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The implications of the Jahn-Teller theorem are discussed with special reference to the case where the
forces tending to lower the symmetry of electronically degenerate molecular states are of the same order as
the restoring forces encountered during typical vibrations. It is shown that the resulting dynamical situation
may be described as a particular kind of coupling between low-frequency electronic motions and nuclear
modes.

' 'N 1937, Jahn and Teller' demonstrated that elec-
t - tronically degenerate states of nonlinear molecules
are unstable with respect to certain asymmetric dis-
placements of their nuclei. If the nuclei are of infinite
mass, two possibilities may be envisaged. On the one
hand, the molecule may dissociate since it possesses no
stable nuclear configurations. On the other, it may take
one of several new shapes having lower symmetry. In
the present note, we shall investigate this latter possi-
bility and consider particularly the effect of finite
nuclear masses. For, if the stability attained by assum-
ing an asymmetric nuclear conhguration is no more than
the zero-point energy of a typical vibrational mod" -or
if the concomitant displacement is no larger than a
zero-point amplitud" —it is clear that a special coupling
between electronic and nuclear motions will arise.

ILLUSTRATIVE EXAMPLE

Consider a molecule with six identical nuclei, whose
initial configuration is that of a regular hexagon (Des).
The bond distance is fixed so that the molecule is stable
at least with respect to totally symmetric displacements.
The molecule is supposed to be in a doubly-degenerate
electronic state of symmetry Ei„. To be definite, the
electronic eigenfunctions i/A', &&bB'——lbA'* are chosen so
that they simply acquire factors co, co'=co ' respectively
on rotating the nuclear framework through 22r/6 radians
[o&=exp (22ri/6) ].

Excepting the translational and rotational degrees of
freedom, all possible nuclear displacements may be de-
scribed by linearly combining symmetry coordinates of
species nr„p», &|is„ps„, e&„, 2es„e2„. These may be
chosen to be eigenfunctions of the sixfold rotation
operator also, so that they are in general complex.
When used collectively, we call them s„(N= 1, ~ ~ ~, 12);
more specifically, however, they are sr ' (nto); s2 '

(p& ),
Se~'& (pse), S4l'& (p2„), Set+'& (elv) y

Sel""(ese), Sr'~" (e2g) ~

ssl+2&(e2„), where s,&"& acquires the factor to" under Ce
and s„( "' is its complex conjugate.

The Hamiltonian for the molecule as a whole consists
of two parts: V, the kinetic energy operator for the
nuclei and 'U, which is called the electronic Hamiltonian.
So defined, 'U contains the kinetic energy operator for

'H. A. Jahn and E. Teller, Proc. Roy. Soc. (London) A164,
11'7 (1937).

the electrons, their potential energy in the field of the
nuclei, their mutual repulsions and the mutual repulsion
of the nuclei; it depends on the nuclear coordinates
parametrically only. We shall suppose that it is possible
to develop 'U as a Taylor's series in the symmetry
coordinates about the hexagonal reference configura-
tion:

'U = 'U'+Q„S„'U"+-'2+„P„S„S„'U"'+ . (1)

For simplicity, we assume that we may terminate this
series after the quadratic terms. lbA', &IAMB' are mutually
orthogonal eigenfunctions of 'U' belonging to the same
eigenvalue V':

('O' —V')PA'= 0= (O' —V')QB'. (2)

In this illustrative context, we further suppose that
lbA (r), QB (v) together constitute a complete set so far
as the electronic coordinates, v say, are concerned-
any electronic state may be represented as a super-
position of these two functions alone.

The electronic Hamiltonian is therefore represented
by a two&(two Hermitian matrix whose elements are:

VAA V +Qv SvVAA +2+v Qv SvsvVAA

VBB= V +Qv SvVBB +2+v Pv Svsv VBB

VAB Qv SvVAB +slav pv SvsvVAB = VBA

By symmetry, it is easy to see that all linear terms in

V~~, V~~, vanish identically except that containing
sile&(n&o), which rePresents the totally symmetric dis-
placement. Since the hexagon is supposed to be stable
with respect to s~"), this term also vanishes. Moreover,
it is always possible to make a "normal" choice for
s6&+'), s7(+') of species 62g such that

VAA= VBB=V'+2&ilsi'& I'+2I4lsP'I '
+-'hsI» "I'+-'&4ls«" I'+&sl» ~' I'
gee lss(+'

I
'+kr lsr&+' I2+kslss&+2&

I

2 (4)

where the k's are all real. Similarly, it is clear that only
s6&

—'), s7& ') appear linearly in Vg~, whereas their
complex conjugates s6&", s7&') appear linearly in V».
In order not to complicate the issue unnecessarily at
first, we shall suppose that the coefficients of all sym-
metry coordinates other than»t+'& (ese) vanish in these
o8-diagonal elements, both for the linear and quadratic
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terms. Accordingly,

VAB &216$6 +k66$6 $6 VBA & (5)

where ls& k66 are constants. For the moduli of Is, k66, $6(+')

we write X, «, and (1/~2», respectively, their amplitudes
being a, b, & (8+c). With this notation,

VAA Y + sk» VBB

VA B—)(»s i(—+~a)+ rs «»2si(26+sc+b) —V
(6)

QA

where Y' contains all other symmetry coordinates
"normally, " and we have dropped the subscript on k6.
Choosing the arbitrary phase c such that 3c a+b=—o,
the latent roots of the electronic energy matrix are
easily seen to be

V= Y'+-', k»'+»(X'+X~» cos38+-'«6»'j1 (7)

We shall give a preliminary enumeration of the possible
motions on the basis of these two energy surfaces.

If X, «both vanish, the Jahn-Teller effect is inopera-
tive. If ~&k, the lower root becomes increasingly nega-
tive for large values of r, which may be used to illustrate
the possibility of dissociation. We shall not pursue
either of these cases.

Instead, we suppose that ~ is appreciably smaller
than k and anticipate that P is larger than ~~~r in all
ranges of interest. Consider the lower V sheet. It is
easily seen that, for arbitrary constant r, V is minimal
when 38=2m. , where»b is integral, and that it is maximal
when 38= (2n+1)6r. This energy surface therefore has
three minima at

»=X/(k —«) =X/k, 8=2m»6/3 (g)

and three saddle points at

»=X/(k+«) =X/k, 8= (2e+1)6r/3. (9)

The values of V at these critical points, referred to the
undistorted hexagon, are

—X'/2 (k —«) &

—X'/2 (k+«), (10)

respectively. Thus, if «/k is small, the surface has a
trough of approximate depth Xs/2k situated near the
circle»=X/k. Along the bottom of the trough, the
potential has the simple period 26r/3, and its adjacent
minima are separated by a barrier of height Xs«/k'.

If displacements of other symmetries are ignored, the
point r=o corresponds to the undistorted hexagon of
symmetry D6&, of course. When r does not vanish, how-
ever, the symmetry of the nuclear conhguration is
lower, belonging to the point group C», only when 0
assumes the critical values 2nrr/3 or (2»6+1)6r/3 is it
as high as D».

H the nuclei were of infinite mass, they would be
held near the potential minima. This condition on the
nuclear masses p, may be made more precise by an
examination of the lower potential sheet. It is easily
seen that if

p))k'k'/X'«&

then the lower vibrational states have such low ampli-
tudes, that the nuclei experience essentially harmonic
restoring forces. In this event, the molecule is best
described as having the lower symmetry D».

A diferent situation is encountered if

k'k4/)&. '«,

p))k'ks/X4.
(12)

)((~k'ks/)), 4. (13)

Eliminating X between (13) and (8) or (9), we see that
the trough on the lower potential sheet lies on a circle
of radius (k'/pk)r. But this is just the root-mean-
square amplitude for a zero-point vibration of a mass p
which is harmonically bound with a force constant k.
The zero-point energy of such a mode is of the same
order as the separation of the two potential energy
sheets in the neighborhood of the trough on the lower,
in our example. A unique dynamical situation is en-
countered since, quite clearly, the ensuing motion
cannot be confined to one or other of the two sheets.
It is with this problem that we shall be concerned in
the present note. Before posing it more generally, how-

ever, we shall pursue our example somewhat further.
So far, we have considered only the electronic eigen-

value problem, treating the nuclear coordinates as
parameters. A solution of the questions raised by the
more complicated situation described above requires us
to solve the wave equation for the molecule as a whole.
This is clearly separable insofar as all symmetry coordi-
nates other than s6~+'~ are concerned; in dealing with
the interactions between the low-frequency electronic
motions and this exceptional nuclear mode, those terms
in the Hamiltonian referring to the separable modes
may be treated as constants. We therefore have to
solve the reduced problem

(V —V'+ V'—V')@=6+, (14)

6 J. H. Van Vleck, J. Chem. Phys. 7, 61, 72 (1939);Phys. Rev.
57, 426 (1940).

6 A. Abragam and M. H. L. Pryce, Proc. Phys. Soc. (London)
A63, 409 (1950).

The oscillations are now conGned to the bottom of the
-trough, but their zero-point energy is suKciently high
that the nuclei may either tunnel through or surmount
the saddle points in going from one potential minimum
to another. It is clear that the degree of freedom 0, but
not r, is more or less cyclic, corresponding to a but feebly
hindered "internal rotation, " or "inversion. "This mo-
tion takes the molecule from one Ds«configuration,
through a continuous series of Cs«shapes, to the two
equivalent D» configurations. At the same time, the
motion corresponding to the other degree of freedom r
remains essentially harmonic. The description of this
situation was 6rst given by Van Vleck' and has been
applied more recently by Abragam and Pryce. '

The last possibility, however, is also in many ways
the most interesting. This arises when
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1
&—&'=—(Pl'+P2').

2p,
(16)

where q' refers to the kinetic energy of the separable
modes. At this stage, it is convenient to replace s6&+') by
real symmetry coordinates

ql
——K2 Rl(s2&@}, q2 ——K2 Im (s2&2&}, (15)

whose canonically conjugate momenta are Pl, P2, re-
spectively:

Since the usual commutation rules,

[qlppl]= [q2)P2] &h) [qlyp2] Op
' ' ') (21)

apply, this just represents a doubly-degenerate har-
monic oscillator, whose properties are well known. Tn

particular, we know that e can only assume the values
2„=(n+1)hv, where 22rv= (k/p)& and n is a positive
integer. The nth level is (n+1)-fold degenerate. Since
H and

(22)M= qlp2 q2p1

In this brief section, we shall obtain representatives of
(ql+iq2) referred to these p„„asbasis.

We define operators(pl +p2 )+2k(ql +q2 ) 2 Q+ VABp=0)
L2p,

(18) F= (p l+ ip2) +ia (q1+iq2)

Ft= (Pl —ip2) —ia(ql —iq2) ~

G= (pl+ip2) ia(q—l+iq2),
G'= (pl ip2)+ia—(ql iq2), —

VBA&+ (pl +p2 )+2k(ql +q2 ) 2 P
2p (24)

where k=k2, l=l2, f=k22 are constants and

The general solution of (14) may be written in the form

%(r,ql, q2) =/A (r)n(ql, q2)+QB2(r) p(ql, q2), (17) together constitute a complete set of commuting ob-
servables, the (n+1) solutions of (20) which belong to

since we assume that pA', fB' are complete with respect
to the electronic coordinates r Maki.ng use of (4), (5),
(15), and (16), we see that (14) is replaced by the pair My„=m@„, (m= —n, —n+2, ~ ~ ~, n). (23)
of coupled equations

VAB l(ql iq——2)+2f—(ql+iq-2)',

VBA =i*(ql+ &q2) +2f*(ql—q2) '.

It is clear that + cannot be factored into an electronic
and a vibrational part, and that the functions a, P are
not of the usual form for a doubly-degenerate vibra-
tional mode.

SOME RELEVANT MATRIX ELEMENTS

As a preliminary step to describing the solutions of
Eq. (18), let us consider the simpler problem

H4 —= —(p '+P ')+-'k(ql'+q ') 4'= 4 (2o)
2p

which have the following properties,

[M,F]=hF,
[M,Ft]= hFt, —
[M,G]=hG,

[M,Gt]= —hGt,

[H,F]=hvF,

[H,Ft]= hvFt, —
[H,G)=—hvG,

[H,Gt]=hvGt,

in virtue of (21), where a =22rpv. In addition

FFt=2pH+ 2aM 2al, —
FtF=2y H+2aM+2ah,
GGt =2IJH 2aM+2ah, —
G~G= 2IJ,II—2aM —2ak.

(25)

(26)

It follows from (25) that if p„satisfies (23), then

M(Fy.„)= (m+1)i2(Fy„„),
M(Fty.„)=(m —1)h(Fty„),
M(Gy „)=(m+1)h(Gy „),

M(Gty )= (m —1)i2(Gty ),

H(F@ )= (n+2)hv(Fy ),
H(Fty „)=nhv(Fty„),
H(Gy„„)=nhv(~ ),

H(Gt4 „)= (n+2)hv(Gty„„).

(27)

With an appropriate choice of phases, it now follows from (26) and (27) that

(n'm'
~
F

~
nm) = (2ah) &[(n+1)+m+1)28„,~lb

(n'm'i Ft inm) = (2ah) &[(n+1)+m—1)'h„, l5„,
(n'm'

~
G

~
nm) = (2ak) &[(n+1)—m —1)~8„, lb

(n'm'i G~ inm) = (2ah) &[(n+1)—m+1)~5, ~lb

(28)
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and, finally, that the only nonvanishing matrix elements of (ql&iq2) are

(n+1, nz+1~ql+iq2~nnz)= —i(A/2a)'(n+nz+2)&,

(n —1, nz+1
~ ql+iq2 ~

ntn) =z(h/2a)'*(n —nz) &,

(n —1, nz —1I ql —zq2Innz) =z(&/2a)&(n+tn)&,

(n+1, nz —1
) ql —iq2) nnz) = —i(A/2a) &(n —nz+2) &.

(29)

(e„—c)b„, +ic*(n+nz+2) la~i (~1)
ZC (n nZ)'an 1

—
(mt 1)= 0~

ic(n' —nz'+2)lb„. +1 „.+1—zc(n'+nz')'*b 1 „.+1

+(e„—e)a„. „.=0.

(34)

Comparing Eq. (34) with (32), we see that to every
solution of the form (33), there corresponds another
solution with the same eigenvalue e, namely,

(2tn+1) PA ~ 'bn', nm+1 —@n',—(m+1)
0~

—4B'E- a -*4-,-- (35)

Each level is therefore doubly-degenerate.
The qualitative features of the coupling between

electronic and vibrational motions in this case (f=O)
may be visualized as follows: with fA', fB' we associate
components of electronic "angular momentum" about
the sixfold axis l(,=&1 respectively; similarly p„ is
associated with a component ),=2m of vibrational
"angular momentum" about the same axis. The total
"angular momentum" X=)1,+$.„ is then a good quan-
tum number, and the coupling shows all the features of
cylindrical symmetry, as if we were dealing with a
diatomic molecule. This has been anticipated by our

VIBRONIC PROBLEM

Returning to Eqs. (18), we seek solutions in the form

En Zm anm4nmy P= Zn Pm f)nm4nm~ (30)

where the constants e„, b„are determined by the
coupled equations

(.„-.)a„„+g„.P„.(nm~ VAB~nm)f „.„.=0,
(31)P„g„(n'nz'~ VBA~nnz)a. +(~„. ~)b..„—.=0

The representatives of V», V» which occur may be
computed readily using the matrix elements (29). We
discuss the nature of these solutions first on the assump-
tion that f=0 In thi. s case, Eqs. (31) reduce to

(e„—~)a +zc(n+nz+2) *'b~l, ~1
—ic(n —zn)*bn 1, m1.1=0&

iC (n —nZ+2) an+i, m' 1ZC (n+nZ)—~an —l, m —1,

+ (c —c)b„„=O,
where we have put c=l(A/2a)'*. It follows that the
solutions of (18) may be written in the form

+(2m+1) O'A gn anm4'nm+fB Zn' f1n', m+lgn', m+lp (33)

where e, e' are of opposite parity. Replacing e by e',
nz by —nz' in the first of Eqs. (32) and n' by n, nz' by—m in the second, we find

whose energies are given by

e= (n+1)h) —2ici 2(nz+1)/h),
(nz= —n, —n+2, , n). (37)

The remaining (n+1) states are represented by

pB'(tl„„+(ic/h) )fA'{ (n —tn+2)'&~1,
+ (n+nz) &y 11), (38),

notation in (33) and (35), where values of X have been
used as subscripts for +. Since X, can only be &i, but
),=0, &2, &4, , X is always odd and each level is
doubly degenerate. We may use (A~ = II, 4', ~, to
classify these levels, together with some ordering symbol
which distinguishes the different levels for which ~X~

is the same.
That the problem appears to show cylindrical rather

than only hexagonal symmetry is due to our neglect of
the quadratic terms in VAB. by setting f=0, we have
restricted ourselves to the case where the potential
energy sheets are surfaces of revolution, 0 being cyclic.
The consequences of relaxing this condition will be
outlined later. It may also be remarked that whereas

)
$,.)

has the single value unity, ) X„) assumes only even
values. The reason for this is clear. QAO, QBO together
span E& of D6& and acquire factors co+' under C6.
(qi&iq2) span E2g of the same group and are multiplied
by co+' under C6. On going from D« to D„&—as, in effect,
we have —C6 is replaced by an infinitesimal rotation
about the symmetry axis. Thus, QAO, pB' may be
supposed to acquire factors e+'& under C~ of the higher
group, and (ql&iq2) are multiplied by e+"&, respec-
tively. pA', pB now span II„and (ql&iq2) span 6,
«D h..

If c vanishes, the energy levels are just those of a de-
generate two-dimensional harmonic oscillator, namely,
(n+1)hz. Owing to the electronic degeneracy, each of
these levels subsumes 2(n+1) linearly independent
states. Under the influence of the coupling (CWO), this
degeneracy is partially removed and each level splits
into (n+1) different doublets, corresponding to the
(n+1) different values for [A[= ~2n+1~, ~2n —1[,
~ . , i, Ihis is best illustrated by considering the case
for which

~
c~ is considerably smaller than Iz) . Perturba-

tion theory may now be used, and the first-order
functions and second-order energies are easily obtained.
There are (n+1) states represented by functions of
the form

fA Qnm+ (ZC /IZ) )O'B f (n+Zn+ 2) Qn+1, m+1

+(n —nz)'*4 1, ~1), (36)
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whose energies,

E= (0+1)hv—2
I cl '(—m+1)/hv, (39)

are the same as those in (37), but listed in a different
order. The resulting pattern of energy levels is most
conveniently expressed parametrically. Writing

IAI = l2~+1—4vl, (~=o, 1, ",~), (4o)

it is easy to see that

~L~, I
A

I
3= (~+1)hv —2

I c I '(I+1—2g)/hv, (41)

so that the second-order energy levels are evenly spaced,
for given e, in all cases. For example, if n=3, the state
lb. l

= 7 lies lowest followed at intervals of 4I cl'/hv by
states for which IXI =3, 1, and 5, respectively. As the
ratio Icl/hv increases, higher orders of perturbation
theory must be used and, when Icl and. hv are com-
parable, solutions of (32) are not easy to obtain.

It remains to consider the e8ect of the quadratic
terms in t/'~~ on the resultant pattern of levels. To the
extent that quadratic terms are ignored, it was found
that states differing in IXI do not interact, whatever
the size of Icl/hv. However, when they are included,
we return to D61, from D„1,and IXI is no longer a good
quantum number. All states for which

I XI, rzzod 6=1 or
5 have symmetry E&„ in the lower group and may
therefore interact with each other under the inQuence
of the quadratic terms. The only other possibility, in
our example, is that IXI, rlod 6=3. Such states, which
correspond, for instance, to C„ in D„y„become B~ and
8&„in De&. not only may they interact with each other,
but their (double) degeneracy is also removed. We may
illustrate this by considering the C state of the erst
excited vibrational level e= 1.The state is split, already
in 6rst order, by the term ~f(qi+zg&) in UAB. It is
easily seen that the correct zeroth-order functions are

(fA $11+fB41—1)/K2p (42)

whose first-order energies are

c= 2hv& (f+f*)(h/zz) (rz+m) &(rz m+2)', (43—)

respectively. LSimilarly, if terms from (3) are retained
in VAB, other than those referring to the se~+@(emg)

mode, we may enumerate further complications in the
behavior. This topic will not be pursued, however,
except insofar as to remark that the concomitant
eGects promote the appearance of combination bands
in spectra, without having to invoke the usual an-
harmonicities. $

MORE GENERAL FORMULATION

Although the treatment overed so far has been in
terms of a very particular model, its generalization is
relatively trivial in all respects except one: the electrons
are more intimately polarized by the nuclear displace-
ments than has been supposed. Thus, it is clearly not
true that an arbitrary electronic state is linearly de-

pendent on i/A', fB' alone. In the present section, we
shall show one way in which this restriction may be
removed. Our method is designed for the case symbol-
ized by Kq. (13), in which the nuclear displacements
remain small, ~(h'/ph)'. The other extreme cases, for
instance those exemplified by Eqs. (11) and (12),
require no special treatment, since they may be handled
by known techniques.

The Hamiltonian for the molecule as a whole is
K=*0+9", as before, and is developed as the Taylor's
series (1).To be definite, we suppose that the molecular
point group contains at most doubly-degenerate repre-
sentations, though this is not necessary. Let f»0(r) be
a typical member of a complete set of orthonormal
eigenfunctions of 'U,

L '()-V 'j4 '()=o. (44)

We now construct generalizations of these unperturbed
functions to include some dependence on the nuclear
displacements:

4 ( )=4 '()+E 4 '() () (45)

cIK(s) =P s cIK +gZe Zs sus cLK""+' ' (46)

The coefficients cLz are, chosen so that, for arbitrary
displacements s, the f»(r, s) form a complete ortho-
normal set with respect to the electronic coordinates r.
Quite generally, it is then possible to find sets of
functions VK(s), PLK(s), which are also power series
in the s„,

VK(s) = V» ++~ s~ VK"

+22th Qv s~ssVK + ' ' 'p

(47)
PL» (s) =PLK +Qu ScaPLK

+2+~ Pe svS~PLK +
such that

[V(r,s) VK(s)]gz(r, s—)=QLPL(r, s)PLK(s) (48)

is satisfied identically. Now let VLK", VLK"" be typical
elements of the matrix representations of '0", 'U"'

referred to the f»0 as basis; without loss of generality,
cLz"', U ' and therefore also VLK"" may be taken as
symmetric with respect to I and e. It may be shown by
standard methods that it is possible to choose the cLK in
such a way that

I LK 0) ~X ~KK ) I LK ~LK'I X'K )

VK""=VKK"'— Q (UKL"VLK'
LgK, KS

+UKL ULK )/(VL' VK') (49)—
PLK =8LK'$VK'K™ Q (VK'L VLK

LQK, KS

+VK I.'Vz»")/(ULO —UK') j,
and so on. We have adopted Ithe notation that, if Vz'
is degenerate, then f»', f»' are the two linearly inde-
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(VL VK)CLK CLK VK +CLK VX

+CLK' VK'K +CLK' VK'K VLK

QM (VLM CMK +VLM"CMK )) (IQE) E )) (51)

c~~"' and c~ ~"' being chosen so as to ensure ortho-
normality.

%e seek solutions of

in the form
BM —= ['U (r,s)+ V'(s)]@=M (52)

4 (r,s) =+K fK(r, s)nK(s) ~ (53)

This approach has particular merit only if it is possible
to drop all terms higher than quadratic in the nuclear
displacements. Now, for the case we are considering,
these displacements are not appreciably greater than
those encountered in a normal vibration. Ke may
therefore adopt the Born-Oppenheimer approximation,
which is essentially a power series development in the
parameter

7t= (m//I)&,

m being the electronic and p, a typical nuclear mass.
Born and Oppenheimer explicitly considered only non-
degenerate electronic states, but their approach may
also be used here. In particular, our s„are also of order x
and 1'(s) is of order 7t'. To the second order in x, there-
fore, 1'(s) commutes with fx(r, s) and (52) becomes

ZK HK(r, s)[&(s)+VK(s) —El«(s)
+nK(s)['U(r, s) VK(s)]/K(r, s—)}=0. (55)

By use of (48) and (49), this easily reduces to the pair
of coupled equations

I +K(s) E jnK(s)+PKK'(s)nK~(s) =0,
(56)

PK'x(s)nK(s)+[+ (K)sE jnIU(s) =0)

pendent eigenfunctions of 'Uo belonging to this eigen-
value; if V~' is nondegenerate, the sufEx E' is unde6ned
and all terms involving it are to be dropped from (49)
and in the sequel. Similar relations, ensuring that

P LK(s) =bI K'PK'K (S)& (49a)

may be derived for cubic and higher powers in the dis-
placements, but we shall break off all the series after
the quadratic terms. To be complete, we add that

cIK"=—VI X /(VL' —Vx'), (~&&, &'),
czK"=0=cKIx") (50)

and also that

where we have set

&K(s)= &(s)+VK(s). (57)

CONCLUSION

It has been shown that under certain circumstances,
which may turn out to be quite general, the so-called
Jahn-Teller "splitting" of degenerate electronic states
must be analyzed with some care. Unless the forces
tending to remove the degeneracy are very strong, it is
necessary to consider the vibrational and electronic
motions on the same level, since these may be strongly
coupled. In case the forces are weak, a particularly
simple pattern of energy levels is found and it is only
the degenerate vibrational levels that are best regarded
as being "split."

A preliminary account of an application of the theory
has recently appeared, 4 and a more complete version of
these and related calculations is being prepared for
publication elsewhere.

4 A. D. Liehr and W. Moii tt, J. Chem. Phys. 25, 1074 (1956).

They show that, for the electronically degenerate
case, the solutions take the form

+(r;)=4K(r,s)nK(s)+4K (r,s)«(s) (58)

For the nondegenerate case, the terms in E' are dropped
and VK(s) assumes the usual role of providing the
potential for the vibrational problem. We note that (56)
and (5/) are just generalizations of Eqs. (18) and (1/).
As in the previous example, it will generally be possible
to choose particularly suitable fK', fK', and to arrange
for the s„ to be chosen "normally, " so that VK(s)
= VK (s) contain no terms linear in the displacements
but take the simple form exemplified by (4).

In conclusion, it should be remarked that, so far as
a power series development in y is concerned, our
results are correct to terms in x' only. For the non-
degenerate case, Born and Oppenheimer were able to
show that the terms in y' were ineGective. This is not
true for the degenerate case, however, so that in this
sense Eqs. (56) are rather less accurate than their
usual analog in which E' does not appear. The appear-
ance of nonvanishing terms in y' is not a particular
fault of our method, but rather an essential feature of
the new physical situation. These terms may always be
assessed, at least formally, but the concomitant equa-
tions no longer factorize so nicely into the (Z,K ) pairs,
like (56).


