
PHYSICAL REVIEW VOLUME 106, NUMBER 6 JUN E 15, . 1957

Continued Fraction Approximants to the Brillouin-Wigner Perturbation Series*
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The Brillouin-Wigner series for the energy is converted into a continued fraction. Refinements on the
Brillouin-Wigner formulas developed in recent publications are identified with alternate (8t"&) approximants
to the continued fraction. A second sequence of approximants LE&"+'I'&g occurs between successive terms of
the 8& ) sequence. These are useful in calculations as shown by an illustrative example, but do not possess
the extremum property which is a valued characteristic of the first sequence. A general proof is given that
the approximants E&") are invariant under the p, transformation defined and verified for n=1, 2, and oo in
an earlier publication.
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INTRODUCTION

ECENTLY Goldhammer and I'eenberg' have
described a refinement of the Brillouin-signer

perturbation scheme' 4 that improves the accuracy
and rapidity of convergence of the resulting series for
the energy. It is the purpose of the present note to
show that the modi6ed formulas for the energy are
approximants to a continued-fraction expansion equiva-
lent to the original Brillouin-signer series. The ap-
proximants obtained from this continued fraction
furnish the set of approximations given by reference 1
in a simpler form, and also give intermediate approxi-
mations between every two terms of this set.

A second result is a general proof that the modified
formulas for the energy are invariant under the p,

transformation defined and discussed in an earlier
publication. s

The perturbation expansion for bound states gener-
ated by the operator H+V can be developed in terms
of the complete set of functions P generated by the
eigenvalue equation

Hi/„= E„f„, (1)

and the corresponding set of matrix elements
= (a

~
V

~
b). The approximate trial function

~0.t/'. ~t/'~0

es ——P'
(E E )(E—Eo)

(4)

etc. These are the basic formulas of the Brillouin-
Wigner perturbation scheme. E in the energy denomi-
nator is identified with the approximate value of the
energy given by the variational integral. The prime on
the summation symbols signihes that the value 0 is
excluded; the indices range through the values 1, 2,

e, ~ independently.

DERIVATION OF THE CONTINUED FRACTION
APPROXIM ANTS

A considerable improvement becomes possible if the
G; are retained as independent parameters. ' The ex-
pression for the energy becomes

E=Eo+Voo+ (2Gt—G& )es+ (GP+ 2Gs —2G&Gs) es

+ (2Gs—Gs'+2GrGs —2G&Gs) e4

+ (Gs'+2G4+2GtGs —2G&G4—2GsGs) os+
+ (2G„G„r Go') es„+—G„'es~t (5).

The substitution G;=1+X, into Eq. (5) transforms
it into

2n+1 n

E=Eo+Voo+ Q e;+2 Q &;e,+~t

+S(Er,Es, .K„), (6)

in which S is a homogeneous quadratic function of the
E's. The condition that E take on an extreme value is
now

2e;~ +&= BS/8E;, i=1, 2, e. — (7)

serves for both the original Brillouin-signer develop-
ment and the modified procedures. The variational in-
tegral for the energy, E= (pt"& ~H+V ~lt t"&)/(»i '"&,p&"&)

now yields, with G~= =G =1,
E=Eo+ Voo+ e2+ es+ ' ' '+ e2~+&)

in which
Voa~ao

jv—g
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This is a system of linear inhomogeneous equations for denominator used above, let
the E's, with the explicit solution

n

E = (Q 62) (6—Q d 2)
' 2= 1, 2, ~ I,

1 I
D(n)/g(n) ~

(g)
the Nth approximant to the energy is then

(15)

EO=E—g=0, E +' 1) ) 1 2 &(")=&2n/%' (16)
Here 5 is the determinant Next one introduces the terms

g(n) "+2 g(1) = o g(o) = 1 (9)

6n+I &n+2 ' ' ' 62n
where

7''—(n+1/2)/g(n+1/2)

=D(n+1/2)/g (n+1/2)
(17)

and 61, is obtained from 5 by the substitution of &~2,
o~2, o2~1 fOr the kth COlumn Of A. (We haVe
modified the notation of reference 1 by introducing
explicitly a superscript giving the order of the
determinants. )

The denominator of the E; can be written conveni-
ently as a single determinant; that is,

64

g (n+I/2) =
6n+2

E2

64

&n+3

In+3

&2n+2

n+2

%=2

62
n

g(n) P g.(n) —D(n)
i=1 6n+ I

&n+2

(10)
6n+2 ' ' 62n+I

~ ~ ~

63

D(n+I/2)—
In+2

64 &n+3

&2n+2 ~

Ke observe that ~ ~ ~

2 Q E,o;+~1= —p E '

i=1 BE

= —2$,

g(n+I/2)—
64

64 6n+2

, 6('/2) = 1. (18)

by Euler's theorem on homogeneous functions. Insert-
ing (11) into (5), we get

&=&2+&oo+h("),

2n+I n
&(")= E o,+Z E(o~~i

i=2

By collecting over a common denominator, E(") can be
expressed in the form

g (n) —f)7' ( )/D ( n) ~n
D(") is the quantity de6ned in (10), and the numerator
may be written as the determinant

6n+2 &2n+I

g (n—I)g (n+I/2)

g (n)g (n—I/2)

g (n+I)g (n-I/2)

GI= 62.
g (n)g (n+I/2)

This permits an additional series of formal approxima-
tions to the energy

=~2n+1/&2~1 ~

whose meaning will be clear presently. Finally, one
introduces

62

62

6n+2

~ ~ 62~1
n+I

&2 63 ''' 6i

These definitions may be utilized now to investigate
the recursion relations obeyed by the A's and 8's.

(14) Consider first the 2 coeKcients.

g (n—1/2) g(n—1)g(n+I/2) g (n—I)

+ 2n1+(22n+2n2--
g (n—1/2) g (n) g (n—I/2) g (n—I)

In order to proceed further, it is convenient to intro-
duce a few definitions. In place of the numerator and =L& " '" 5 "j '{6 "'1V " '"—5 "'(%+/2(). (21)
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ByKq. (A4) of the Appendix (identifying/2;=p/ 2' '2&),

the bracketed term is just 6(" '/')E("). Thus there
results the recursion relation

+2n +2n 1+—aped 2n—2. (22)

In a precisely similar way, using (A4) and setting c2;= 1,
one 6nds exactly the same recursion relation for the
8's. For the intermediate case,

+(n) g(n+1}g(n—1/2) P7(n—1/2)

+2n+a2n+1+ 2n 1
g(n) g (n)g (n+1/2} g (n—1/2)

t g ( )ng ( +n1 2/j)—1{g(n+1/2i+ (ni tt/ in+li+( 1n/2)) (23)

By Kq. (A9) of the Appendix (identifying n;=+2' '2;),
the bracketed term is just 6("}E("+'/2), so that the
desired relation is found to be

A 2n+1= +2n+a2n+1+ 2n-l. (24)

(25)

where the a; are given by Kq. (20).
The refinement proposed by Gotdhammer and Feenberg'

is therefore to be interpreted as yielding alternate approxi
mants to a continged fraction expansion for the energy.
The continued fraction is itself equi', lent to the
Srillouin-Wigner series for the energy. '

This identidcation is of great interest in connection
with the problem of convergence. Not only does the
continued fraction generally converge more 'rapidly,
but in many cases the continued fraction expansion
will converge where the formally equivalent linear
series may not. (Asymptotic series often behave this
way, as for example, in the case for the gamma function. ')

The substitution V—+XV requires replacement of Vpp

by X't/'pp and e/le by ) ~~&. An elementary calculation em-

ploying Kqs. (9), (18), and (20) then shows that a2„
and a2~1 (n) 0) are just multiplied by X. Thus /I serves

TABLE I. Successive aPProximations to Ep= 1.54486

The relation for the 8's is once again exactly the same.
Relations (22) and (24) with (20) suffice to prove'

that the quantitieS Apn/82n E " and A2n+1/82m+1
=E("+'~"are successive approximants to the continued
fraction

61
g(k/2)

TABLE II. Approximation to fourth order by three methods.

Method

Brillouin-Wigner
Secular determinant
Continued fraction

Fp

1.1541
1.5412
1.5443

Error

0.3908
0.0037
0.0006

as an expansion parameter in an equally direct manner
in both the linear series approximations and the con-
tinued fraction approximants of Kq. (25).

To illustrate the theory, consider the Mathieu
equation

+4 cos'x ~P=EP,
dx' ) (26)

whose lowest eigenvalue is Ep= j..54486 . Successive
approximations to this value, obtained using the con-
tinued fraction expansion, are shown in Table I. The
modi6ed Brillouin-Wigner method' provides only the
odd-numbered approximants and thus gives a set of
monotonically decreasing elements. However, succes-
sive approximants of the continued fraction are seen
to oscitate about the true value. Although probably
not a general property, this oscillatory behavior is
quite useful when it occurs, since it also provides a
lower bound to the eigenvalue. Table II shows approxi-
mations carried to e4 or equivalent by means of the
unmodified Srillouin-Wigner scheme, a secular deter-
minant method, 4 and the continued fraction. It should
be pointed out that in the case at hand the convergence
is very poor in the basic series, the e„sbarely decreasing
in magnitude. However, the continued fraction result
is quite accurate and requires little additional labor.

Hp'= Hp+ (/ti
—1) (Hp —E),

V'= V—(/2 —1) (Hp —E).
These imply

E Hp' /2(E Hp), — —— —

(27)

(2g)

a uniform change of scale in all energy denominators.
The inversion of Kq. (27) yields

INVARIANCE UNDER THE p TRANSFORMATION

One arbitrary element in the formulation of the
Brillouin-Wigner perturbation procedure is the choice
of the seroth-order Hamiltonian operator. Part of this
freedom 6nds expression in the p transformation5 de-
6ned by the relations

Order 2 3 5

Ep 2.00000 1.26795 1.55505 1.54429 1.54487
Error +0.455 —0.2769 +0.0102 —0.00057 +0.00001

H 2
=H p'+ (/ti' —1)(Hp —E'),

V= V' —(ti' —1) (Hp —E'),

t '=1//
(29)

6 Oskar Perron, Die Lehre von den EettenbrNchen (B.G. Teubner,
Leipzig, 1929), pp. 5, 304.

~ H. S. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrand Company, Inc. , New York, 1948), p. 365.

The further discussion is facilitated by the notation

VwVi . Vp
Mg. (i)=- (3o)

"2 (E Ep)(E Ei) . (E—E,—)—
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for the ith-order coeflicient of f&, in the Brillouin-
Wigner expansion. With this notation, Eq. (2) for f&"&

becomes

since the wave functions are identical. The linear rela-
tion between the primed and unprimed amplitude
factors means that the supplementary conditions

(31)

In the primed system the wave function has the form

and
BE/BG;=0, i=1, 2, I

BE'/BG =0, i=1, 2, .n

(39)

(40)

in which

4''""=6+ZV~I Z G''M~'(i) j
j—1

(32)

(33)

Q G My'(i) =Q G,Mp(i)
t'=1 i=1

(34)

for all values of k. This requires

and the primed amplitude coefficients G are inde-
pendent variable parameters.

It is clear that P~"&Wf("" if we return to the original
Brillouin-Wigner formulation with G =G;=1. Then
the corresponding approximate formulas for the energy
are not identical and, consequently, a physically mean-
ingful value of p may be determined by minimizing the
energy with respect to p, .

Primed and unprimed wave functions are identical if

APPENDIX

(a) Let X&"& be defined as

63
X(n) =

6n+1 On+2

Q2 Q3

6n+2

6n+3

62n+1

&n+2

(A1)

are mutually dependent, either set implying the other.
Equations (34) and (38) insure that the extreme values
of E(Gi, G2, G„) and E'(Gi', G2', .G„') are equal.
Consequently E("" is actually independent of p, as
surmised in reference 5 and verified there by explicit
calculation for e= j., 2, and ~.

The p invariance suggests the possibility of approxi-
rnate invariance or insensitivity of E(") under other
transformations. A uniform displacement of the seroth-
order eigenvalues comes to mind. The suggested in-
sensitivity has in fact been observed in a sample calcu-
lation of a generalized E(') type.

and

where the e, are given in (4) and the n, are arbitrary.

(35) One may write the product, 5&" '"&X&"&, as a single
determinant

1 ~ (i 1) p' ——1

(ti' —1) ~i Ez t]—
(36)

63

64

64- .
g(n—1/2)X(n)

In+1 0
0

0
0

The substitution of G from Eq. (36) into the right
hand member of Eq. (35) yields the consistency
condition

6n+1
0
0

0
C3 A4

0
0

0

62

6~1 6~2
tÃ2 (X3

0
a~2 . (A2)
In+3

62n+1

In this determinant, add row e to row 1, row ~+1 to
row 2, , row 2e—2 to row r/ —1. This, of course,
leaves the value unchanged. The result is

an easily verified identity, since the left-hand member
is simply

(j 1 ti——

E j—t )
Consider now the two expressions E(Gi, G2, ~ G„)

and E'(Gi', G~', G„') for the energy. If Eq. (34)
holds, we have

P(n—1/2)X (n) 0

0

6n+1 62

62n 1
~ ~ 0 0 62

In+2

~ ~ ~ C2

(~2 . (A3)

E(Gi,G2, .G„)=E'(Gi', Gs', ~ G„')
8 M. Bolsterli and K. Feenberg, Phys. Rev. 101, 1349 {1955).
9 E. Feenberg and P. Goldhammer, Phys. Rev. 105, 750 (1957).
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Now make a Laplace expansion using rows i through
n —i and row 2n for one set of determinants. It will be
seen that, because of either null or identical columns,
only two terms enter. That is,

g(n —1/2)X (n) X(n—1/2)g(n) X(n—1)g(n+1/2) (A4)

g (n+1)X(n—1/2)

62

On+2

In+2 62

In+3 63

62n+2 On+2 ' ' ' 62n+1

0 In+2
(A7)

with

In+2

0
Q3

~ ~ ~ 0
3 0

1 ~ ~ ~ 62n

0
X(n—1/2)—

On+1 &2n
(A5) Next make a Laplace expansion using columns 1

through n+1 for one set of determinants. As before,
only two terms enter so that

in which X(~) represents either g(~) or D(~).

(b) The product 6("+')X(n '/'& may be written as
the determinant,

Q (n+1)X(n—1/2)

g (n+1)X (n—1/2)

f3
g(n+1/2)

&3

6n+3
g(n)X(n+1/2) (A8)

62

&n+2

0

0

64 &~3 0
~ ~ n 0
~ ~

' 0 0

0
0 6n+2

Qn+3 Q3 ' ' Qn+2

n+1

Q3

62n+1
~ ~ ~ ~ ~ ~ Q~3

This is not quite the desired result, however, since the
last row in the determinant written out in (A8) is not
correct for X&"& in (A1). For the two special cases we
desire, namely n;=1 and n, =+2' 'e;, the result never-
theless follows. It is obviously so for Q;=i, but for
n;= Q2' '2, we need only subtract row 1 from row I+1
to obtain the desired result,

Subtract column 1 from column n+2, column 2 from
column I+3, . , column 22 from column 2n+1, to
obtain

g(n)X (n+1/2) —g(n+1/2)X(n) g(n+1)X(n—1/2) (A9)

in which X(~) is again either 1V(~) or D(~).


