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Transition from Quantum to "Classical" Partition Function*
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The quantum-mechanical partition function for a system of interacting electrons and nuclei is examined
in the "classical" limit, in which A~O in the nuclear kinetic energy operator while A is constant in the
electronic kinetic energy operator. It is shown that in the "classical" limit, the apparent nuclear potential
energy which appears in the partition function is actually the free energy of the electrons in a system of
6xed nuclei, as a function of nuclear con6guration and temperature. The lowest order quantum correction
18 obtained. The eGect of the adiabatic approximation is studied; it leads to the correct "classical" limit
but a formally inexact lowest order quantum correction.

HE partition function, in classical statistical
mechanics, associated with the Hamiltonian
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Kirkwood' has discussed the transition from the
quantum to the classical partition function for a system
with a Hamiltonian of this sort. In particular, he
obtained an expansion in powers of 5, of which the
first few terms are
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where the average ( ) is taken over the classical Boltz-
mann distribution in con6guration space. This result
applied only in the case where the constituent particles
are assumed to be distinguishable. Kirkwood also
considered the case where the particles obey Bose or

(The system contains r particles, with positions
r, momenta y, and masses m; p = 1/kT, where k is
8oltzmann's constant, and T is the absolute tempera-
ture. The sets of all momenta and all coordinates are
denoted by y" and r".) The corresponding quantum-
mechanical partition function is

Q=Z 'exp( —p&;)

where E; is the energy of the jth quantum state of the
entire system, and is an eigenvalue of the Hamiltonian
operator
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Fermi statistics. He showed that the Gibbs factor 1/r!
is introduced, and that there are additional quantum
corrections which vanish with A.

In this article we shall extend Kirkwood's discussion
to systems in which the potential U describes the
interactions of electrons and nuclei. The electronic
contribution to the partition function will be treated
in a quantum-mechanically correct way, and the
transition to a "classical" partition function will be
carried out for the nuclear motions only. We place
quotation marks around "classical" because we use
the word in a special sense, namely to refer to the limit
as A—+0 in the nuclear kinetic energy operator, while
is held constant in the electronic kinetic energy operator.
We shall consider only the case in which all nuclei
are distinguishable: the extension to Bose or Fermi
statistics can be made in exactly the same way as ih
Kirkwood's treatment, and will lead to the factor
1/v! and the same kind of quantum corrections. Our
principal result is the following: in the "classical" limit,
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where the apparent nuclear potential energy U(r"; p)
is given in terms of the electronic energy levels C;(r")
of the system with nuclei 6xed in the conhgura tion r",

expL —PU(r" P)g= Q; exp) —PC, (r")g. (7)

That is, the apparent potential energy in the "classical"
nuclear Hamiltonian is actually the free energy of the
electron system as a function of nuclear configuration
and temperature. We shall also obtain the lowest
order quantum correction to this result, and compare it
with the correction one obtains when the adiabatic
approximation is used to separate electronic and
nuclear motions.

We consider a system of v nuclei and n electrons,
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nuclear kinetic energy operator where
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the electronic kinetic energy operator
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and the potential energy, so that

K=9"„+K„

Then the partition function becomes
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(In the following discussion, Greek indices will refer
to nuclei and Roman indices will refer to electrons. )
The partition function may be written in the form

Q= P
~
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where the q,. are an arbitrary complete set, orthonormal
in the electronic and nuclear coordinates. Spin quantum
numbers can be included implicitly by, for example,
interpreting J'dr; as an integral over the space co-
ordinate of the jth electron and a sum over its spin.
We assume that the p, have been properly antisym-
metrized in the electrons in accordance with the Pauli
principle; as indicated before, we treat the nuclei as
distinguishable.

A particularly convenient set of functions for our

purpose is the one in which K. is diagonal and the
nuclear states are plane waves. The eigenfunctions and
eigenvalues of K, are given by

3'.,Pp(r"; r")=C g(r")PI, (r"; r"). (12)

The Pi, are orthonormal in the electronic coordinates
for any r". We therefore replace the q; by
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and replace the sum over j in Eq. (11) by a sum over
k and an integral over y". The quantum corrections
to the partition function can now be localized in a
function m» defined by

Idp" (»)(
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is the average of mI, over the classical momentum
distribution.

A differential equation for mI, may be obtained by
differentiating Eq. (14) with respect to P and rearrang-
ing the result. This equation is
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We wish to 6nd a solution of this equation of the form

w~= w~"'+&w~"'+&'w~"'+ (20)
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The 6rst term in the expansion can be obtained by
inspection. It is mI, &') =1.The equation for m~~') is
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where

where 5 in this expression comes solely from the nuclear
part of the Hamiltonian 3C. For this reason, we denote
by 5, the Planck's constant which goes with the
electronic Hamiltonian 3C,. This means that we do
not expand Cq and $1, in powers of 5, but keep them in
their exact forms. The initial condition for the equation
for mg, is clearly
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A formal solution in terms of the operator QJ, is

Pa
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Since zeI, O) is linear in the momenta, we see that
(w o&) 0

The equation for m»(2) is
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Instead of obtaining a formal closed solution of this
equation, we solve for the 6rst few terms of an expansion
of ws&s& in powers of P. We then average these terms
over momenta, thus introducing a new factor p from
each average (p '). Also, we associate a factor p with

each CI, which appears in the solution. After these

changes, the series expansion may be rearranged to
the following result:

(ws&'&) 1 1
[(V PCs)s —2V 'PCs]
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+terms of order P. (26)

To the lowest order in which quantum effects appear,
bJ, is given by

P;~V Q;dr".
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(Wus and Wu and Bhatia' have estimated C,; for the
lowest electronic states of Hs, Hs+, and He+He. They
conclude that for these systems it can be comparable
with the Van der Waal's energies of interaction. For
systems of heavier nuclei it may be negligible, however. )

When the adiabatic approximation is made, the
nuclear Hamiltonian for the jth electronic state is
5„+C., C;;. Now —that the electronic contributions to
the partition function have been split oG, we may apply
Kirkwood's procedure directly to each electronic energy
level. The result is easily obtained, and is

1
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where the superscript (a) stands for adiabatic, and
g~(+) is
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and the prime on the summation indicates that the
term k= j is to be omitted. The essence of the adiabatic
approximation is that the oG-diagonal elements of the
matrix C;~ are neglected, thus leading to a separation
of electronic and nuclear motions. Physically, this
amounts to the assumption that no transitions occur
between distinct electronic states. The diagonal
elements C;; simplify to

bk 1+As(ws&s&)+—— (2'I) —12 &Is V Qsdr", (32)

The quantum correction for each electronic energy
level, neglecting the terms of order P in Eq. (26), has

just the same form as the one Kirkwood obtained.
We thus obtained Eq. (6) in the "classical" limit.

It is interesting to compare the preceding results

with what one would get by a straightforward applica-
tion of the adiabatic approximation. We follow the
discussion of the adiabatic approximation which has

been given by Born and Huang. ' First, the ei.genvalues

and eigenfunctions of K, are obtained. Then the exact
eigenvalue equation for the total system becomes

where
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with the neglect of higher powers of A. The last term in

Eq. (32) comes from C" in expL —p(C,—C;;)j. It is
clear that when the adiabatic approximation is made,
and then the expansion in powers of A is formed, the
resulting quantum correction is not identical with the
one obtained by our earlier more direct calculation,
partly because of the C;, contribution to bj,(') and partly
because of the terms of order p which appear in Eq.
(26) but not in Eq. (32).

We have not investigated the convergence of the
expansion in powers of 5, nor have we estimated the
relative magnitudes of the various terms which appear
in the quantum corrections. We see, however, that in a
purely formal way the adiabatic approximation does
not lead to an exact result as far as the lowest order
quantum correction is concerned, and also that the

C;; terms should not be included in the nuclear Hamil-
tonian in the "classical" limit.
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