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Thermodynamics for Elastic Solids. General Fox-s sulation

TSUAN WU TING* AND JAMEs C. M. Lit
Department of Chemistry, Carnegie Institnte of Technology, Pittshnrgh, Pennsylpania

(Received August 9, 1956; revised manuscript received October 4, 1956)

A condensed collection of all the thermodynamic formulas involving 6rst derivatives for elastic solids
under the outside variations of only temperature and stress is presented. The application is illustrated
with some examples.

INTRODUCTION

ITTI.E attention has been concentrated on the
- & thermodynamic treatment of elastic solids. ' One

of the possible difhculties arises from the fact that most
of the discussions concerning the relations between
stress and strain are con6ned at constant temperature.
To be able to apply thermodynamic principles to
elastic solids, the definition of straiii, has to be general-
ized to use only one configuration as reference state
for the calculation of all strain at diBerent temperatures
and stress. Let the thermodynamic system for strained
solids be a very small volume element in the body.
If one regards temperature and stress as the only
outside variables, this system of constant composition
has seven degrees of freedom. On applying the principle
of Jacobians, ' it is possible to prepare tables which will

help to obtain all 6rst derivatives in terms of measurable
quantities and consequently all possible relations
among the first derivatives. It is the purpose of this
communication to present these tables and to illustrate
the application with some examples.

DEFINITION OF SYMBOLS

The six components of strain, E1 62 ~ ~ 66 at any
point of any configuration are dehned as relative to a
particular configuration chosen as the reference
state. '~' The strain will therefore vary with the
temperature T as well as with the six components of
stress, r1, v.2, . ~ ~, 76, at this point. There are six
coeKcients of thermal expansion, n;=(Be;/BT)„and
thermal . stress, p;= (Br;/BT) „and 36 isothermal
elastic coeKcients, c;,= (Br;/Be, )p, ' and the coeKcients
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of isothermal compliance h;t= (Be;/Br;) r, ,', where
bothi and j=1, 2, , 6, 7 and e represent the stress
and strain respectively, and e' and v.' represent all the
components of strain and stress respectively except the
jth component. Through simple math'ematical manip-
ulation, it can be shown that these coefficients are
connected by the following relations:

n;= —g;h;;p;,

p, = —P,c;,n;,

(c")=(&") ', (3)

where ( ) represents the 6X6 square matrix with the
inside coef6cients as elements. It is also easy to prove
that these matrices are symmetric.

In view of the fact that small deformation of short
duration happens usually at constant entropy instead
of constant temperature, another two sets of the
adiabatic elastic coeKcients and the coeKcients of
adiabatic compliance are defined: a;,= (Br;/Be;)s. . .
q;;= (Be;/Br,)s„.They are again connected by (u,;)= (q;;) ', where the matrices are also symmetric. By
the use of simple relations of partial derivatives,
these coeKcients are related to the isothermal coeffi-
cients through the following equations:

a;;=c;,+TVpP, P,/C„

q;; = It,; TVpn;ns/C„, —
(4)

Isothermal Hooke's law stress:

Isothermal Hooke's law strain:

Adiabatic Hooke's law stress:

Adiabatic Hooke's law strain:

e,=Qth, tr;,
tsc= Zs'ctts'es'~

5'=Z q' rt,

Temperature coefficient of strain energy at
constant stress: to = Vp+,n r = —VpgtPte&, ''

Temperature coeS.cient of strain energy at
constant strain: to, = —Vpg,n;o, = Vpg, pte;

where C, is the heat capacity at constant strain and
C, that at constant stress for the small material element
at the point of consideration. This small material
element has volume Vo at the reference state.

For simplicity of later presentation, the following
symbols are defined:
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TAal.z I. First derivatives with temperature and
strain as independent variables.

TAmE D. First derivatives with entropy and
strain as independent variables.
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TABLES OF FIRST DERIVATIVES

Tables I, II, III, and IU give the first derivatives of
the functions 2, e] 62 &6 v&p v2 t6 U H,
S, Il, and A with respect to the following independent
variables:

Table I, temperature and the six components of strain;
Table II, entropy and the six components of strain;
Table III, temperature and the six components of stress;
Table IV, entropy and the six components of stress.

In these tables, i=i, 2, , 6, and 8;;=0 for i/ j
and 8;;=1. The thermodynamic functions have the
usual definitions except that between H and U, the
following relation is defined:

H= U —Up+;r, p;.

The Jacobians of any set of seven variables or functions
can be calculated from each table with respect to the
same independent variables as used by the table.
Any erst derivative such as (BH/DF), can be obtained
from the ratio of two Jacobians as explained by Craw-
ford. ~ However, diferent expressions representing the
same quantity may result from diGerent tables. Also
the complexity of the Jacobian determinants is different
for different tables. Therefore in order to take full
advantage of these tables, first derivatives with most
of the independent variables indicated in the title of
the table can probably be obtained most easily from
the very table.

To illustrate the application of these tables, let us
evaluate (BH/BF), fro'm each table: It is equal to the
ratio of the two Jacobians: J(H, e~, p2, . . . ,pp) and
J(F,py Eo ' ', pp). Thus from Table I:

C.—co, Up( —P,T—0,)

0

J(H) pl) p2) ' ' '
) pp)

=Cq COg~

V0+1 V002 ' ' ' ~006

0
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TABLE III. First derivatives with temperature and
stress as independent variables.

TAar.z IV. First derivatives with entropy and
stress as independent variables.
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Therefore (BH/r)F), = (&o,—C,)/(co, +S).Similarly, from
Table II, J(H, e1 e2 ' ep)=T(1 po,/C,—) and J(F,e1e2,

.,ep)= —T( p+oS)/C„which gives the same result
for (BH/BF), . Now if Table III is used, J(H, e1,es, , ep)
= (C.+2'Vp&'&eel —

pp ) I (k's) I
and J(F et, e2, ,«) =

—(co,+S) I(k;;)I, where I(k;;)I is the determinant of
the (k;;) matrix. It is seen that (BH/BF), =(a&,—C,
—T'Vpg;cr;P;)/(co, +S) which is identical with the
result from Tables I or II since it will be seen later
that C,=C,—TVp+,~,P, . To complete the illustration,
let us calculate also from Table IV: J(H, e1,ep, ,ep)

=T(C,+TV',r2;P; po, ) I (k;;)—I/C, and J(F,e„e2.
ep) = —T(S+o1,) I (k;;) I/O, . This gives again the
identical result for (BH/r)F), but with more complicated
Jacobian determinants. In evaluating these deter-
minants, the relation between q;; and k,; as shown by
Eq. (5) has been used.

C,=C,—TVpQ,n;P,
=C,+TV';Q;c,,cc,e;. (6)

This may be compared with the equation for Quid

which is equivalent to an isotropic elastic solid under
uniform pressure. Let the configuration in question be
the reference state for the calculation of strain, that is
I/"0= t/'. Since the pressure is uniform, 6]=62=63 and
&4= ~5= &6=0 will hold at any temperature and therefore
ng=n2=n3 and n4=ns=n6=0. If n is the coeKcient of

HEAT CAPACITIES AT CONSTANT STRESS
AND STRAIN

As an example of the application of these tables,
the most important 6rst derivatives, namely the heat
capacities, will be discussed here. When C,= (BH/r)T),
is evaluated from Table I or C,= (8U/BT), is evaluated
from Table III, one obtains

volumetric thermal expansion, n=3n~,. and if k is the
coef6cient of isothermal volumetric compressibility,
k=p, 12+; 12k;;, where k,; are the elements of the
isotropic (k;;) matrix. Since (k;;)= (c,;), k»= (c11
+C12)/[(Cll C12) (C11+2C12)j and k12 C12/L(C11 C12)

X(c»+2c»)). With all the above relations, Eq. (6)
is reduced to

C~= Cv+TVa2/k, (7)

which is identical with that usually found for Quids. ' "
Now if C, is evaluated from Table II or C, is evaluated

from Table IV, one obtains

I (a'~) I I (k* ) I

C. 1(c,,)l l(q;;)I

Again this equation can be compared with that for a
Quid. In addition to the above relations concerning
isotropic solids under uniform pressure, the relation
between k;; and q,; as shown by Eq. (5) is useful,
and if q is the coefFicient of adiabatic volumetric
compressibility, then q=g 1'p, 1'q;;. Equation (8)
is reduced to

C~/Cv= k/q,

which is identical with that usually found for Quids. ""
Equations (6) and (8) are believed to be new. This

illustrates the numerous possible applications of the
tables which will prove useful in deriving exact thermo-
dynamic relations for elastic solids. More discussion
will be published elsewhere.
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