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The Brillouin-Wigner series for the energy is converted into a continued fraction. Refinements on the
Brillouin-Wigner formulas developed in recent publications are identified with alternate (E() approximants
to the continued fraction. A second sequence of approximants [E(*1/27] occurs between successive terms of
the E‘ sequence. These are useful in calculations as shown by an illustrative example, but do not possess
the extremum property which is a valued characteristic of the first sequence. A general proof is given that
the approximants E® are invariant under the u transformation defined and verified for =1, 2, and « in

an earlier publication.

INTRODUCTION

ECENTLY Goldhammer and Feenberg! have
described a refinement of the Brillouin-Wigner
perturbation scheme** that improves the accuracy
and rapidity of convergence of the resulting series for
the energy. It is the purpose of the present note to
show that the modified formulas for the energy are
approximants to a continued-fraction expansion equiva-
lent to the original Brillouin-Wigner series. The ap-
proximants obtained from this continued fraction
furnish the set of approximations given by reference 1
in a simpler form, and also give intermediate approxi-
mations between every two terms of this set.

A second result is a general proof that the modified
formulas for the energy are invariant under the u
transformation defined and discussed in an earlier
publication.?

The perturbation expansion for bound states gener-
ated by the operator H4V can be developed in terms
of the complete set of functions ¥,, generated by the
eigenvalue equation .

H‘pm:Em‘//m; (1)
and the corresponding set of matrix elements Vo
= (a|V|d). The approximate trial function
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serves for both the original Brillouin-Wigner develop-
ment and the modified procedures. The variational in-
tegral for the energy, E= (4™ |H+V |¢™) /(™ ™)

now yields, with Gi= - - =G,=1,
E= Eo+ Voot e+ €3+ R €2n41, (3)
in which
VOaVaO
€= ! y
« E—E,
VoaVas Vo
§=Y @

b (E—E)(E—Ep)

etc. These are the basic formulas of the Brillouin-

Wigner perturbation scheme. E in the energy denomi-

nator is identified with the approximate value of the

energy given by the variational integral. The prime on

the summation symbols signifies that the value O is

excluded; the indices range through the values 1, 2,
--n, -+ - independently.

b

DERIVATION OF THE CONTINUED FRACTION
APPROXIMANTS

A considerable improvement becomes possible if the
G; are retained as independent parameters.! The ex-
pression for the energy becomes

E=E+ Vot (2G1—G2) 2+ (G2+2G2—2G1Go) es
+ (263'—'G22+ 26162'— ZGlG;;) €4
4+ (G24+2G+2G\G3—2G1G4— 2GoGs) e+« - -
-+ (ZGnG,,,_l——Gn2) eantGrleanr1.  (5)

The substitution G;=1+4K; into Eq. (5) transforms
it into
2n+1 n
E=Et+Vot 2 et2 2 Kieipnir
=2 =1
+S(K1>K2""Kn): (6)
in which S is a homogeneous quadratic function of the

K’s. The condition that E take on an extreme value is

now

2€ipnp1=—0S/0K;, i=1,2, - -n. )
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This is a system of linear inhomogeneous equations for
the K’s, with the explicit solution

Ki= (i Ak)(A—i Ak)—ly i= 17 27 ce,
1 1 (8)

Ko=K_;j=0, Kny=—1, j=1,2,---.

Here A is the determinant
€2 €3

€nt1

€ny2

A = 6:3 € , AD=¢, A®=1(9)

€ntl €ny2 CC° €2p

and Ay is obtained from A by the substitution of €2,
€nt3, °°€p1 for the kth column of A. (We have
modified the notation of reference 1 by introducing
explicitly a superscript giving the order of the
determinants.)

The denominator of the K; can be written conveni-
ently as a single determinant; that is,

R €2 €3 €Ent2
AM =Y AmM=Dm =" . (10)
i=1 €ntl  €nt2 €241
1 1 e 1
We observe that
n n aS
2 Z K-;Ei+n+1= -Z Ki“”—’ (11)
=1 =1 (")K1

— 25,

by Euler’s theorem on homogeneous functions. Insert-
ing (11) into (5), we get

E=E¢t+Vot+E™,

2nt1 n
EM=73% e+ Kieipnt1. (12)
© =2 =1

By collecting over a common denominator, E™ can be
expressed in the form

E®=N®/Dm; (13)

D™ is the quantity defined in (10), and the numerator
may be written as the determinant

€2 €3 €Ent2
N @ = |Ent1 ekl (14)
nt1
0 €2 (€2+63) Z €;
=2

In order to proceed further, it is convenient to intro-
duce a few definitions. In place of the numerator and
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denominator used above, let

Apg=N™/AM

(15)
B2n=D(n)/A(n) ;
the nth approximant to the energy is then
E(")=A2n/32n. (16)
Next one introduces the terms
Appyr= N HD /A b1/
’ (17)
By =D JAGHL),
where
€3 €4 €nt3
€
Nt =]t
€nt2 €nt3 €2n4-2 ’
n+2
e (etes) 2 &
=2
€3 €4 €nt3
D= €nt2  €ng3 €2 12|)
1 1 1
€3 €4 €ny2
A=, , AU =1 (18)
€nt2 €2n41

This permits an additional series of formal approxima-
tions to the energy

E@HD=A40,.1/Bony1. (19)

whose meaning will be clear presently. Finally, one
introduces

A=A (nt+1/2)

AQn=——""T""">,
A A (n—1/2)

A (D A (n—1/2)

Aopp1=——""—, (A1= €.
n+ A@A @)’

(20)
These definitions may be utilized now to investigate
the recursion relations obeyed by the A4’s and B’s.
Consider first the 4 coefficients.

N(n—1/2) A(n—l)A(n+1/2) N(n—l)

Asn1+a,A9n 2=

A—1/2)  AA(—12) A (r—1)

— [:A(n—l/Z)A(n)]—l{A(n)N(n——l/Z) _A(n+1/2)N(n—l)}. (21)
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By Eq. (A4) of the Appendix (identifying a;=3_ p—s?ex),
the bracketed term is just A®UPN®), Thus there
results the recursion relation

Asn=Aon 11224 20 2. (22)

In a precisely similar way, using (A4) and setting a;=1,
one finds exactly the same recursion relation for the
B’s. For the intermediate case,

N
Aontaanp1dan = -
A

= () A (n4+1/2) =1 A (n+1/2) AT (n) — A (n+1) AT (n—1/2)
AMA {AGHRN () — Al (=120}

AGHDA (n—1/2) [ (n—1/2)

AWA (L2 A (n—1/2)
(23)

By Eq. (A9) of the Appendix (identifying a;=3_2"";),
the bracketed term is just AWN®HD g0 that the
desired relation is found to be

A2n+1=A2n+aZn+1A 2n—1. (24)

The relation for the B’s is once again exactly the same.

Relations (22) and (24) with (20) suffice to prove®
that the quantities Azn/an=E(") and A2n+l/B2n+1
= EH/2) gre successive approximants to the continued
fraction

a
E*2) =
1+a2

1+0,3
1+ By

where the a; are given by Eq. (20).

The refinement proposed by Goldhammer and Feenberg*
is therefore to be interpreted as yielding alternate approxi-
manis to a continued fraction expansion for the energy.
The continued fraction is itself equivalent to the
Brillouin-Wigner series for the energy.$

This identification is of great interest in connection
with the problem of convergence. Not only does the
continued fraction generally converge more rapidly,
but in many cases the continued fraction expansion
will converge where the formally equivalent linear
series may not. (Asymptotic series often behave this
way, as for example, in the case for the gamma function.”)

The substitution V—AV requires replacement of Voo
by AV and e by Ae:.. An elementary calculation em-
ploying Egs. (9), (18), and (20) then shows that as.
and @any1 (#>0) are just multiplied by X. Thus \ serves

) (25)

TaBLE I. Successive approximations to Eo=1.54486- - -.

Order 1 2 3 4 5

E, 2.00000 1.26795 1.55505 1.54429 1.54487
Error +-0.455 —0.2769 40.0102 —0.00057 +-0.00001

6 Oskar Perron, Die Lehre von den Kettenbriichen (B. G. Teubner,
Leipzig, 1929), pp. 5, 304.

7H. S. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrand Company, Inc., New York, 1948), p. 365.

‘These imply
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TaBLE II. Approximation to fourth order by three methods.

Method Eo Error
Brillouin-Wigner 1.1541 0.3908
Secular determinant 1.5412 0.0037
Continued fraction 1.5443 0.0006

as an expansion parameter in an equally direct manner
in both the linear series approximations and the con-
tinued fraction approximants of Eq. (25).

To illustrate the theory, consider the Mathieu
equation

d2
( ——t4 cos2x)¢= By, (26)
dx?
whose lowest eigenvalue is Eo=1.54486- - -. Successive

approximations to this value, obtained using the con-
tinued fraction expansion, are shown in Table I. The
modified Brillouin-Wigner method' provides only the
odd-numbered approximants and thus gives a set of
monotonically decreasing elements. However, succes-
sive approximants of the continued fraction are seen
to oscillate about the true value. Although probably
not a general property, this oscillatory behavior is
quite useful when it occurs, since it also provides a
lower bound to the eigenvalue. Table IT shows approxi-
mations carried to e; or equivalent by means of the
unmodified Brillouin-Wigner scheme, a secular deter-
minant method,* and the continued fraction. It should
be pointed out that in the case at hand the convergence
is very poor in the basic series, the e,’s barely decreasing
in magnitude. However, the continued fraction result
is quite accurate and requires little additional labor.

INVARIANCE UNDER THE u TRANSFORMATION

One arbitrary element in the formulation of the
Brillouin-Wigner perturbation procedure is the choice
of the zeroth-order Hamiltonian operator. Part of this
freedom finds expression in the u transformation® de-
fined by the relations

Hy=Ho+ (p—1)(Ho— E),

(27)
V'=V—(u—1)(Ho—E).

E—Hy=p(E—Ho), (28)

a uniform change of scale in all energy denominators.
The inversion of Eq. (27) yields

Hoy=Hy+ (W' —1)(H—E),

V=V'—-('-1)(H—E), (29)
w=1/n.
The further discussion is facilitated by the notation
. ViaVim - Vo
M= %’ (30)

im--.qa (E—Eg)(E—Ey)---(E—E,)



1154

for the ith-order coefficient of ¢ in the Brillouin-
Wigner expansion. With this notation, Eq. (2) for ¢
becomes

¢<">=wo+§’w[é ML) (31)

In the primed system the wave function has the form

¢<">'=¢o+§'¢k[§ G/MYG)], (32)
in which
.
MD=—— ( )u D Milivs),  (33)
,u, §=0

and the primed amplitude coefficients G/ are inde-
pendent variable parameters.

Tt is clear that ¢ ™=y (™)’ if we return to the original
Brillouin-Wigner formulation with G/=G;=1. Then
the corresponding approximate formulas for the energy
are not identical and, consequently, a physically mean-
ingful value of p may be determined by minimizing the
energy with respect to p.

Primed and unprimed wave functions are identical if

Z GIM ()= Z G:M (i) (34)
for all values of k. This requires
Gi= ( )[“_ ]G (35)
(u—1)* =
and ) AN a1
S
W—1) = \i—i /L W
(1w & pi—1 (9
= —1){(—1)G..
o )=

The substitution of G from Eq. (36) into the right
hand member of Eq. (35) yields the consistency
condition

(-G

an easily verified identity, since the left-hand member

is simply
j—1—t
( j—1 ) '
Consider now the two expressions E(G1, G, - *G»)

and E'(GY, G, ---G,) for the energy. If Eq. (34)
holds, we have

E(G1,Gs,- -

)< Dim (=1, (37)

Gn)=E'(G/,G, - -G.) (38)
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since the wave functions are identical. The linear rela-
tion between the primed and unprimed amplitude
factors means that the supplementary conditions

OE/3G=0, i=1,2, ---n (39)

and
AE' /G =0,

i=1,2,-+n (40)

are mutually dependent, either set implying the other.
Equations (34) and (38) insure that the extreme values
of E(Gy, Gy, ---Gn) and E'(GY, GY, - - -G,') are equal.
Consequently E™’ is actually independent of u as
surmised in reference 5 and verified there by explicit
calculation for n=1, 2, and .

The u invariance suggests the possibility of approxi-
mate invariance or insensitivity of E™ under other
transformations. A uniform displacement of the zeroth-
order eigenvalues comes to mind.! The suggested in-
sensitivity has in fact been observed in a sample calcu-
lation of a generalized E® type.?

APPENDIX
(a) Let X be defined as

€2 €3 €nt2
€3 €4 €n43
Xm=|: , (A1)
€ntl  €Eng2 €2n4-1
[s%) ag Ony2

where the ¢; are given in (4) and the «; are arbitrary.
One may write the product, A ¥2X ™) ag a single
determinant

A(—12) X (n)
€ € . v €1 O e el 0
€4 ctr v €ppn O e e 0
€np1 ¢ v €n1 O I ()
=10 B | €2 € v enpal. (A2)
0 cee e 0 €3 €nt3
0 e e 0 €ntl €ny2 *°c €anyl
a3 04 Qpl G2 O3 * Ony2

In this determinant, add row # to row 1, row #+1 to
row 2, ---, row 2n—2 to row n—1. This, of course,

leaves the value unchanged. The result is

€3 ctc €Epgl €2 €nt2

€nyl " €21 €n ctt €2p
AN YX =10 ce 0 €2 €nt2 |. (A3)

0 oo 0 €nyl €yl

a3 ctt Opgl 02 * Ony2

8 M. Bolsterli and E. Feenberg, Phys. Rev. 101, 1349 (1955).
9 E. Feenberg and P. Goldhammer, Phys. Rev. 105 750 (1957).
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Now make a Laplace expansion using rows 1 through
n—1 and row 2% for one set of determinants. It will be
seen that, because of either null or identical columns,
only two terms enter. That is,

A—UDY () = X (—UDA ) X (mDAGHD - (A4)
with
€ cor enye
X =]+ (A5)
611,-{-1 PR €2n ’
as e Gy

in which X ® represents either N or D®,
(b) The product AWM X (»—12) may be written as
the determinant,

A D X (n—1/2)

€ €3 €2 O e 0
€3 €4 €tz O oo 0
_lemte o ot @mpn O .. 0 (46)
0 cer .o 0 € -
0 e e 0 np1 ¢ €
s cee e ays s Qnio

Subtract column 1 from column #-+2, column 2 from
column #+43; ---, column % from column 2z41, to
obtain
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A X (n—1/2)

€2 ttt €Enge — €2 — €ng1
€3 tct €Ent3 —€3 — €nt2
— €nt2 " €2n42 T€Epy2 T €1 (A7)
0 e 0 € . €ny2 |’
0 e 0 €ny1 v e €2n
Qs cve Qnys 0 - 0

Next make a Laplace expansion using columns 1
through #4-1 for one set of determinants. As before,
only two terms enter so that

A (n+1)X(n——1/2)

€2 €3 €nt2
€3 .o crr €nys
=AH1/2)| — A X (n+1/2) (AS)
€nt1l €2n+41
a3 cee cce Ongs

This is not quite the desired result, however, since the
last row in the determinant written out in (AS8) is not
correct for X in (A1). For the two special cases we
desire, namely a;=1 and a;=3 " ¢;, the result never-
theless follows. It is obviously so for a;=1, but for
a;=Y_2"l¢; we need only subtract row 1 from row z1

to obtain the desired result,
A X (nH1/2) — A(n+1/2)X(n)_A(n+1)X(n—1/2)’ (A9)

in which X® is again either N® or D®,



