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Extension of the WEB Equation
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The WEB form suitable for the classical region of potential energy less than the total energy, tft(x)= (ds/Ck) & sins, is used to obtain a function s(x) that reproduces the time-independent Schrodinger equa-
tion solutions P(x), to any desired degree of accuracy through the turning point and into the nonclassical
region.

1. INTRODUCTION

I
'HE Wentzel-Kramers-Brillouin method has been

useful for the approximation of the solution to
the time-independent Schrodinger equation. The normal
approximative method uses two forms, one applicable
to the "classical" region for which the energy is greater
than the potential, and the other applicable to the
"nonclassical" region for which the potential exceeds
the total energy. The function is not represented
through the "turning point" for which the total energy
and the potential energy become equal. We propose a
simple form for the argument, z(x), of the "classical"
approximation, which form makes this single solution
valid in both regions. This zeroth approximation can,
in turn, be improved to any desired accuracy.

P(z) is a solution of

d'g/dz'+R(z)rts(z) =0, (4)

zr ——dz/dx, z, =d'z/dx', etc. ,

provided z obeys the equation,

R(z) =» 'Lv —s(z;*)j,
where (z; x) is the Schwarzian derivative:

(7)

with R(z) any arbitrary function of z, and z itself con-
sidered as a function of x. We then have

f(x)=» '*4hz(x) j,
in which

2. THE PROBLEM

The one-dimensional time-independent Schrodinger
equation can be written

with

and

~(x)/dx'+y(x)ll (x)= 0,

y(x) = e —u(x),

e„=(2sN/ttt') 8„,

(2)

(3a)

tc(x) = (2sl/A') U(x), (3b)

in which R„ is the energy of the Nth level and U(x) the
potential energy in conventional units. The quantity p
has dimensions I.—'.

Equation (1) is a linear differential equation of second
order, the solutions of which can be mapped onto the
solutions of any other convenient linear diGerential
equation of second order by use of the Schwarzian
derivative formalism. ' ' Using this, we may say that

*Present address: Naval Research Laboratory, Department of
Chemistry, University of Wisconsin, Madison, Wisconsin.

t Part of a dissertation submitted in partial fulfillment of the
requirements for the Ph.D., Department of Chemistry, Uni-
versity of Chicago.' A. R. Forsyth, A Treatise on
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Equations (The Mac-
millan Company, New York, 1929), sixth edition, pp. 104, 230.' Per O. Lowdin has called our attention to the convenience of
this method and to his unpublished notes thereon in the Quarterly
Progress Report of the Massachusetts Institute of Technology
Solid State and Molecular Theory Group, January, 1952.' Since the development of this paper we have noted the work
of R. B. Dingle, Appl. . Sci. Research BS, 345 (1956), which dis-
cusses several mappings for solving linear second-order differential

d' zs 3 (zs) '
(z; x)= —2zr'* (zr ')= ——-( —~-

dx' zr 2 (z, &

E&zJ,——y-:,

leads to z& approximately equal to a constant, (z; x)=().
If p(x) is large and positive, and does not vary rapidly
with x, one may choose R=—1, p(zl=sinz or cosz,
namely,

f(x)=z,—& sins(x). (10)

This will be an exact relationship if z(x) is the solution
of the equation

zrs+-', (z; x)=y(x).

equations. However, we believe that the iteration scheme to be
evolved in this paper is sufficiently felicitous to merit separate
publication.

4 S. C. Miller and R. H. Good, Phys. Rev. 91, 174 (1953).
These authors have also written of mappings and the WKB
method but again not in such a way as to obtain a general itera-
tion scheme.

All this can be readily checked by using (5) in (1),
with (7) for zr, after eliminating d'P/dz' with the aid
of (4).

The usual use of this mapping is to choose R(z) to
be some simple analytic expression for which p is
known, but for which E. and 7 resemble each other. In
this case (z; x) can be neglected, at least in a crude
approximation, since then the solution,
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The approximate solution, z&'& (x), given by

z&'&(x)= " Ly(x))ldx,

f(x) =Lz~"&(x)) I sin»&'&(x)

(12a)

(12b)

point, and that y& is positive. We have

x&0, y&0, nonclassical;

x= 0, y= 0, turning point;

x)0, y&0, classical.

is then the conventional %KB' approximation for the
classical region in which y(x)»0, e ((N(x).

An alternative for y(x)«0, is to choose a different
mapping variable, y, E(y) = —1, p(y) =o ", so that the
zeroth approximation is

We may write Eq. (11) as

d
»P —»g&—(z& &) =y(x),

dx

and our eigenfunction as

y"'(*)= P
—y(x))Idx, (13a)

fS

'lp =»y slI1»= zy ' S1I1~ zldx&
~ g ~

(15)

~t (x)= t.yi"') ' expL —y"'(x)). (13b)

We emphasize here that the y and s are utterly diGerent
functions of x. These, then, are the two simple WEB
approximations for f(x) in the classical and nonclassical
regions respectively, both of which become singular at
the turning point, y(x) =0.

It is quite possible, by choosing R other than a
constant, to find functions p on which the mapping
through the turning point offers no diKculties. If E(z)
is linear, the mapping is on the Airy integrals, ' whereas
a quadratic R(z) enables one to map on the Hermite
functions4 through two turning points. There is, how-

ever, a certain simplicity in the mapping on a sine or
cosine function, R—=1, since in this case, z(x) approaches
the classical action variable in the limit e„»N(x). We
propose to show a method by which the z(x) de6ned
by Eq. (11) can be obtained with arbitrary accuracy
through the turning point for which y=0, which point
is not a singular point of the differential equation (11).

The essence of the method is to produce a real posi-
tive function, z&'&(x), which is a satisfactory zeroth
approximation to z(x) in both the classical and non-
classical region, such that (d»&0&/dx)-I sinz"& becomes
asymptotically equal to the classical and nonclassical
WEB approximations in the regions of large magnitude
of y, positive and negative respectively, and for which
(dz&'&/dx) I sin»&'& remains regular through y=p. We
then show that the solution, z(x), of (11) can be com-

puted from this z&'& (x) with any desired accuracy. The
method does, however, require that the dependence of

&(x) on x should not be excessively pathological in
nature, namely that successive derivatives d"p/dx" de-
crease appropriately for large v values, and that
dy/dx=—y& be non-zero at the turning point.

3. FORMAL GENERAL SOLUTION

To specify the problem more closely consider the
case that the zero of x is chosen to be at the turning

5 L. I. Schiff, QNentlm Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), first edition, p. 178.

J. C. P. Miller, The Airy Integral, British Association Mathe-
matical Tables (Cambridge U'niversity Press, Cambridge, 1946).

in which we have imposed the condition f( ~)=0-.
To develop a form for s~ amenable to iteration, we

make use of two nice properties of Schwarzian deriva-
tives. As we have seen, if |t (x) obeys the equation
dQ/dx'+~=0, and P(») the relation d'&t&/dz'+R&t&=0,
then iP = (dz/dx) lp if (7) obtains. Similarly,
= (dx/dz) If if

y(x) = (dx/dz)-2[a ——,'(x; »)).

Compare this with (7) to derive

(16)

d»& "+'&/d»& "& = (dz'"&/dx) 'Ly ——'(z& "&; x)]&. (2p')

Actually, however, in order to use this scheme we
must choose s&") such that the quantity under the
radical always remains positive.

(»; x)=—(dz/dx)'(x; z). (»)
Now suppose I&(&) obeys the relation d'II/dq'pQ&&=p.
One can obtain equations from equating f= (d&I/dx) &&I

or &t
= (de/dx)=*'e. With (7) these are

(dz/dx)'+ ', (z; x)=y(x), - (18a)

Q(dn/dx)'+ :(~;*)=v(x),-(»b)
( d/»gd)'+ ,'(»; &I)=Q(g). -(18c)

Use y in (18a) from (18b) replacing Q by (18c). One
6nds

(z; x)= (g; x)+ (dg/dx)'(»; g). (19)

Multiplication of (18a) by (dx/d&I)' and substitution
of (19) for (z; x) in the resulting form yields a relation
which holds for any function q.

(d»le)'+z(»' ~)= (d~/dx) 'Lv l(n; x)) (2o)—

This equation now serves as a possible iteration
equation. If g is such that the right hand side of (20)
is exactly unity, then p& is exactly the correct solution,
q~=»&, of Eq. (11),and (20) gives dz/d&I= 1.If, however,
q is an approximate solution, say p =z("), so that the
right hand side of (20) is nearly unity, then the approxi-
mation of neglecting (z; g) on the left leads to a better
solution s(~') as
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s= e"

s(v) —eq )

X= lns,

&=lns( ). (21)

We then express (i&; x) in. terms of derivatives of s& "& as

We prefer, however, an alternative iteration method
which has the advantage of leading us directly to an
acceptable equation for s( ), namely one in which the
Schwarzian s~(z;it& on the left of (20) is replaced by
s(lns; lnit&, so that instead of neglecting (s; i&& in suc-
cessive iterations the neglect is of (lnz; Inst&. To carry
this out, write

ds/dx=—
-1—(1/4s')-

with the boundary condition at the turning point,

s(x=0) =-', , y(x=0) =0.
The asymptotic solutions of (26), that is,

(26)

(2't)

or, omitting the superscript zero which indicates the
order, we use the equation,

(22) z(x)=—e+ L7(y)7'dy,
"0

x»0, q»0 (28a)

from (8), and (s; it& in terms of (X; i&& as

1 (ds)l(l;.&=—I
—

I +l(', .&

4s' (de)
(22')

p0

z(*)=—s ~xp —
~

L—v(y)7'dy, x«0, v«0 (28b)

lead to the known WEB solutions,
to 6nd that, after multiplication of (20) by (de/dx)'
Lnoting that (ds/de) (de/dx) =ds/dx= z,7,

1 y 1)ditq' 1 t's &"&~'

I
1——I»'+-I —

I (~;»=~—s(""&;x&—-I
4s') 2 Edx) 4 & s&"& )

f(x) = (ds/dx) & sins

g

—y 'sin y'*dy
J

(29)

x»0 (29a)

Elimination of X and q from the notation by use of
(21) leads to

( 1 ) 1(s,&"&)'

I
(1»»s'"'&

4z') 2 4 s&"& )
1 ~sx~") y

'

4(z(~& j
We may check (23) by noting that if s&"& is the correct
solution s(")=—s, so that the Schwarzian derivative
(lns; lns&"» is zero, the equation is just Eq. (8) with
the added term —~~ (s&/s)'= —

~~ (s& ~ "&/z& "&)' on each side.
Equation (23) is now exact, with s&"& any approxi-

mate solution. We write the (v+1)th approximation by
omitting the term (lns; lns~"&& on the left, as

z&'~" =ds&~'&/dx

= Lv+q(""&)7-:L1-(2" '&)-'7-:, (24)
with

1zi 3 ts2)'
&()= —( /2)' ——-t-~ —

i

2sg 4 t sg&

p0—(—y) ' exp — (—y) &dy, x&(0 (29b)

2m
& (x) = b'b')7'*4= (~-—~(X)) dX, (3«)

0 0 h

&-(x)=
J 5—v(x)7'*dr, (30b)

by the use of the two implicit equations,

1 & 1 --'*

P, (x)= ~~ 1——ds=s 1———s'arcsin 1——
4s' 4s' 4s'

for the classical and nonclassical regions, respectively.
The latter form, (29b), is obtained by setting sins —s,
s«1. The function s of (26) is regular through the
turning point.

We may proceed to obtain expressions for the func-
tion z(x) in the three regions, x))0, x—0, x(&0, in terms
of the two dimensionless positive integrals,

~1 d y' )1 d' dsq

E2 dx ) &2 dx' dx)

1 & (1)=s 1————', arc cos] —(, (31a)

ds 1 '* 1+(1—4s') *

P„.(x)= —1 ds=-', ln2 dS dS 4s' 2s

4. ZEROTH-ORDER SOLUTION

We call the zeroth-order solution that obtained from
(24) by setting z&"& equal to a constant, so that q(s) =0, for s& 'sor s(s', respectively.

—-'(1—4s') '* (31b)
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n= 2P„,(x)+ 1, (32b')

dz/dx= zi ——2(—v) le—"

&([1+3e '"+15e '"+(259/3)e '"+ .]. (32b")

For the classical region, we find

z=gL1 —xeg '—(7/384)Q '
—(83/15 360)Q '+ ], (32a)

(32a')

which, even. at the turning point, /|I=0, Q=42r, gives
z=0.56 instead of the exact z=z&'&= ~. One has, with
dg/dx= v'*,

dz/dx= z,=v-:[1+-',g-+ (7/128) g-
+ (83/3072)Q —'+ ). (32a")

For the nonclassical region, one obtains

z=e "[1+e '"+3e '"+(37/3)e '"+ ~ j (32b)

6
(&z!«)=zi= 2 (2vi)'(1+F) ' 1+-(2vi)~v(1+P)'

5

6 1916
(2vi) &v (1+P)&— (2vi) v (1+P)

175 7875

140 178
(2v )

—8/8v4(1+P) 8/8+. . .
67 375

(34')

It is clear that the equations are valid only for
nonzero Vi ——dV/«= —(22/3/A2)dU/« If .the second
and higher derivatives of U(x) are identically zero the
functional, F(v), is zero, and v= vix gives

z=-', [1+(2Vi)&x+ —,', (2Vi) &x2+ ) (34")

For nonzero yl, the Schrodinger solution,

P(x) = zi-& sinz(x),

goes smoothly through the turning point.

The approximation of (32b) gives z=0.45 at the turn-
ing point.

For the region of the turning point, we write

g

P.= v*&y= ' v'(dv/dy) 'dv,
4p 6 0

and integrate by parts repeatedly to obtain,

L1+-P(v)j
+1

P(v) =-v—+~' 3——
5 Vl'

S. HIGHER ORDER SOLUTIONS

The higher order solutions are to be obtained from
(24) by replacing the V(x) = (2233/A2) [E„—U(x)j occur-
ring in the last section by (2333/A2)(F. „U)+/I(zi—"i),
with zt:"& the solution of one lower order. However, the
limit of integration over x is now chosen at that value
of x for which the new v (x) is zero, and the two integrals
P, (x) and P„,(x) of Eq. (30) are evaluated from this
new origin of x.

(33) One may conveniently use the second expression of
Eq. (25) for the operator q(z) with the three equations,
(32a), (32b), or (34) to find the new v(x) in terms of
that of lower order. The equations obtained from the
first two for y(') are

V23 V2&3 V4
+ v' 15——10 +-

Pl Pl Pl—

16
I

P~' y2'73
+ v4' 105——105

3465

15'2y4
+10—+ ——. (33')

Pl Y1-

Equation (33) with the absolute value of v is valid for
both P, and P„„however, the algebraic values are to
be used in F(v). The expansions for z and zi then come
out in a simple power series of (6P,)'* for x)0 and of
—(6P,)'* for x(0. The equations, after a great quan-
tity of algebraic manipulation of (31a) and (31b),
become

z = 2+ (2vi) 'v(1+F)'+ 8 (2vi) "'v'(1+F)"'
2 479

(2v )
—2v3(1+P)2 (2v )

—8/3v4(] +P)8/3
175 7875

140 178
+ (2vi) ""v'(1+F)""+ (34)

336 '875

5 yl'
voi=v 1 + Q

—2

4y' 16 y' 4
1 25—-Q' ——

Q '+ . (35)
2 48

1yg 5 yl'
v&'&=v 1 + +16e '"

4y' 16 y3

+240e '"+2672e "+ (35b)

for the classical and nonclassical regions, respectively.
If, in turn v&'& and the corresponding Q&'& or 0&'& are
used in the right hand side, the expressions give y(2&,

etc. For the-region of the turning point, one has

1 v8 9 /'v2& '
v"'= —(2vi)* +

35 14 vi 140 & vii
67 4 yg 1 y4

+v —— (2vi)* +
75 525 Pl' 63 Pl'

32 723 23 7273+ +O(v').
525 yl4 315 yl3
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Zi ——cW/(fi'+ cQ,'),

In the case that all derivatives of U higher than the general function Z1..
erst are zero, y2= ye= =0, one has y= y1x and the
zero of y&') is now at

30
ho&[gii& =0]=— (2P )

—1

469
(36')

Using this in (34"),we see that, whereas s"& is-,'(1—30/
469) at this value of h for this case, the first order z&'&

will take its boundary condition value of exactly one-
half. Thus the 6rst and zeroth-order values of z at the
turning point differ by less than 10%%uo for this case of
constant d U/dh.

6. GENERAL SOLUTION FOR z

Finally we wish to discuss briefly the most general
solution of Eq. (11) for z, which, even with a fixed
boundary condition, such as the one which we em-

ployed z—+0, x—+—~, does not uniquely determine
the function s(h).

Plaskett, using a method due to Milne, has ob-
tained a general solution for si in (14) by considering
the Wronskian, W, of two independent solutions, fi
and fs, of the Schrodinger equation. Of these, only one
can be taken as an eigenfunction. The Wronskian is
de6ned as

W =ps(d1( I/dh) —fi (dps/dh),

CZ1
Z1—

(c —1) cos's+1

r~ cdz
Z= Z1dS=

4 "s (c'—1) cos's+1

(44)

=-,' arc tan

From (45), we have

2c slnz cosz

C COS Z—Sln Z

(45)

Z1 Z1p C 1y (42)

We now show that this is no more than a formal
diKculty and that aside from normalization the most
general form [Zi 1 sinZ] is the same function [si 1 sins].
«t (~I/dh')+~i 0an——d (dQs/dh')++s Oso——that,
if si is a particular solution of (14), we have two inde-
pendent solutions:

$1=si ' Slllz i lps= zi ' COSZ.

$1 is an allowed function of the type (15). its will not
go to zero at x= —~, and does not obey the boundary
condition. The Wronskian of these is +1 by Eq. (37).
Inserting into Kq. (41), we obtain

and is a nonzero constant. ' By deining

~(h) = (1t I'+lt s')',

one can verify from (1) and (37) that

1 S"——(d's/dh')+
S s4

Hence, by (14), zi can be identified as

(39)

Z1-
(c'—1) cos'z+1

The trigonometric relations,

Sin[a (arC tan8)] = [si—I
ZCOS (arC tan8)]1,

cos(arc tan8) = (1+8') 1,

combined with (45), lead to

sins

(46)

Commenting on this derivation, Ballinger and
March" suggest that z1 cannot be determined uniquely
by (40) since if 1( s is a solution of (1), then so is ops with
c an arbitrary constant. They would write a more

slnZ =
[(c'—1) cosss+1]&

Then the most general eigenfunction would be

lp=ZI * S111Z=C isi 1 Slilz.

(47)

(4g)

r J. S. Plaskett, Proc. Phys. Soc. (London) A66, 178 (1933).' W. E. Milne, Phys. Rev. 35, 863 (1930).
9 See any book on differential equations.' R. A. Ballinger and ¹ H. March, Proc. Phys. Soc. (London}

A67, 378 (1954).

This is seen to be the same function as (15), since
neither function is normalized as written. The diBerent
c's can be of no real signi6cance, because they will be
"washed out" in the normalization.


