DISINTEGRATION OF HYPERFRAGMENTS

track, leaves the emulsion before being brought to rest.
Because of the short range of the hyperfragments, the
charges have been estimated from charge balance of
the secondaries, except for event 9 which is represented
by Track 5 in Fig. 1.

In all calculations we have used the range-energy
relation given by Baroni et ¢}.2 In the determination of
the binding energies we have used the mass values for
elementary particles and light nuclei given by Barkas

2 Baroni, Castagnoli, Cortini, Franzinetti, and Manfredini,
Bureau of Standards CERN Bulletin No. 9 (unpublished).
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and Hahn? and 36.9 Mev for the Q value in the decay
of a free A° particle.*
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To explain the anomalously smooth cross sections observed in electron scattering from certain nuclei
(Hf, Ta, W, U), the contributions to the cross section arising from the nonspherical character of those nuclei
have been examined. Approximations are developed for the calculation of these contributions, and for a
sample case, Ta, numerical results are given; the value required for the nuclear distortion in order to obtain
agreement with experiment in this case is in good agreement with the spectroscopic and Coulomb-excitation
values. The results suggest that in certain cases electron scattering will be a useful new method for measuring
both the magnitude and the radial shape of nuclear deformations.

1. INTRODUCTION

XPERIMENTS on high-energy electron scattering

by some heavy nuclei (e.g., gold, lead, bismuth)
yield differential cross sections with pronounced diffrac-
tion structure.! On the assumption of elastic scattering
from a spherically symmetric nuclear charge distribu-
tion these cross sections have been found to indicate
distributions approximately uniform in the center, with
a relatively sharp surface. Another group of elements
(hafnium, tantalum, tungsten, uranium) show, how-
ever, markedly different differential cross sections: as
can be seen from Fig. 1, they have roughly the same
slope (on a semilog plot) but show no diffraction dips.
In an attempted analysis of the latter experiments it
was found to be not possible to alter the radius and
surface thickness of the smoothed uniform charge
distribution so as to fit both the lack of diffraction
structure and the rather shallow slope. In search of a
reason for this strange behavior, one notices that the

* Supported in part by the United States Air Force through the
Air Force Office of Scientific Research, Air Research and Develop-
ment Command.

t Part of a thesis submitted by one of us (B.W.D.) in partial
fulfillment for the Ph. D. degree, Stanford University, June 1955.

I Present address: Laboratory of Nuclear Studies, Cornell
University, Ithaca, New York.

1Hahn, Ravenhall, and -Hofstadter, Phys. Rev. 101, 1130
(1956). For a complete bibliography of electron scattering, see
R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).

first-mentioned group of nuclei are at or close to closed
nucleon shells, whereas the second group occupies
positions in the middle of a shell. Using a collective
nuclear model, Bohr and Mottelson? have characterized
nuclei in the first group as essentially spherically sym-
metric, while those in the second group have equilib-
rium shapes far from spherical, having, as a conse-
quence, low-lying levels corresponding to a collective
rotation of the outer nucleons. The energy resolution of
the electron-scattering experiments does not distinguish
between elastic scattering and inelastic scattering corre-
sponding to excitation of such levels. In an attempt to
explain the observed smooth cross section, an approxi-
mate calculation has been made of differential cross
sections for scattering from such a deformed nucleus. It
is found that agreement can be obtained by suitable
choice of the parameters involved. The method, with
more extensive analysis, may possibly be used to give
information about both the magnitude and radial shape
of nuclear deformations.?*

2A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 27, No. 16 (1953).

3 A preliminary account of this work was given at the 1954
Winter Meeting of the American Physical Society, reported in
Phys. Rev. 98, 277(A) (1954).

4 A more detailed account of the analysis and results of this
calculation is contained in the Ph. D. dissertation of one of us:
B. W. Downs, Ph. D. dissertation, Stanford University, 1955
(unpublished).
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Fic. 1. Experimental cross sections for scattering of 180-Mev
electrons by some heavy nuclei. To display the diffraction struc-
ture more prominently, the cross section has been divided by
[cos?(36)/sin*(36) ], which is proportional to the point-scattering
cross section in first Born approximation.

The system to be investigated is that of a very
energetic electron scattered by the Coulomb field of a
heavy, nonspherical nucleus, with the possibility of
nuclear excitation. It has been shown previously, for
the spherically symmetrical case with no excitation, that
a solution accurate enough for detailed comparison with
the experiments requires a complete phase-shift analysis
of the Dirac equation for the system.? Such an analysis
would be impossible for the system of interest here since
the Dirac equation cannot be separated into partial
waves. It has therefore been necessary to make a number
of approximations. These are as follows:

(a) The interactions additional to the spherically
symmetric interaction (that is, the fields of higher
multipole order caused by the nonspherical charge dis-
tribution and by the nuclear excitation) are assumed
small, and are treated by first-order perturbation
theory.

(b) The electron wave functions used in the above
perturbation theory, which describe scattering in the
spherically symmetric part of the charge distribution,
will be approximated by distorted plane waves (the
zero-order scattering by the spherically symmetric part
of the charge distribution is not approximated: it is
calculated by the phase-shift analysis described
previously).

(c) A model of the nucleus which is essentially an
extension of Bohr’s collective model in the strong-
coupling limit will be assumed. -

Approximation (a) is necessary in order to be able to
do the calculation at all. We feel that this is a plausible
approximation, although at present it cannot be strictly
justified. We shall discuss it at the end of Sec. 2, after
the formalism has been developed. Approximation (b)
is not mandatory, since it is feasible to use as zero-order
wave functions the exact partial-wave expansion of the

5 Yennie, Ravenhall and Wilson, Phys. Rev. 95, 500 (1954).
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elastically scattered wave. In the case of interest here it
would be necessary to evaluate and combine about
sixty radial matrix elements. The alternative we have
chosen is to find for the wave function describing the
elastic scattering a three-dimensional approximation
which is reliable close to the nucleus. The complete
matrix element can then be evaluated analytically.
With approximation (c) the sum of elastic and inelastic
scattering due to the deformed part of the charge
distribution turns out to be independent of the nuclear
spin, and is identical with what would be obtained from
a classical, deformed charge distribution oriented at
random.® That this should be so can be understood by
uncertainty principle arguments, since the energy is not
resolved. We assume, with Bohr,? that the radial matrix
element is the same for all transitions; instead of the
surface delta function, however, we use a smooth tran-
sition density approximately proportional to dpo/dr,
where py is the spherically symmetric part of the charge
distribution. The use of the Bohr model for the nuclear
matrix elements. thus simplifies the analysis, but it is
not essential. Since, however, comparison with experi-
ment does not allow complete determination of the
parameters of even this simplified model, it would be
unprofitable at this stage to consider more complex
matrix elements.

2. ANALYSIS

The development of the three-dimensional approxi-
mation to the wave function describing the elastic
scattering will be given in a later paper,” and we sum-
marize it here. It is based on two observations concern-
ing the behavior of the exact partial waves near the
nucleus: the radial wave functions are to a good approxi-
mation spherical Bessel functions with modified argu-
ment ; and the total phase shifts are connected for small
7 by the relation

n=a+bj(j+1), M

where j(j41)%2 is the eigenvalue of the square of the
total angular momentum J. Thus the total scattering
wave function ¢®(r) [where (+), (—) refer, respec-
tively, to outgoing and incoming scattered waves],
which rigorously is an expansion in terms of the exact
radial wave functions F;(r) and G;(r) and the spin-
angular functions x;* and x 2,

e (O)=2; (k) il Gix'+iFx ], (2)
can be approximated at small distances by
e ()= (k'/k)exin 225 i3 iy (R'r)x 15 (R'1)xs]

’ ingik’ 30
=@meses (Gl i) ©

where %’ is the electron’s wave number in the vicinity

§ L. I. Schiff, Phys. Rev. 96, 765 (1954).
"D. R. Yennie and D. G. Ravenhall (to be published).



ELECTRON SCATTERING FROM NONSPHERICAL NUCLEI

of the nucleus and 5 is now the operator
n=a+b[i X V+3c ]2 4)

The simple form of Eq. (3) arises from the physical
situation that an incident plane wave, after traveling
through the weak, slowly varying Coulomb field,
arrives at the nucleus with modified argument, ampli-
tude, and phase, and with curved wave fronts [due to
the factor exp(ibJ2)]. For the case of interest here,
scattering of 182-Mev electrons by tantalum (Z=73),
b turns out to be —0.0080 which is small enough for us
to expand the exponential in powers of b and retain only
the first few terms.

The application of the Born approximation to this
physical situation has been made by Schiff in some
detail.® He obtains the results, mentioned in the
Introduction, that the total contribution to the scatter-
ing from the intrinsic nuclear deformation is independ-
ent of the nuclear spin, and is equivalent to scattering
from a classical deformed charge distribution. The
corresponding arguments in the present case with the
more accurate wave functions (2) are essentially the
same as Schiff’s, but we give them for the sake of
completeness.

The essential feature of the Bohr-Mottelson model is
the close connection between the static quadrupole
moment and the E2 transition matrix elements among
the rotational levels. These matrix elements of the
charge density operator pop (1),

Pop (t) = Zprotous ed (f— rl’);
are related as follows:
<I,M,|Pop(r) IIM>
= 51115MM’PO(7)+ (2[+ 1)%[211& ’ylll(z)
XCrr(2m; —M'M)Y 9 (0,0) Jo2(r)+-- -, (5)

The dependence on the Clebsch-Gordan coefficients C
is a consequence of rotational invariance. The factors
vrrr® are peculiar to the Bohr-Mottelson model; for
I#% they are given by

[y @P=1(21—-1)/(I+1)(21+3),
Cyrra@702=31/(I+1) (I+2),
[yrrge®@2=6/(I+2) (2I+3).

They have the property, observed by Schiff,® that
2oy @P=1. (6)

In calculating the electron scattering due to these static
and transition charge densities, we shall treat the po
term exactly by using the partial-wave analysis, i.e., we
solve exactly the Dirac equation containing the electro-
static potential generated by po(r). The potential due to
p2 is then treated by perturbation theory. The scattering
amplitude for elastic collisions is the sum of the po term
and a part of the p; term. It is easy to show that the
interference term vanishes for an unpolarized target.
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The total quadrupole contribution to the cross section
is simplified because of (6), so that the total cross
section, including all transitions, is given by

7 (6)=00(6)+02(0) ; ™

for o2 we have the simple expression

3(0) = (E/2x#*¢") Xom

f PNV 09V (|2, (8)

where V(1) is the potential due to the passing electron:

1
V()=e f P o @) e (X)d.  (9)

We observe that the cross section (8) is just what could
be obtained from a classical deformed charge distribu-
tion, oriented at random.

A natural way to introduce this classical deformation

is to write
pa(t)=p(r[1—aP;(cosy)]), (10)

where a is a deformation parameter, and v is the angle
measured from the symmetry axis. Surfaces of constant
charge density are give by the relation

7[1—aPs(cosy)]= constant,

ie., they are concentric and roughly spheroidal. A
multipole expansion of (10) gives the result, accurate
for small @, that

pa(1)= po(r)+p2(7) Po(cosy)+- - -, (11)
where
po(r)=p(r)+ (1/10)a’r%" (1)+- -,
pa(r)=—are’ N+ 1/Dar%" (r)++--.  (12)

If for p(r) we use any “smoothed uniform” distribution
with radius ¢ (distance to the half-point) and surface
thickness ¢ (the 909, to 109, distance), then po(r) is
also a smoothed uniform distribution with parameters
¢o, 1o given by

ce~c(1+a?/5),
b’ (14 3a2/5) + N2 (13)
For the Fermi distribution,
p(N=p(0){1+exp[(r—c)/0.2280)~1,  (14)

the parameter X in (13) is 1.08. A result of this plausible
assumption .about the form of the deformation is that
p2(7) is not independent, but is given by p(7). It is in
fact a smooth function with a maximum at r~¢, and
width of order . The intrinsic quadrupole moment Q,,
as defined by Bohr and Mottelson,? is given by

GQo'—‘- (87r/5)f p2(7)1'4d7’. (15)

With a deformation of the type (10) this relation can be
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simplified to
Qo=2Z{r*q[14+60/T+0(c?) ],

where (%), is the mean-square radius of pu(7); for the
particular shape (14), {(r2)a can be expressed in terms of
¢o and Zo by the use of Egs. (13) and the relations

(M= ({A[1+9%/5+- - -],
(=3 141.70(t/c)+0.61 (t/c)*]/
[140.58(¢/c)7].

The remaining problem is to evaluate (9) and (8),
using for the eigenstates of the po scattering which
appear in (9) the approximation (3). To do this it is
necessary to expand exp(ibJ?) in powers of 5. The
justification for this is that the j values that are im-
portant in the matrix element are of order k’c, which at
this energy is about 6.4. Thus the exponent will be of
order 0.4, so that an expansion which keeps terms up
to b? should be reasonably accurate. At this point it
should also be remembered that the representation (1)
for 7 is itself an approximation ; for the present situation
it is accurate up to 7 values of about 6 or 7, however. In
the expansion in powers of &, the first term, which is
independent of b, results in an expression for (8) which
is closely similar to the Born approximation, the only
differences being in the modified amplitude’ and wave
number. To this approximation o(f) still has the zeros
typical of the first Born approximation. Because the
term linear in b in the matrix element is 7/2 out of phase
with the Born-approximation term, the next contribu-
tion to o2(6) is of order 5% We calculate the 42 term only
at the zeros, since at these angles only the 4 term in the
matrix element contributes to the cross section. The
evaluation of this term is simplified by noting that

(16)

rX veik’.r= __k’x vk,eik'.r.

It can be expressed in terms of derivatives of the Born-
approximation matrix element.

We return to the question of the validity of approxi-
mation (), that the quadrupole contributions can be
treated by first-order perturbation theory. Some meas-
ure of the reliability of this approximation is given by
the ratio of quadrupole to monopole potentials. The
maximum value of this ratio, attained at the surface, is
e=2a[1—0.8(t/c)+---]. For the values of a needed
to fit the experiments, € is at most about 0.1. In fact
probably overestimates the importance of the quad-
rupole effects, because the quadrupole potential has
a short range, whereas the central potential has a long
range. In any case, the smallness of e implies that higher-
order contributions in e can be neglected. However,
there are two contributions to the cross section of order
€, of which we include only ¢;. The other term of this
order in € is the dispersion contribution to the monopole
scattering, arising from virtual excitation of the rota-
tional levels. To order € the monopole scattering ampli-
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tude is actually of the form

Fo(@)+€F aisp ().

We have not calculated Fyisp(g), but Schiff’s closure
estimate of this term?® for the general case of nuclear
excitation suggests that it is of the same order of mag-
nitude as Fo(g), so that the resulting contribution to the
monopole cross section is only € of the part we use, and
thus can safely be neglected.

3. RESULTS

The results of calculations for a typical case are
illustrated in Fig. 2. It has been made for tantalum
(Z=13), at an energy of 182 Mev. It is seen that the
quadrupole scattering does tend to fill in the diffraction
minima of the py scattering. That this should be so is
clear from the simple Born-approximation argument
that the form factors for the two contributions vary
with g as ja(gc) and (3/gc)j1(gc), respectively, and 7,
and j, are /2 out of phase. Figure 2 also illustrates the
rather crude way in which we have estimated the
quadrupole cross section. We have calculated the 3
term only at the diffraction minimum of ¢5(¢) and have
assumed that it is negligible at the diffraction maximum.
From these points and from the term independent of
b% which is easier to calculate, we have sketched in an
estimated o3(6). To the accuracy with which we wish to
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F1. 2. A plot of the separate contributions ¢o(8) and ¢»(6) and

the total differential cross section o (6), for electron scattering from
tantalum (Z=73) at 182 Mev.

8 L. I. Schiff, Phys. Rev. 98, 756 (1955). See also B. W. Downs,
Phys. Rev. 101, 820 (1956).
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compare the calculations with the experiments, this
crudeness does not affect our conclusions appreciably.
For a more precise comparison it is possible to calculate
the b term at all angles, but the evaluation is rather
lengthy.

With the limitation on ps(r) imposed by (10), the
model contains three parameters, ¢, ¢, and «, or, as has
proved more convenient, co, fo, and a. It is a priori
unlikely that we can do better here than was possible
with the spherically symmetric nuclei, where the
pronounced diffraction structure enabled us to deter-
mine ¢ and ¢. We first observe that it is not possible to
fit these experimental results with =0 and a distribu-
tion p of the type exemplified by (14). Although a
distribution of this type can, with large enough ¢, yield
a cross section with little diffraction structure, the slope
of the cross section is then much too steep. We next
admit that since the experimental results contain very
little diffraction structure, it is not possible to determine
¢o with any accuracy; we assume a value for ¢y scaled
down from the result obtained for the spherically-
symmetric nuclei, lead and gold, by the relation
¢=1.0943X10"1 c¢m, and increased a little to allow for
the o? term in Eq. (13). If now a value of /4 is assumed, «
can be chosen to give a smooth cross section, but this
cross section will not in general have the correct slope.
Thus by fitting the slope also we can determine both o
and #. Figure 3 illustrates our results for various values
of @, with ¢p=6.38X1078 cm and #,=2.80X10"3 cm.
The experimental values are for Ta'®!, at 182 Mev.! We
estimate that the curve for «=0.19 is smooth and is a
reasonable fit to the experimental points. The intrinsic
surface thickness ¢ is from Eq. (13) equal to 2.5X10~%
cm, which is close to the value obtained for the spheri-
cally symmetric nuclei.! With the assumed radius, this
value of a leads to an intrinsic quadrupole moment
Qo of 10X10~% cm?, which is roughly midway between
the spectroscopic and Coulomb excitation values.?

SUMMARY

An approximate calculation has been made of quad-
rupole contributions to electron scattering from heavy,
distorted nuclei. The general features of the results are
qualitatively reliable, we feel, although inability to
calculate the errors involved in the approximations
does not allow us to quote accurate numerical results.
The nuclear model employed contains three parameters,
of which one, the radius ¢, cannot be determined.
Assuming a reasonable value for ¢, comparison of the
theoretical cross sections with the experiments then

9 McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
These authors give Qo (spectroscopic) =12.9 barns, Qo (Coulomb
excitation yield) =6 barns.
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F16. 3. Theoretical cross sections for various values of Q,
compared with the experimental values, all for tantalum (Z=73)
at 182 Mev.

determines the parameter {, the surface thickness, and
a, the distortion parameter. For the case of Ta!®! at
182 Mev, a rough comparison with experiment of our
approximate calculations indicates values {=2.5X 10~
cm and @=0.19. The intrinsic quadrupole moment Q, is
then roughly 10 barns.

It is practicable, although tedious, to improve the
theoretical analysis to the stage where reliable numerical
values can be obtained for £ and @, and consequently Q,.
Information about the shape of p, may also be found by
considering it as independent of po.* Considerably more
information could be extracted from the very difficult
experiment of electron scattering from aligned tantalum
nuclei, since there would then be interference between
the quadrupole and monopole scattering amplitudes.
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