to c&, which is
+1 or —1. Any arbitrary G can be decomposed into
two parts, one with positive c~ and the other with
negative c&.

G=[(1+»)/2]G+[(1—ys)/2]G= (+)G+(-)G, (3.19)

with

v5(+)&= (+)6 vs(-)G= —(-)6 (3.20)

S: sp(FiF2 F„)~(«)"sp(FiF2 F„), (3.12)

i.e., this is a scalar, except for the factor (ai)". By
virtue of Eq. (3.10), we see also that

S: sp(Gy4gy4) —+sp(Gy4gy4), (3.13)

showing that this quantity is a regular scalar. Expand-
ing G and G as in Eqs. (3.7) and (3.9), we have indeed

sp(gy4gy4) =SS PP V„V—„+A—„A„+T„„T„„. (3.14)

As far as the scalar part (S and P) is concerned, it is
sometimes more convenient to use

sp(GG) =8S+PP, (3.15)

which is not only a regular scalar, but also positive-
definite,

The tensorial components involved in Eq. (3.7) can
be divided into two classes, one with positive parity
and the other with negative parity:

G=
I (G+y4gy4)/2]

+[(G—y,gy4)/2]=G(+'+G( ', (3.16)
with

c=cy c2, (3.26)

which could be &2, &1 or 0. By comparing Eq. (3.21)
with Eq. (3.25), we can easily see that if one of ci
and ('2 is definite (i.e., +1 or —1) then the other is also
definite, in each of the scalar, vector, and tensor parts.
More precisely, we get for the scalar and tensor parts
c~= —c2, and for the vector part c~=c2. Hence, for a
field with definite chirality, the total chirality is +2 in
the scalar and tensor cases, and 0 in the vector case.
To deal with a vector field, it might be more convenient
to define the total chirality by c=ci+c2 instead of
(3.26).

It should be noted that the parity transformation
(multiplication by» from both sides) changes the sign
of c~ as well as that of c2, Similarly, any transformation
that anticommutes with y5, such as A. of the last section,
changes the sign of both c~ and c2. Such a transformation
is a chiral conjugation for boson fields.

Charge conjugation of G should be defined by

C—:—(C '»Cy4C) r, (3.27)

where the superscript T refers only to the Dirac indices.
The quantity (C '&4gy4C) r is the only known quantity,
except G, that transforms exactly as G itself. For this
reason alone, it is already plausible that the trans-
formation (3.27) (except for the sign) is the right choice.
A more convincing argument is provided by the as-
sumption that G transforms like pg, not only for the
S transformation, but also for charge conjugation which
was given in (2.9). This assumption yields (3.27), the
sign being determined by the anticommutation relation
of spinors. (This sign, however, does not play any
important role in the following).

A field with definite parity can be expressed by any
one of the five terms in Eq. (3.7). Such a field has

G(yt = [(S&iP)+i(P&iS)ye+i(V&&A&)y&
+i(A„+V„)»y„+i(TI„+T„„')&(„y„t]y4/2. (3.25)

When a given G does not satisfy Eq. (3.18), we say
that c~=0, as we did in the case of a spinor. Similarly,
if c2 in Eq. (3.22) is indefinite, we say that c.=0. We
define the total chirality by
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necessarily a vanishing chirality, for we see from Eqs.
(3.21) and (3.25) that we have to mix a regular part
and a pseudo part to engender a delnite chirality. For
instance, a pseudoscalar field (pion) can be expressed by

zb+5+4y (3.28)

which obviously satisfies neither Eq. (3.18) nor Eq.
(3.22). By our usage of the word, the pion thus has
chirality zero.

If we apply charge conjugation (3.27) on Eq. (3.28),
we obtain

C: ibysy4 —+ibyg 4. (3.29)

Thus the antiparticle of G is given by

G- =zbygy4. (3.30)

This of course has the same parity, and we see, further,
that we need only take the complex (Hermitian) conju-
gate of b to obtain the antipion. In the case of a real
field, G and G+ are the same.

A scalar field with de6nite chirality has to be ex-
pressed as a special superposition of 5 and P, as speci6ed
by Eqs. (3.21) and (3.25). For definiteness, let us assign
(say, in a right-handed coordinate system) to the E
particle the matrix:

Gx= u(1+ps)y4/2, ci ———cs——1, c=2. (3.31)

By charge conjugation (3.27), this expression becomes

Gg= a(1—ys)y4/2, ci ———cs= —1, c= —2, (3.32)

which should be called anti-E particle. The names
"particle" and "antiparticle" are interchangeable, but
we shall stick to Eqs. (3.31) and (3.32) for definiteness.

By space inversion, the matrix (3.31) will trans-
form as

M: a(1+ps)y4/2 —+a(1—ys)y4/2, (3.33)

where the sign-change of r in the argument of a is
omitted for simplicity. Any chiral conjugation follows
the pattern of (3.33). In analogy to the neutrino theor'y,
we assume that Gx and Gg given in Eqs. (3.31) and
(3.32) are favored by nature, and their chiral conjugates,

a(1—ys)y4/2, ci= —cs ———1, c= —2, (3.34)
a,nd

a(1+ps)y4/2, ci= —cs= 1, c= 2, (3.35)

do not exist in nature. "
One of the most important features of the charge

conjugation of a E particle is that not only the 6eld
component u passes to a, but also the mixing ratio of
S and I' is changed. If G~ represents a positive E
particle then Gg should represent a negative E particle.

"In the usual way of expressing tensorial (boson) iMlds, one
might write S+P and S P(or S+~P and S sP—) to denote tw-o
diferent cbiralities. However, by such expressions, one can never
tell which one has @ positive chirality and which one has a nega-
tive chirality. Here bes another advantage of the present formal-
ism, which also has the merit of bridging the boson case with the
fermion case.

In this assignment, the allowed particles are character-
ized by c=2, while the forbidden particles are charac-
terized by c= —2. The combination of charge conjuga-
tion and chiral conjugation transforms an allowed
particle into another, as in the neutrino theory. How-
ever, this assignment seems to be unnatural for it
destroys the conformity with other charged fields in
regard to charge conjugation. In the following, unless
otherwise noted, we use the original assignment (3.31)
and (3.32). The assignment (3.36), which has also
certain merits, will be discussed separately in Ap-
pendix 2.

The held theoretical transformation of G for space
inversion (M) and time reversal (E) can be inferred
from the analogy with pit, with the help of Eqs. (2.1)
and (2.28).

M: G(r)~4G( —r)y, ,

G(i)~, (C-'G( —t)C) 'q .
(3.37)

The space inversion is the same as in the mathematical
spinor theory, In the time reversal, we have to reverse

~~ In this point, the present theory is similar to Gell-Mann and
Pais' idea: M. Gell-Mann and A. Pais, Phys. Rev. 97, 1587 (1955).
However, the present theory has more specific information about
the behavior of X particles with regard to space inversion. The
present theory has also some similitude with Schwinger's theory,
insofar as a combination of S and I' is considered. J. Schwinger,
Phys. Rev. 104, 1164 (1956). However, the basic philosophy is
diferent, since Schwinger's theory intends to preserve the invari-
ance under space inversion, whereas the vital assumption of the
present theory lies precisely in the abandonment of invariance
under space inversion.

A ns, 'ive theory would describe the anti-E by u when the
E is described by e. In the present theory, such a
simple interchange of u and u is the result of a com-
bination of charge conjugation and chiral conjugation,
and the resulting matrix becomes a forbidden one given
in (3.34), (3.35).. This is a diferent situation, compared
with the neutrino theory, in which a combination of
charge conjugation and chiral conjugation transformed
an allowed particle into another allowed particle.

Since (3.31) and (3.34) on one hand, and (3.32) and
(3.35) on the other, would generate the same electric
current, the foregoing rule can also be formulated as
follows: A positive E particle with chirality —2, and a
negative E particle with chirality +2 are forbidden,
while the other alternatives are allowed.

Let us note that G~=Gg. Hence, G~, which is an
eigenstate of chirality, can never be Hermitian, no
matter what condition may be imposed on u. %e ob-
serve also that the neutral K field and the neutral
anti-E 6eld can never be the same 6eM."

It is true that it is, in principle, possible to assign to
the E and anti-K the following matrices instead of
(3.31) and (3.32):

Glc = a(1+ps)y4/2, ci= —cs = 1, c=+2,
(3.36)

Gg=a(1+ps)y4/2& ci ———cs=1, c=+2.



SATOSI KATANABE

the order of the factors, if a product is involved. The
superscript T in Eq. (3.37) means here again the trans-
pose with respect to the Dirac indices only. By the com-
bination of space inversion, time reversal, and charge
conjugation, the components of 6 become'

S, I', T—+S, P, T;

V, A~ —V, —A.
(3.38)

with

Zl: — I sp(GWG)dr, (4 1)

W = ( r)„'r)„+—nz')I= (8„8„+m')I, (4.2)

where B„means the differentiation of the factor standing
to its left. (See Appendix 1 for the quantization of Gz.)
We do not use Eq. (3.14) here, for it vanishes if we put
(3.31).The ensuing wave equation is

therefore also

8"5=0, and 8'P=O; (4 3)

Similarly, 6~ returns to its original form by C&(E)&M.

4. FREE AND INTERACTION LAGRANGEANS
FOR X PARTICLES

The invariant free Lagrangean can be written, with
the help of Eq. (3.15), in the form:

a charged field, i„means both electric and chiral cur-
rents. Equations (3.31) and (3.34) would give the same
value for (4.7).

As far as interaction is concerned, it is not the
intention of the present paper to investigate exhaus-
tively all the decay modes or to calculate the lifetimes.
To get a glimpse of the behavior of the interaction
terms toward charge conjugation, time reversal, and
space inversion, let us limit ourselves to the E-pi
interaction.

To express an interaction Lagrangean among several
E particles, anti-E particles, and pions, we notice first
that the spur of a product of several G matrices does
not form a scalar. See Eq. (3.4). However, by virtue
of Eq. (3.12), we can use a product of F matrices. The
F matrices corresponding to Eqs. (3.31), (3.32), and
(3.28) are

Fz= ~(1+vs)/2, Fz= ~(1—vs)/2,

P =~by5.

(4.8)

The transformation rules of an I' matrix for charge
conjugation, space inversion, and time reversal are

F~ (C 'FC)'7 (4 1o)

M: F(r)—+y4F (—r)y4, (4.11)

F(t)~ps(C —'F (—t)C) ~ps. (4.12)

IVv=0.

The free Hamiltonian is then

(4 4) Then the Lagrangean involving e E's, l anti-E's, and
ns pions would be of the form:

JV
FJ sp/G (—2 c)4c)4+ W)G) ]dr. (4 5)

Lr= f sp(FzFz. FzFlr F F )

i sp[G(c)„—c)„)G]. (4 6)

It is of importance to notice that since y5 commutes
with (2c)4c)4+TV), the chirality is a good quantum
number even if ns/0.

The current vector becomes

+Hermitian conjugate. (4.13)

However, since the product of F~ and Fg vanishes,
coexistence of Fz and Fz in Eq. (4.13) is impossible. "
Let us then take the case of e E's and m pions.

Putting Gz., (3.31), in Eq. (4.6), one obtains Lr= f sp(FzFz F F )+H.c., (4 14)

iL(c)~g)a —a (c)„g)]. (4 7)
=- fa"(it )"/2+H. c., if e/0, (4.15)

This expression changes its sign if we put Gz, (3.32),
instead of Gz, (3.31). It would vanish if a were real
(Hermitian), but we do not assume this even for the
neutral field, for which i„will then bear the meaning of
chiral current density (see Appendix 1). In the case of

6The results in Eq. (3.38) can also be derived directly by
multiplying three signs, pz, pz, and p~ listed in Table .III of
reference 11~ This is also in agreement with the rule given in
Pauli's article in Pieces Bohr azzd Developnzezzt of Physics (edited by
Pergamon Press, London, 1955). See also Lee, Oehme, and Yang,
Phys. Rev. 106, 340 (195'/). If we insert phase-factors, exp(io),
exp(iP), and exp(iy) in C, E, and Nz, respectively, the relation in
(3.38) vrill remain valid only if p =0.+y, mod. 27'-. G~ of Eq. (3.31)
becomes Gz of Eq. (3.32) by space-and-time inversion only when
p=. y, mod. 27r. Similar remarks can be made regarding other
transformations too.

= f(ib) "t1+(—1)"]/2+H.c., if m =0. (4.16)

Since the transformation (4.10) applied on Eq. (49)
results just in replacement of b by b, no distinction
between a pion and an antipion has been made in (4.14)
for the sake of simplicity. There can actually be neutral
and positive E.particles and pions of diGerent kinds of
charge in Eq. (4.14), insofar as the total charge is
conserved.

Equation (4.16) simply means that an odd number

of pions alone cannot interact among themselves. If a
E (or E's) intervenes, the parity of number of pions

"This by no means implies that an interaction like (7I-—E—Z)
is forbidden. Such an interaction is possible through a Lagrangean
of the type: spF~ sp(Fg P )+spFg sp(F-).
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with
sp(F ~F3),

F3=&A'.

(4.18)

(4.19)

This expression automatically selects the invariant com-
bination of the components of F~, P~, and f2 . In a
similar way, one can write an interaction Lagrangean
for a more complicated process. "

S. POSSIBLE RELATION BETWEEN CHIRALITY
AND STRANGENESS

The matrix expression of a boson field is suggestive
of a fusion-theoretical interpretation of a boson as being
made out of two spinor particles. "However, unless we
know the nature of the cohesive force, we cannot even
write the Bethe-Salpeter equation. There is no guaran-
tee that the chirality of a boson as de6ned in the fore-

' It seems natural to assume that strong interactions are
parity-conserving. In order to make the present formalism com-
patible with this assumption, one has only to assign a special
parity-property to the partner of the E particle in its "associated"
production. Consider, for instance, the production process: pion
+nucleons+A, The parity-property of A should then be
equivalent to that of a hypothetical compound system of (nucleon
+X'), where L' {chirality —2) is a hypothetical (forbidden)
particle of Eq. (3.34), which is the space-inverted image of the
X particle (chirality +2). The negative parity of the pion can
be absorbed in the orbital motion of the (E'+A.) system. Then,
the parity conserves. If one wants to give a realistic meaning to
this interpretation, the relation A.0=nE0 of Table II should be
replaced by nX0', which has also chirality —2. However, the E'
need not exist as an independent particle in nature.

9 L. De Broglie, Compt. rend. 198, 135 (1934), and subsequent
writings; W. Heisenberg, Z. Naturforsch. Sa, 251 (1950), and
subsequent papers. See also S. Watanabe, Phys. Rev. 91, 771
(1953).

involved does not matter any longer. Since Eq. (4.14)
is an invariant, it naturally comes back to itself by space
inversion (4.11).Thus, the left-right asymmetry of the
E particle disappears formally from the surface. How-
ever, if a E particle is represented as (3.31) in a coordi-
nate system, it is supposed to be represented as (3.34)
in the space-inverted coordinate system, although this
becomes immaterial in an actual calculation.

It can easily be seen that the Hermitian conjugate of
the term explicitly written out in Eq. (4.14) can be
written

f*sp(FXFJr F~F . . ). - (4.17)

By charge conjugation (4.10), the term in (4.14) will
become the term in (4.17).If the interaction constant f
is real, the invariance for charge-conjugation is assured.
By time reversal (4.12), each F does not become the F
of the antiparticle, but, through the process of diagonal
summation, the term in (4.14) becomes the term in
(4.17) by time reversal. Here again, on the assumption
that f is real, invariance is guaranteed.

The above conclusion is based on the assignment
(3.31), (3.32). For discussions of the assignment (3.36),
see Appendix 2.

For an interaction in which a boson Ii ~ and a spinor
particle P~ disappear and another spinor particle f2
appears, one may write

TABLE II.All particles are assumed to be composed of nucleons,
antinucleons, E particles, anti-K particles, in such a way that
isotopic data and conservation of heavy particles are satisfied.
The algebraic sum of chiralities of constituent particles turn out
to be twice the "strangeness. "

Particle

X0(E0)
K+(K )
n(n)
p(p)

7r+

g0 (gO)

Z+(g+)
z-(z-)
g0 (g0)

0( 0)

Composition

pn
pn

nn gp
F0 pE

(nZ0, pe+)
pXO(pK')
nK (nK+)
nK0, PK

(nÃ0, pE+)
nK0X, pX I

(nKOK+, pK+K+)
nK0K0, pE Z0

(nK'Ko, pK+Ko)

Ie Q Chirality

—2(+l)

+1{ 1)

+1

0
0

0 +2(—2)
+(—) +2(—2)

0 0
+(-)

+ 0
0

0 0
0 —2(+2)

1 +1(—1) +(—) —2(+2)
—1(+1) —(+) —2 (+2)

1 0 0 —2(+2)

—
2 (+2) —(+) —4 (+4)

2 +2(—k) —4(+4)

going can be derived by some kind of addition of the
chirality of each constituent spinor particle. This would

evidently depend on the nature of the cohesive field.

For this reason, we do not indulge in any furth'er specu-
lation about the structure of a E particle. Instead, we

shall try to picture all the particles as heavy as, or
heavier than the pion as composite particles built out of
nucleons and already-existing E particles. ~ The guiding

principle in determining the composition of each par-
ticle is to reproduce its established isotopic spin, the
third component of its isotopic spin, and its heavy-
particle number by the smallest possible number of
constituent particles, using the established values of
these quantities of the nucleon and the E particle.

First, the pion can be considered as a particle similar

to the E's, but only in an eigenstate of parity instead of
in an eigenstate of chirality. The pion can also be pic-
tured as an isotopic triplet composed of a nucleon and

an antinucleon.
The A particle is an isotopic singlet consisting of a

nucleon and an anti-E particle. The 2 particle is an
isotopic triplet of a nucleon and an anti-E particle. The

particle is an isotopic singlet, composite of a nucleon
and two anti-EC particles. After having made such an
assignment, we calculate the algebraic sum of the
chiralities of E particles and anti-K particles involved.
The chirality of a nucleon is zero according to Sec. 2.
The total chirality thus computed turns out to be
exactly twice the strangeness quantum number. See
Table II.

It must be admitted that the above-sketched compo-
sition scheme may not be a unique one, and that the

A similar but not exactly the same view was proposed by
M. Goldhaber, Phys. Rev. 101, 433 (1956). Goldhaber's "dionic
charge" is given a physical meaning in the present paper.
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algebraic addition of chirality numbers has no solid

justification. However, the fact alone that a new vari-
able has been introduced on a solid mathematical basis,
having opposite values for the E and anti-E (whose
strangeness quantum numbers are &1) is already sug-
gestive of some connection between chirality and
strangeness.

Strangeness, so far, has received no explanation,
except by Pais and Gell-Mann's theory and d'Espagnat
and Prentki's theory. " According to d'Espagnat and
Prentki (and also Racah), the strangeness is connected
with the symmetry property in the isotopic spin space.
If the present theory and the theory of O'Kspagnat
and Prentki are both correct in their essence, then
it would mean that there exists a close relationship
between the symmetry property in the outer space
and that in the inner (isotopic) space. It is interesting
to note that Vukawa, from an entirely diferent ap-
proach, also suspected a relationship of similar nature. "

The author would like to express his sincere thanks
to Dr. R. Oehme, Dr. Y. Tanikawa, and Dr. H. Suura
for their very helpful discussions.

APPENDIX 1

Physical quantities P (energy-momentum density,
current density, etc )hav.e the form:

Q~sp (GOG). (A.1)

If G here represents the E wave function, then 6
represents the anti-E wave function. Indeed, from Eqs.
(3.31) and (3.32) we see that

~X GK (A.2)

In the case of pions, if an expression like (A.1) is used
for the charged field, we should take one half of the
expression for the neutral field. In the case of E par-
ticles, however, we have to use the same expression for
both charged and neutral fields, for the neutral E and
the neutral anti-E are two diGerent particles.

Putting Eqs. (3.31) and (3.32) in (A.1), one obtains

sp(GgOGx) = ',aOa. - (A.3)

2~ A. Pais, Physica 19, 869 (1953); M. Gell-Mann, Proceedings
of the Glasgow Conference (Pergamon Press, London, 1955). B.
d'Espagnat and J. Prentki, Phys. Rev. 99, 328 (1955); 102, 1684
(1956). G. Racah, Nuclear Phys. 1, 302 (1956).

'~H. Yukawa, Proceedings of the International Conference on
'Theoretical Physics, Seattle, ZP56 (to be published).

Therefore, we can use the usual method of quantization
for a and a. In other words, if we expand G~ as

Gx(r, &) =Z~ (2I'I&I) 'Ln(k) exp(ik r —ilail~)
+p(k) exp( —ik r+i~F~t) j(1+y5)y4/2, (A.4)

and Gg as the Hermitian conjugate of (A.4), we can
interpret A (k)=cL(k)n(k) and M(k)=P(k)P(k) as E
particles and anti-E particles, respectively, having
momentum k.

If we assume a in (3.31) to be Hermitian, then P will

become identical with n. In order to differentiate the
neutral E from the neutral anti-E, we have to assume
a not to be Hermitian. The quantity (4.7) will be pro-
portional to S—M, which in the case of a neutral 6eld

may be interpreted as the current of chirality, for E
and M correspond to the opposite chiralities. In the case
of a charged field, the quantity (4.7) means both electric
and chiral currents. To avoid an electric interaction of
the neutral 6eld, one needs only omit the electric inter-
action term from the Lagrangean. Incidentally, in the
neutrino theory, the current expression can be inter-
preted as a current of helicity.

while

Gx=a(1+y, )y4/2, c=2,

Gg= a(1+y,)y4/2, c=2,

G= u(1 —yg)y4/2, c= —2,

G =a(1—y,)y4/2, c= —2,

(A.5)

(A.6)

are forbidden, say in the right-handed coordinate
system.

This choice, (A.S), is analogous to the two-com-
ponent neutrino theory in the sense that a combination
of charge conjugation, (3.27), and chiral conjugation,
such as (3.37), can convert (by a suitable choice of
phase-factors) an allowed particle to another allowed
particle. For instance, starting from G~ one reaches Gg
by 3f)&C, as one has

C: Gz= a(1+ps)y4/2~a(1 —y5)y4/2,

a (1—yg) y4/2 —+a (1+pe)y4/2 =Gg.
(A.7)

In view of the general rule given in (3.38), this means
that an allowed particle becomes another allowed par-
ticle also by time reversal. This can also be verified
directly by applying (R), (3.37), on (A.5).

In the same way that the so-called antineutrino in
the two-component theory is not the antiparticle, in the
proper sense, of the neutrino, the anti-E particle Gg,
according to (A.S), is not the antiparticle, in the usual
sense, of the E particle G~. In this respect, the present
assignment deviates from the Gell-Mann-Pais theory.

In terms of F matrices, the assumption (A.5) is
equivalent to:

Fx——u(1+pe)/2,

Fg=a(1+y,)/2.
(A.S)

APPENDIX 2

The alternative assignment (3.36) has a welcome con-
sequence: the form of physical laws remains unchanged
by time reversal.

Thus, we shall study in this Appendix some of the
results that ensue from the assumption that the al-
lowed E particles and anti-E particles are repre-
sented by
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We have here, instead of (A.2),

(A.9)

Hence, sp(FgFir) =aa/2 is not only invariant but also
positive-definite. Thus, we can write the free La-
grangean in the form:

Lp s—p(FgWFir)dr, (A.10)

in lieu of (4.1). Considerations regarding the Hamil-
tonian, the current vector, etc., follow the same pro-
cedure as in Sec. 4, except that the F's are substituted
for the G's.

The interaction Lagrangean involving e K s, I anti-
K's, and m pions may be written in the form:

Lr= f sp(FirF g FgFrr F F ~ ~ )+H.c.

=fu a'Pb) /2+H c. (e/.0, l/0).
(A.11)

Creation of pairs of E and K is included. In par-
ticular, if e=/, we have only pairs created. The Her-
mitian conjugate omitted in (A.11) is

By space inversion, the term in (A.11) returns to itself.
By charge conjugation, as well as by time reversal, the

H.c.—(—1) j sp(FgFg FrrFg F F ~ )--
(A.12)

f~onQl( 16)m/2

term in (A.11) passes to the term in (A.12), and vice
versa. By these transformations, each F is transformed
according to (4.10), (4.11), (4.12).

The quantization of the E Geld can be done by ex-
panding F~ as

F~(r,&) =2; (2l'I&I) 'L~(k) exp(ik r—il&l&)

+p(k) exp( ik—r+i ~E~ t)$(1+pe)/2, (A.13)

and Fg as the Hermitian conjugate of (A.13).Assuming
that F~ is not Hermitian, even for the neutral E Geld,
we can interpret 1V=un and 3II=pp as particle numbers
of the E and of the anti-E, respectively.

We can now interpret the current

~'-spt F~(~. ~.)—F~ j (A 14)

as the current of "strangeness. "This amounts to defin-
ing the strangeness of the particles S as one-half their
chirality (c=2), and defining the strangeness of the
antiparticles M as one-half the negative of their chi-
rality (c=2). In the case of charged field, we can say
that strangeness is one-half the product of chirality and
charge. By this de6nition, the strangeness of the
E-particle and that of the anti-E particle become, re-
spectively, +1 and —1. This definition is not as direct
as in the original assignment, (3.31) and (3.32), yet it
is mathematically meaningful.

The compound picture of heavy particles explained
in Sec. 5 is still feasible in this alternative assignment;
we need only substitute twice the strangeness defined
in the preceding paragraph for the chirality in Table II.


