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Relativistic Corrections to the Dipole Sum Rule*t
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The summed oscillator strength is calculated to order (v/c)s for a Dirac electron in a central force fiel.
The result (1+Tpp) ' is interpreted in terms of the electron s increase of mass due to its kinetic energy,
(Too is the expectation value of the kinetic energy, in units of mc .) This analytical result is in fair agreement,
with our earlier numerical result, and those of Brown et al. for a E electron of lead. We also calculate the
bremsstrahlung-weighted cross section for a Dirac electron in a Coulomb Geld, and compare with our
numerical result for lead.

I. INTRODUCTION

~DISPERSION theory' relates the forward-scattering
amplitude for a photon of one energy to the

dispersion integral over all frequencies of the absorption
cross section. In the case of very high photon energy,
the forward-scattering amplitude is proportional to the
integrated absorption cross section. If we assume that
the high-energy forward-scattering amplitude for an
electron bound in the atom is the Thomson value
e'/rises, then we find the integrated cross section for the
atomic photoeffect for all multipoles with retardation
to have precisely the Thomas-Reiche-Kuhn (TRK)
value of o.;„t,

——2s'e'iti/mc, or P„fs„1for the ——summed
oscillator strength. ' This derivation of the TRK sum-
rule is more general than the usual method using closure
with Schrodinger matrix elements for the nonrelativistic
(NR) electric-dipole contribution to the cross section;
but the derivation is based on the assumption
above concerning the high-energy forward-scattering
amplitude.

In this paper we shall examine relativistic corrections
of order v'/c' to the sum-rule derivation of the summed
oscillator strength for an atomic system in which the
central potential commutes with the position. In two
previous papers" we have found the summed oscillator
strength for the special case of one Dirac electron in the
Coulomb field of a lead nucleus using a numerical
approach: we calculated the oscillator strength for
discrete transitions, and combined our results with
calculations by others of the lead photoeffect. %e found
a summed oscillator strength of 0.86, appreciably dif-
ferent from the value unity given by the TRK sum-rule.
(In reference 2, Kqs. (3) and (4), we omitted the term
js(kr)Es(cos8); thus overestimating the retardation cor-
rection. Including this term gives a summed oscillator
strength of 0.87. Note that in reference 3 we take the
difference op E.—op.p., where op.g. is the photoeffect
cross section, and 0'p. p. is the cross section for pair
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production in which the produced electron would have
occupied the already filled E state. ) We also used
dispersion theory to evaluate the forward-scattering
amplitudes calculated by a different method by Brown
et al.4 for scattering by a E electron of Hg at energies
from 0.32 mc', to 2.56 mc'. The numerical agreement
between our values and Brown's strengthens our con-
clusion that the high-energy forward-scattering ampli-
tude for a bound electron is smaller than that of a free
electron.

Brown et a/. have also used the second Born approxi-
mation for an estimate of corrections to the form-factor
calculation of electron scattering. In the forward-
scattering case their result reduces to a scattering
amplitude proportional to the expectation value of
(E+

~ V~) ', where E is the electron's total energy and
t/ its potential energy. Their result is in agreement with
our Eq. (14) below.

In the next section we shall calculate the e'/c' correc-
tion to the TRK sum-rule (nonretarded electric-dipole
interaction) for a relativistic Hamiltonian. In Sec. III
we find other v'/c' terms, and compare with our numeri-
cal result for the summed oscillator strength for the
lead photoeGect. In Sec. IV we calculate the brems-
strahlung-weighted cross section fob J(o/W)——dWj for
a Dirac electron, and compare with our numerical result
for the lead photoeffect.

II. ELECTRIC DIPOLE TRANSITIONS

The NR calculation leading to the Thomas-Reiche-
Kuhn (TRK) sum-rule for electric-dipole transitions
(without retardation) can be written in the form~

g„fo„—(res/A') ft H——,y),yves
——m (O'H/tip„') ss, (1)

where we have evaluated the double commutator in the
momentum representation, to obtain the second partial
derivative of the Hamiltonian H with respect to the
momentum component p„. (The electric field is assumed
to be along the y axis.) IJse of the Schrodinger H =p'/2m
+V(r) immediately gives the TRK sum-rule of unity

' G. E. Brown and J.B.Woodward, Proc. Phys. Soc. (London)
A65, 9/7 (1952);Brenner, Brown, and Woodward, Proc. Roy. Soc.
(London) A227, 59 (1954); G. E. Brown and D. F. Mayers, Proc.
Roy. Soc. (London) A234, 387 (1956), and G. E Brown (priva. te
communications).' R. G. Sachs and N. Austern, Phys. Rev. 81, '/05 (1951).
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for any potential function V(r) that commutes with
position.

If we use the Schrodinger Hamiltonian and evaluate
the expectation value in Eq. (1) using Dirac wave
functions, it is clear that we still get the TRK sum-rule.
To obtain a diferent relativistic sum-rule we must
change not only the wave functions used in evaluating
the expectation value; but we must also change the
operator whose expectation value @re are evaluating.
Substitution of the Dirac Hamiltonian into Eq. (1)
gives a nonsensical answer of zero, since the Dirac
Hamiltonian is linear in the momentum. This result of
zero comes from cancellation of the positive terms by
negative terms due to induced transitions to negative-
energy states. ln principle this cancellation could be
avoided by using a projection operator in the derivation
of Eq. (1) so that we include only transitions to positive-
energy states. However, the projection operator for a
Dirac electron in a Coulomb field is rather cumbersome;
so we shall perform our calculation in a circuitous
manner.

We can obtain a relativistic sum-rule by using what
we call the Darwin Hamiltonian in Eq. (1). This
Hamiltoniano is found by applying the Dirac Hamil-
tonian twice, expanding in powers of (u/c), and keeping
terms including order (s/c)', giving

H =P'/2m P4/Sm'cs+ —V (A'/4msc') —(d U/dr) r)/Br

+ (1/2m'c'r) (dV/dr)S L. (2)

The second term in the Darwin Hamiltonian corre-
sponds to the 6rst mass correction of special relativity. '
The last two terms, such as the spin-orbit coupling
term S L are linear in the momentum p„, and, there-
fore, ~ do not change the answer found by evaluation
of the second derivative in Eq. (1).

The 6rst term in H gives just the TRK sum-rule, and
the second term, —p'/Sm'c', gives a negative correction.
We have the correction

—m[(cl'/Bp ') (p '+p '+p ')'/Sm'c'jpp
= —(1/Sm'c')[12p '+4p '+4p jpp

= —(5/3tmc') (T)oo (3)

We have evaluated this correction term using
spherically symmetric wave functions, so that (p ')op
= (p„') pp

——(p, ) pp ——(2m/3c') (T)pp, where T is the kinetic
energy. Our relativistic analog to the TRK sum-rule is
then

Q fo - m( 'clH/rip, ') oo

=1—(5/3mc') (T)op+0(u4/c4). (4)

We note that the terms we used in Eq. (2), namely
P'/2m —Po/Smscs, are generally valid for a relativistic
Hamiltonian, such as that of the Klein-Gordon equa-

' For example, see L. I. Schiff, Qualtum Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1949), Zq. (44.8).

r S. Frankel, Phys. Rev. 99, 169 (1955).

tion, evaluated to this order. Ke have emphasized
use of the Dirac equation, since we shall compare with
numerical results for lead based on that equation; but
to the accuracy considered in this paper we use only
the mass-correction term of special relativity, and no
other features of the Dirac equation.

III. OTHER MULTIPOLES, AND RETARDATION

Jacobsohn' has evaluated the NR summed oscillator
strength for electric-quadrupole transitions, and for
the retardation correction to electric dipole transitions.
Both these terms are O(s'/c'). Jacobsohn also states
that for a Dirac electron in a Coulomb held the summed
magnetic-dipole oscillator strength is of a higher order
in s/c. We have a slightly different result from Jacob-
sohn's for the summed electric-quadrupole oscillator
strength, and agree with his results for the retardation

. correction and magnetic-dipole transitions. We shall
sketch our derivations, but shall not give the details.

The electric-quadrupole oscillator strength is'

fp„@= (nues/2ch') (qp„)'.

For a spherically symmetric ground state we can
choose any special case for polarization and propagation
directions; we shall use q=zy. The frequency ~ is re-
placed by the operator id/di. We find, using closure,

Z- f.- = ('m/4~c )Z-[(0)p-(~) o-+ (~).-(0)o-j
= (im/4hc') {[j,jg) oo

= —(1/4mc') [(2pg'/m+ 2p '/tl+ z'cl' V/ay'
+y'cl'V/ cl+z2yzr)s /Vcl8yz

+ye) /V) r+yzcl V8/7zpp. (6)

For an S ground state, we perform averages over the
solid angle, and obtain

g~ fo~o= (2/3mc') (T)pp+ (1/15mc')

X (r d V/dr +4rdV/dr) oo. (7)

This expression agrees with Jacobsohn's Eq. (A.5),
except that in Eq. (8) we change the sign of his last
term involving the Laplacian of the potential, in agree-
ment with a private communication from him. Jacob-
sohn's changed expression is

P„fo„&=(2/3mc') (T)oo+ (1/60mc')

X[(r V)oV+9(r V)V+3r V Vjpp. (8)

(Jacobsohn's derivation and resulting expression is more
general than ours since he did not assume a central
potential. ) The expressions (7) and (8) have been
checked for the case of an isotropic simple harmonic
oscillator, of natural frequency coo, for which direct
evaluation of Eq. (5) gives a summed quadrupole
oscillator strength of A&a p/mc'.

8 B. Jacobsohn, Ph.D. thesis, University of Chicago, 1947
(unpublished); and private communication.' Note that our definition of the quadrupole oscillator strength is
different from that in reference 5 by an extra factor of the square
of the photon energy.
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The retardation correction fn to electric-dipole
transitions is found to O(es/cs) by the power-series
expansion of exp(pcs), and gives, "for photon propaga-
tion along s and polarization along y,

The coefficient of the double commutator is of O(o'/c').
A nonrelativistic central-force atomic Hamiltonian H
commutes with the magnetic moment operator p,
Then the summed magnetic dipole oscillator strength
can be neglected in this paper, where we stop at O(e'/c').

We now find the summed oscillator strength f' to
O(s'/c') by adding Eqs. (4), (7), and (10) for electric
dipole, electric quadrupole, and retardation correction,
respectively. We find the simple result

P (f') p
= 1—(1/mc') (T)pp. (13)

Since the terms involving V canceled, this result holds
to order (e'/cs) for any ordinary central potential.

Equation (13) can be given a simple interpretation
in terms of the relativistic change of mass of the bound
particle. The forward-scattering amplitude Ii at very
high frequencies is (e'/mc') times the summed oscillator
strength':

F(po) = (e'/rlc') (1+Tpp/mc') '= e'/(rNc'+ Tpp). (14)

)For our interpretation we have replaced 1—Tpp/pic' by
(1+Top/pic') ', which is the same to our order of ac-
curacy. ) The term Tpp in the denominator of the last
expression in Eq. (14) represents the increase in the
mass energy of the charged particle due to the expecta-
tion value of its kinetic energy. We now interpret the
fact that the potential energy V does not enter in our

» Reference 8, Eq. (4.14).

Again we find the summed oscillator strength by
replacing pp by id/dt, and applying closure. We find, for
an 5 ground state,

P fp.~ = —(1/mc') (s'O'V/ciy') pp .

= —(1/15m c) (r'd'V/dr'+4rd V/dr) pp. (10)

Our result is in agreement with Jacobsohn's more
general Eq. (A.10):

fp
~= —(1/15ripc') $2r'V'V

—(r V)'V+(r V)Vjpp. (11)

These expressions have been checked against the result
—Scop/2prtc' for an isotropic simple harmonic oscillator.

The magnetic dipole oscillator strength is

fp~~= (hei/2rrtc') tt (ti,)p„$',

where p,, is the magnetic dipole component in Bohr
magnetons along the direction x of the incident mag-
netic field. Applying the same sum-rule techniques, we

have for the summed magnetic dipole oscillator strength

final expression, Eq. (13). We have been implicitly
considering an infinitely massive source for the potential
felt by the bound electron. When very high-frequency
light is scattered by the bound electron, the electron
acts as if it were more massive than a free electron,
because of its kinetic energy. The negative potential
energy of the system does not occur in this phenomenon,
since the atom as a whole does not move. (If we
measured the mass of the entire atom, as for example
by a mass spectrometer, then the expectation value of
V would have to be considered, and would decrease the
atomic mass. )

Since expression (13) holds only to O(o'/c'), we use a
NR expression for Too for a comparison with our
numerical results for lead. We have Tpp/mc'= —', (Z/137)'
=0.18 for lead. Equation (13) then gives a summed total
oscillator strength of 0.82 in rough agreement with our
numerical value' of 0.87. We would not expect the agree-
ment to be exact for lead, since the numerical values
for f are not exact, and also in our sum-rule calculation
the neglected terms of O(s%4) are O[(Z/137)4] which
is O(0.13). [Note, for example, that we can obtain
somewhat diGerent numerical results for lead from
Eq. (13) by rewriting it in the form of Eq. (14); or
alternatively by using Dirac instead of Schrodinger
wave functions in evaluation of Tpp. f We therefore
regard the agreement as satisfactory between our
analytical work of this paper and our numerical work
of previous papers. Further, Moss has shown recently"
that the classical power absorption, integrated over all
frequencies, is less for a relativistic oscillator than the
NR classical value found by Van Vleck."

o p= (4pr'/3)o. (r') pp, (15)

where n is the fine-structure constant. As in the nuclear
case, o~ depends on the wave function of the ground
state, but does not depend on the form of the Hamil-
tonian. If we evaluate the mean square radius (r')pp

using Schrodinger wave functions, we obtain 3(ap/Z)s,
where ap is the Bohr radius. Substitution into Eq. (15)
gives, for the case of lead, 0 ~=1200 barns. If we evaluate

(r )pp using Dirac wave functions, we obtain the smaller

"T.A. Moss and J. S. Levinger, Bull. Am. Phys. Soc. Ser. II,
2, 98 (1957); and T. A. Moss, M. S. thesis, Louisiana State
University, January 1957 (unpublished).

'P J.A. Van Vleck, Phys. Rev. 24, 347 (1924).
'P J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).

IV. BREMSSTRAHLUNG-WEIGHTED CROSS SECTION

In this section we calculate the bremsstrahlung-
weighted cross section )op= J'(o/W)dWj for a Dirac
electron in a Coulomb field. We shall compare our
numerical result with our work on lead. ' We shall also
give two other moments for the E2 absorption cross
section.

The bremsstrahlung-weighted cross section for E1
absorption, without retardation, is"
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value
(r')oo ——3(ap/Z)'(y+1) (2y+1)/6. (16)

For lead, y= (1—e'Z')'*=0.801, so the mean square
radius is reduced by a factor (1.801) (2.602)/6=0. 781.
LA consistent calculation to our order gives a factor
1—(7/12)(Zpp)'=0. 79.] The numerical value for the
bremsstrahlung-weighted cross section becomes (1200)
)& (0.781)= 937 barns.

We now consider the v'/c' corrections to this value,
due to E2 transitions and retardation effects in E1
transitions. The E2 oscillator strength fp

o from Eq. (5)
gives us the minus-first moment

~-i'= E.fp-'/~= (~/2@'~') E.(A.)'
= (rN/2A'c') (q') pp

= —(2/15rlc') (r'd'/dr'+ 4rd/dr) po. (17)

(The quadrupole operator q=sy. )
The retardation-correction oscillator strength fp„~ of

Eq. (9) gives us the minus-first moment

~ i'= 2- fo-'/~= —(2~/~"') 2-(~")p-8) o.
= —(2prp/)Pc') (j"s')oo

=(2/15pmc')(r' d/ rd'+ 4r/dd)rop. (18)

We see from Eqs. (17) and (18) that the E2 and re-
tardation corrections to cr& just cancel each other.
(This cancellation can be seen more easily for the S
ground-state wave function considered: for this case
we can write j=22'j, since the magnetic-dipole operator
zy —zy gives zero for an S state. )

The expression, to order v /c', for o & is then given by
Eq. (15), which gave a numerical value of 937 barns for
Dirac wave functions for an electron in the Coulomb
field of a lead nucleus. This sum-rule value is 7'Po larger
than the numerical value of 874 barns found by numeri-
cal integration of the lead oscillator strength. "The 7 jo
discrepancy should be due to errors in the oscillator
strength taken from references 2 and 3, and to the
neglected v4/c4 terms in the sum-rule calculation.

We give for reference sum-rule results for the Ininus-
second' and minus-third moments of the NR E2
oscillator strength:

I p'=P. fo.'/W'= (—~/&') (I:L&,ql, q&I oo

p p&=p„ fo„@/Wp= (prp/2h c')p (go )'
= (rip/30k'c') (r') pp. (20)

All the sum-rules given in this paper are for a single
charged particle in a potential that commutes with the
particle's position. They will in general have to be
modified for correlations among particles and also, as
in the nuclear photoeffect, for terms involving the
commutator of the potential energy with the particle
position.
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