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Bose-Einstein Gas with Repulsive Interactions: General Theory
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The properties of a Bose-Einstein gas with repulsive interpar-
ticle interactions are determined at low temperature. It is shown
that the contribution to the energy arising from particle excitation
with small momentum transfers computed in conventional per-
turbation theory is divergent, but that this difBculty can be
avoided by an alternative procedure. An exact method is de-
veloped for dealing with that part of the Hamiltonian which gives
rise to the perturbation divergence and an exact solution is
obtained. The treatment of the region of large momentum transfers
is then carried out by introducing the concept of the scattering
length of the interaction. The energy is given by the well-known
result of the optical theorem corrected by a series in powers of
(pa')&, where p is the density and s the scattering length. Exami-
nation of the processes contributing to the energy shows that
95.8% of the correction of order (pu')& results from a simple
alteration of the perturbation energy denominators which takes
into account the interaction energy of excited pairs with the
unexcited pairs of the medium. The remaining 4.2% arises from
multiple particle excitation. These methods also predict the

existence of phonon excitation with phonon energies that are
linear in the phonon momentum for small excitation and approach
q'/2M for large momentum. The detailed consideration of this
spectrum forms part of the following paper.

The results are compared with the theory of fermion systems
with strong interactions, where again the largest correction to the
erst-order "optical" energy arises from alteration of the two-
particle propagator which is required to take into account inter-
actions with the many unexcited particles of the medium. The
propagator corrections in the fermion and boson systems are
similar except for a characteristic difference arising from the
statistics. The theory for bosons is shown to be essentially identical
with that given by Brueckner and Levinson in their general
formulation of the theory of many-body systems with strong
interactions.

Systems with attractive but saturating interactions are also
considered and some new difficulties are shown to arise which
cannot be treated by a straightforward application of the methods
of this paper.

I. INTRODUCTION

ECENTLY the theory of many-body systems with
strong interactions has received considerable

impetus from work carried out on bosons with hard-
sphere interactions, '' on the electron gas, '' and on
nuclear matter. ' ' In this paper we shall discuss a
system of bosons at low temperature and develop
methods appropriate to the study of strong interactions
both at low and at high density. In this we shall show
first how the formalism developed by Brueckner and
Levinson' and applied extensively to the nuclear
many-body problem gives in first approximation essen-
tially the result obtained by Yang and Lee' using their
"binary collision approximation method. " As a more
important result we shall show how in good approxima-
tion this method can be applied in the high-density
region where the Lee-Yang procedure, which is based
on the introduction of the concept of pseudopotentials
and uses a low-density expansion, probably cannot be
used.

The principal diKculty encountered in any simple
theory of the ground state wave function and energy
of a many-body system of bosons is that a perturbation

~ K. Huang and C. N. Yang, Phys. Rev. 105, 1119 (195"I).
~ T. D. Lee and C. N. Yang (private communication). Their

results were erst presented in preliminary form at the Inter-
national Congress on Theoretical Physics in Seattle, %'ashington,
(September 17—21, 1956).' M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (195'I).' K. Sawada, Phys. Rev. 106, 372 (1957).

'K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955);K. A. Brueckner, Phys. Rev. 100, 36 (1955).

'R. J. Eden and N. C. Francis, Phys. Rev. 98, 1445 (1955);
R. J. Eden, Proc. Roy. Soc. (London) A235, 408 (1956).' H. A. Bethe, Phys. Rev. 103, 1353 (1956).' J. Goldstone, Proc. Roy. Soc. (London) (to be published).

evaluation of the interaction energy leads to a divergent
result. This diKculty occurs even if the interactions are
weak and repulsive. The divergence does not occur at
extremely low densities; it is in fact a consequence of
the special features of the system at finite density which
result from the Bose statistics. The divergence of the
perturbation series is discussed in Sec. II where it is
shown that the divergence is intimately associated with
the large excitation energy required to remove particles
from the ground state. ' The occurrence of this "energy
gap" is the origin of the divergence difficulty which
results from the attempt to expand the energy in
powers of the ratio of the finite interaction energy to
the very small kinetic energy. An alternative procedure
is developed in Sec. II to deal with the region of low
excitation where the usual perturbation theory fails.
It is shown that not only is an exact treatment possible
of this restricted region but also that the transformation
leading to the solution predicts a phonon excitation
spectrum. This spectrum is discussed in more detail in
the following paper. The existence of the phonon
spectrum is a consequence in part of the finite energy
gap for simple particle excitation and hence is inti-
mately associated with the statistics of the particles.

The method developed in Sec.II for dealing with low
excitation is extended in Sec. III to include the high
excitations. This is most simply carried out by intro-
ducing the concept of the scattering matrix and the
scattering length of the interaction. It is then shown
that the ground state energy is given as the result of
the elementary "optical theorem" corrected by a series

' The importance of this feature has also been emphasized by
Huang and Yang (see reference 1) and by R. P. Feynman, Phys.
Rev. 91, 1291 (1953).
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in powers of (pas)&, where p is the density and e the
scattering length. ' This result is then analyzed in Sec.
III where it is shown that almost all of the corrections
to the simplest approximation to the energy are the
result of a simple modification of the perturbation
energy denominators which includes the interaction
energy of excited particles with the unexcited particles
of the medium. The further corrections to the energy
are the consequence of multiple excitation of pairs of
particles all carrying the same momentum. These
processes, although they alter the ground state energy
by only 4/o, are the origin of the phonon spectrum, as
is shown in Sec. III.

The simplified method of Secs. II and III is gener-
alized in Sec. IV where it is shown that the procedure
of the earlier section is very similar to that followed in
the study of fermion systems with strong interactions. '
The particular features of the boson system resulting
from the statistics and simplicity of the ground state
1ead, however, to a considerably simpler formulation of
the general problem than is possible in the case of
fermions. Some difhculties are shown to remain in the
boson system which are the result of the complicated
propagation properties of bosons in excited states.
Arguments are given to show that the approximation
to the excited state propagator (suggested in Sec. IV)
can introduce only a small change in the properties of
the system.

In Sec. V the results of Sec. IV are extended to the
determination of the corrections to the energy of the
ground state and the phonon spectrum. It is shown that
the general features are similar to those deduced in the
simple theory of Secs. II and III although the phonon
motion must represent much more complicated particle
motion than in the simplified case. A weak phonon-
phonon interaction is also shown to exist in the more
exact treatment.

In Sec. VI some difFiculties are discussed which arise
in the case of potentials which are repulsive at small
distances but have longer-ranged regions of attraction.
It is shown that some of the features of systems with
such interactions are likely to be markedly digerent
from those of systems with only repulsive forces.

II. GENERAL FEATURES OF THE THEORY

We consider the Hamiltonian for the system

H= H p+H',

where the kinetic energy is

hilation operators. The matrix elements v;~ 1,~ are taken
with respect to a basic set of plane wave states, i.e.,

1
t e

—iki ~ rre—ikj. rsvp(+ ) ekisr re kl rrdrtdr
Q~

1
t drtt(&)&

—i(k;—kk) r

0

where 0 is the normalization volume. The interaction
e(r) in Eq. (4) is the two-body potential. The Kronecker
delta function 6;,, ~~ expresses the conservation of total
momentum. In the following we shall consider only
nonsingular two-body potentials so that perturbation
theory can be used. Those features of the theory which
we wish to discuss in detail in the next two sections are
typical of any repulsive interaction and therefore are
first most easily discussed by using a weak potential.
To deal with the case of a singular interaction such as
a hard-sphere repulsion, it is convenient still to work
directly with the matrix elements of the potential which
can be defined by considering the potential to be the
limit of a repulsion of great but finite strength. In this
we depart from the procedure followed by Huang
and Yang' who introduced the concept of pseudo-
potential first used by Fermi. We follow this proce-
dure since we wish to maintain the parallelism to
the previous theoretical development' ' and since the
final result we wish to obtain divers radically from
that obtained in the pseudopotential approximation.
We will return to this point in more detail in Secs.
IV and V.

We proceed by first noting the structure of the con-
ventional perturbation theory for the energy. This
exhibits certain peculiar features which show that a
profound modification of the theory is necessary before
a reasonable result can be obtained. We restrictour-
selves to a consideration of the energy in the ground
state, which we denote by qo. We shall also first con-
sider contributions to the energy which comes from
transitions to low excited states so that we can regard
the matrix elements of v to be independent of the transi-
tion. We shall return later to the treatment of the
contributions from states far from the ground state.

In this approximation, we make the replacement

v'~, xt~voo, oo=&

Hp ——Q ~ rj„eri~p'/2m,

and the interaction energy is

(2) The successive orders of the perturbation series for the
energy then are:

s rr (Vp rip*rip n pn p V'p)

The operators g* and g are the usual creation and anni-
(6)

'~ This structure of the energy expansion is the essential feature
of the result obtained by Lee and Yang (reference 2). where X is the number of particles. The second-order
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energy is

+2=
~

0'0& 6i 9j''9 'pl l ulna 9~ '6 O'P'o

q'o, go*go*g W —go*a- *gogoOoo I (7)
Fourth Of'der

2 o (q'/m)

For convenience in the following, me here introduce a
graphical representation of these processes. In Fig. 1(a),
we give the graphical representation of the process
giving rise to E2. In the next order, we first give the
graphical representation and then write down the
matrix elements by inspection. The process represented
in Fig. 1(b) is the excitation of a pair to the state
(q, —q), their scattering to the state (q', —q'), and
6nal de-excitation. The matrix element is

Ftffh Qfder

FIG. 2. Connections to the energy in fourth and fifth order. The
paths of the unexcited particles are not explicitly indicated, but
at each vertex indicated by a closed circle, a number of dashed
lines must be added to make the total number of attached lines
equal to four. In the diagrams of 6fth order, the additional possi-
bilities which arise from different functions of the diagonal inter-
action are indicated by arrows. These all correspond to different
time sequences of interaction.

no t'm) (m )
2 o o (q'i (q"i

integration, gives a factor of Q. The two terms, however,
(g) are of very different magnitude for small q; the con-

tribution arising from Fig. 1(b) depends on

The next diagram, LFig. 1(c)j, represents the excitation
of a pair to the state (q, —q), the interaction of both
of these particles with the unexcited particles, and final
deexcitation. The matrix element is

Q2 c c' (~g
(10)

and hence is nonsingular at small values of q, q'. The
other term, however, varies as

(9

gl

-9

«g

(b) (c)

FIG. 1. Excitations contributing to the secorid and third order
of the perturbation energy. In these diagrams the excited particles
are indicated by solid lines, the unexcited particles by dashed
lines. The diagrams are to be read in the sense of time proceeding
from below to above; they therefore do not have the same zneaning
as a Feynman diagram.

the factor of 4 coming from the direct and exchange
interactions of both particles. %e now note a feature
of these contributions to the energy. Each term is
formally proportional to X multiplied by a power of the
density, since each power of n gives a factor of 0 ' and
each summation over q or q', when replaced by an

and hence diverges at the lower limit. Thus, unless a
cutoG is introduced for long mavelengths, the third-
order energy is infinite. This feature was already implicit
in the work of Huang and Yang. ' Such a result, is, of
course, physically meaningless and hence represents a
breakdown in the approximation rather than a physical
effect. A similar divergence (although of different
physical order) occurs in second order in the Coulomb
interaction; its exact treatment has recently been given
by Gell-Mann and the authors. ' '

To proceed, we note that in higher orders, the most
divergent terms are always associated with the excita-
tion of one or more pairs to the state (q, —q) and their
interaction (with exchange) with the unexcited par-
ticles. If more momentum transfers occur, the multiple
integral over the momentum transfer will lead to a
lower degree of divergence. Such contributions will be
considered separately. In this approximation, the
diagrams which interest us are shown in Fig. 2.

%e now make use of this result to simplify the Hamil-
tonian, Since we evaluate the energy for a fixed mo-
mentum transfer q and then sum over q to get the
total energy, we can break up the Hamiltonian into
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terms referring to a single q. A typical term we call h, .
The structure of h, is very simple: the kinetic energy
term is

allows us to obtain an exact solution. *We introduce the
transformation, assuming A,'&1,

(12)
~p= (1 A—') '(A./ o*+-/ o),

g,*=(1—A,') '*(A,p,+p,*),
(20)

—',Np(NQ —1)n. (14)

The interaction term is also very simple. The terms
arising from interaction between the excited particles
and the ground-state particles are:

n[go g q'Q p g—Q+ Qq'Q q'Q Q r/p-

+2n.*nonpm*o+2n-p*n-ono*goj (13)

In this the erst two terms are pair creation and anni-
hilation; the second two represent forward scattering
and exchange (giving a factor of 2). We also must take
into account the variation of the expectation value of
the interaction energy of the unexcited particles which
is

to new operators p,* and p, which are easily shown to
have the same commutation relations as the q's. In
terms of these operators, the Hamiltonian becomes

2PA+nlV (1+A')
) (/, *~ ,*+/.-~ .)-

P(1+A')+2nlVA
(~.*/.+~ .*~-.)

2pA'+ 2nNA
+ . (21)

1—A'

The nondiagonal terms can be eliminated by choosingThis we write in terms of the occupation numbers of the
excited states by replacing Ã0 by 2PA+nN(1+A') =0

p+ (pp noNQ) ~gN p= N Q, (N,+—N, ). or

(23)

the positive square root being taken. Inserting this
result into h„we obtain for the transformed Hamiltonian

hq nf gq gq fjplf p+'Qq'l'l q7/Q f/Q +'2'g ljoogp 'gp

+2g,*g,g p*g p Ng, *g,—Nrl, *rl—,j, (16)

Combining this with the interaction term of Kq. (13),
we And for the total interaction term (writing
lV, =g,*g„etc.)

where we have dropped some terms which are of order
N, /1VQ and 1/1Vp.

We now further simplify this result by observing
that in the terms involving the g, 's, we can replace
gpQ and qp by gN, where N is the total number of par-
ticles. This introduces an error of only order N, /N in
the result. Making this simplification, we obtain

h, =ho&"+ho'=P(y, *go+q,*g p)

+nN(n. *n .*+non o) (1-/)-
where

P= (q'/2m)+nN.

This result is remarkable in that it shows that the
excitation energy of a pair,

AE= (q'/m)+2nN,

may be very much larger than the kinetic energy alone.
The consequence is that there is an energy gap (equal
to nlV in this approximation) between the ground state
and any particle excited stateP This feature is not only
decisive in determining the ground state energy but
also leads, as we shall show, to a quite different class of
low-lying states which cannot be described simply in
terms of particle excitation. It must be emphasized that
the gap in energy is a unique consequence of the Bose
statistics.

The simple form of the Hamiltonian of Kq. (1/)

h, '= —p 1—
I

1—
p' i

+ (p' n'N')'(IJ, ,*IJ,,—+p,*IJ, ,). (24)

&p(q)= —
I

+nN
~

&2m i

and the total energy, when one replaces the sum over

q by an integral, is

1 0 t |' q'
Zp= ——,dq( +nlV [

2 (2s)' & &2m i

X 1—1—
n'N' '*

)
n

+—N' (26)
[(q'/2m)+nNj'. l 2

*Note added in proof. —It has been pointed out to us by Dr. R.
Brout that the following method is very similar to that used by
Bogolubov in his theory of superfiuidity; J. Phys. U.S.S.R. 11,
2S (&947).

The energy therefore is given by a constant together
with a term proportional to the number of "particles"
present. The ground state energy is, when one replaces

P by q'/2m+nN,
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including the constant term contributed by the unex-
cited particles. (The factor of ~~ compensates for the
separation in h, of the sum over g into positive and
negative q.)

The excited state energies are

(27)

We shall here tentatively identify the excited states as
phonon states"; the phonon energy is

v' (8
pop=

/
+2nN

f

2m &2m )
which, for small q is

(28)
FIG. 3.Correction for self-energy. The pair annihilation operator

acting on excited pairs can annihilate one pair to give a closed and
separated loop or a self-energy process.

(o,=I7(nN/m) &, &l'«4mn&V. (29) Let us now examine the structure of the perturbation
arising from the interaction term. Each term in this
series has the form

The low excitation energy of these states is in marked
contrast to the large energy gap for particle excitation.
The linear dependence of co, on q is also a consequence
of the energy gap since it follows from q'/2m«2nN.
Only for excitation large compared to the energy gap
does the excitation energy take on the normal form
oo, =g'/2m. We shall not discuss this "phonon" spectrum
here in more detail; the detailed discussion and exten-
sion of this result forms part of the content of the
following paper.

Now returning to the ground state energy, before
evaluating Eq. (26) we shall analyze the contributions
to the energy using a direct evaluation of the nontrans-
formed Hamiltonian h, of Eq. (17). We shall again use
a graphical representation of the perturbation terms.
The interaction

i (oo, h, ' h, ' . h, ' h, 'qp i. (34)
ho(ol hp(o' hp(ol hp(ol

To evaluate this matrix element, we consider the e6ect
of the operation

h, '(o(e),
P (0)

(35)

where (o(r&) is the wave function for e excited pairs.
The creation operators in h, ' give

hp'=nN(rip*re p*+ri,rl p)

1 1
%*9-Q*p (~)= (~+1)p (+1) =—

o (++1), (36)
(30) h (o) h (o) 2p

can only create or annihilate pairs; the unperturbed since
energy h, ('1y(e+2) =2(x+1)P(o(1+1). (37)

h, (ol=(q/2~)+ N (31)

(32)
L(g'/2m)+nN j(ri,*ri,+ri,*ri,)

describes particle propagation in a medium with a
constant potential term of interaction with the medium.
The term in En in the propagator

In operating with the annihilation operator, we must
avoid including the self-energy which results if the pair
annihilated forms a separable closed loop, as shown in
Fig. 3. This term occurs only once in operating with

p,p, which can close only one loop out of e. Conse-
quently, the matrix element is

Nn(op*rip+a p'ri p)--(33)

which simply arises from the forward and exchange
scattering of a particle with the unexcited particles of
the medium. Thus, along any propagation line in a
diagram, the potential of interaction acts an infinite
number of times to give simple propagation.

"The validity of this identification is demonstrated in the fol-
lowing paper LK. A. Brneckner and K. Sawada, Phys. Rev. 106,
1128 (1957)g.

if expanded as a perturbation, gives rise to an infinite
number of interactions via the diagonal interaction
term

—&o(N —1)(self-energy correction)1 (38)

1=—(o(e—1).
2P

Thus, the operator h &" 'h ' multiplies the wave
function by 1/2p and changes the number of pairs by
&j.. The number of contributions to a given order of
perturbation theory is therefore the number of ways
of going from a no-pair state to a no-pair state multi-
plied by Nn/2P raised to the order of the diagram. This
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The diagonal element is defined in terms of the scat-
tering length u, i.e.,

Soo,oo = (4qr/mQ) a. (43)

Thus AE" is the second-order approximation to the
scattering length,

AE"= (4qr/mQ) a &'&E'/2. (44)

E2 kr
4E= a—»+P[nG(q)n)

2 mQ

We make use of these results to write the energy in
terms of the scattering length, and a convergent integral
over q, i.e.,

1 1 2 14 42 132
+Z t'0»q —0 "q—q. 00 ~ (45)

FxG. 4. Number of contributions to each order of perturbation
theory with the pair interaction operator. Starting from the
lower left, each point in the diagram can be reached in an increas-
ing variety of ways as indicated at each vertex. The sequence of
numbers along the lower axis then gives the number of ways of
going from a no-pair state (the origin) to a final no-pair state
without reaching the axis along the way.

counting is easily carried by inspection of the diagram
of Fig. 4 which gives at each vertex the number of ways
that vertex can be reached starting at the left. The
series is, with (Xn/2P)'=x,

[1+x+2x'+5x'+ 14x4+42x'+132x'+ ~ ~ ], (39)

where the Green's function G(q) is defined in Eq. (25).
%e finally shall assume that the integral over q
converges rapidly so that we can replace in the second
tel l11 vpp q g by G

We now return to the evaluation of the energy.
Inserting the explicit form for G(q), we find

4qrE' 1 Q r t' q'
g(2) dq i +nlV i

2mQ 2 (2qr)o ~ 42m

X 1— (46)
[(q'/2m)+nlV j' (q'/m)

which is the expansion of Eq. (25). We shall return to
the contribution of the successive terms in this series
after evaluating the energy.

III. EVALUATION OF THE ENERGY AT LOW DENSITY

To evaluate the energy, we must first return to the
consideration of the high momentum contributions. For
large momentum transfers, Eq. (26) for the energy
reduces to

4n-E2
~@= u(»—

2mQ

4rQ (2nmN)'*

(2qr)' 4m

&& S'dS 1+S'—[(1+S')'—1)*— . (47)
1

i

2si

To bring this to final form, we write

To evaluate the integral, we make the change in variable
q= (2nXm) &S, which gives

1
AE'= n+P n n—

2 q —(q'/m)
(40)

n = 4qra "&/mQ

where by u('& we mean the first approximation to the
scattering length, and write

which is the low-momentum approximation to
Z/Q= p, (49)

1P
x mlI

&00, 00+2 &oo, q-q &q—q;00 ~

2 q —(q'/m)
(41) where p is the density. The integral over S gives

—8%2/15. Collecting these results, we 6nd

These are the first two terms in the expansion of the
diagonal element of the scattering operator at zero
momentum, .which is defined for general momentum
transfer by the integral equation

Sq—q, 00 q—q, 00+2 &q—q;q' —q' Sq'—q', 00 ( )
q' —(q'0/m)

2xp t 1
DE=X ~ a&'&+

15
(a(1))spi i,

2m.pu f'1+ (".)'i(1+o("):&, (5O)
m i 15

128

where the higher order correction terms in pu' arise
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dS
0

S' 1

1+5'+$(1+S')'—1]~ 2
(52)

Expansion in powers of 1/S' yields the divergent per-
turbation series; expansion in (1+S') ' is equivalent
to the series with the simple propagator modi6cation
in which q'/2m is replaced by (q'/2m)++X. We note
that to a very good approximation, we can make the
replacement

S2 S'

1+S'+L(1+S')'—1]' 2 (1+S') (53)

since $(1+S')'—1]'* can be accurately replaced by
~ 1+S' except for small S (where the integrand vanishes) .
To verify this result, we expand the integral to obtain
the previously considered series of Eq. (39):

oo S2 1 2
+ +

l 2(1+S') L2(1+S')]' $2(1+S')]'

P(1+S')]'
7r 1 5———1———
4 32 1024

(54)

Thus the corrections from higher powers of (1+S') '
are only about 4 j~, and it is a very good approximation
to compute the energy with the simple correction to
the propagator alone. We discuss this feature further
in the next section and extend our results to a more
general approach.

IV. STRUCTURE OF THE CORRECTION TERMS;
RELATION TO FERMION MANY-BODY THEORY

The result of the last section shows that in computing
the ground state energy, it is sufhcient to a very good

from processes we have not yet considered. The coefB-
cient of (pa')' in Eq. (50) agrees with that 6rst obtained
by Lee and Yang (private communication) and also
that obtained independently by Watson and Riesenfelt
(Phys. Rev. (to be published)].

This result gives exactly the 6rst correction to the
leading term in a. It is interesting to note, however,
that almost all of the correction arises from an exceed-
ingly simple class of diagrams. To show this, we notes
that expansion of the integrand of Eq. (4/) over S in
powers of (1+S') ' is equivalent to the expansion of
Eq. (39) in powers of the numbers of operations of the
pair interaction. The character of this expansion is
most easily seen if we write the integral in an alter-
native form which is obtained by using the identity

1+S'—L(1+S')'—1]'*
= (1+S'+L(1+S')'—1]*) ' (51)

Consequently the integral of Eq. (4/) can be written

Fxo. 5. The succession of transitions summed in the t matrix.

approximation to correct the propagator for the excited
pairs to take into account their interaction with the
medium but to neglect the eRects of the simultaneous
excitation of many particles. (This procedure is not
precise enough, however, to describe properly the
phonon excitations which will be treated separately. )
To generalize this result we now remove the approxi-
mations of the previous sections. As in the theory of the
fermion systems with strong interactions, we introduce
operators which take into account the repeated inter-
action of each pair of particles. In this we shall follow
closely the formal results given by Brueckner and
I evinson' in their general theory of fermion and boson
systems in strong interaction.

If the particle-particle interactions are strong, we
expect that a pair of particles excited from the ground
state will interact many times before returning to the
ground state. In terms of diagrams, this multiple inter-
action is shown in I'ig. 5 which shows a pair of particles
being excited to the state (q, —q), then interacting and
going to the state (q', —q'), etc. , and finally returning
to the ground state. In scattering terminology, we
expect that the pair-wise interaction will be given by
the elements of the scattering matrix which is defined

by the integral equation"

We wish to emphasize the fact that this matrix is equal
to the free-particle scattering matrix S of Eq. (42)
only in the limit of zero density. In this limit, the
t-matrix formalism reduces essentially to the pseudo-
potential formalism used by Yang and Huang. ' The
diRerence at 6nite density appears through the many-
body eRects included in the propagator. In contrast to
the scattering case, the Green's function G describes
propagation in the presence of the unexcited ground
state particles. It is the eRects of the propagator
alteration, particularly because of the energy gap
against particle excitation, which cannot be treated by
perturbation methods at high density and which we
wish to evaluate in closed form.

The interaction of the excited particles with the
unexcited particles can as before be represented as an
in6nite number of direct and exchange interactions
along each propagation line. In contrast to the previous
"This integral equation was first used extensively in scattering

theory by S.A. Lippmann and J. Schwinger, Phys. Rev. 79, 4N
(1950). Equations of similar structure from the basis of the
multiple scattering theory of K. M. Watson, Phys. Rev. 89, 575
(j.953) and of the many-body theory discussed in references 5-8.



K. A. 8RUECKNER AND K, SAQ7ADA

I
/

/
S

/
/

/

Q

/
/

/
/

/
/

Fro. 6. The diagrams contributing to the interaction between a
propagating particle and an unexcited particle. This sequence is
summed by introducing the t matrix at the vertex instead of the
two-body potential of interaction.

calculation, however, where only the first-order inter-
action was taken into account, we now include the
multiple interactions with the ground state particles.
This is equivalent to replacing the erst-order interaction
e by the t matrix in taking account of the interaction
between the excited and unexcited particles. Diagram-
matically this is shown in Fig. 6. It is to be emphasized,
however, that along each line of any diagram the inter-
ation via the t matrix occurs an infinite number of
times, while in computing the t matrix itself, the internal
propagation lines again include the multiple inter-
actions. Thus a graphical representation is not directly
possible, at least in terms of the perturbation inter-
action.

To determine the Green's function, following the
results of Srueckner and Levinson' and of the previous
sections, we need the excitation energy of a pair taken
from the ground state. The propagator for the pair with
momenta g, —q is

(q, —qlGlq, —q)=LE(0,0) —E(q, —q)l
—'. (56)

The ground state energy is

result previously obtained for the fermion case. ' There,
as in this problem, the interaction energy in first ap-
proximation is expressed in terms of the scattering
operators computed with the Green's function appro-
priate to propagation in the many-body medium. In
that case the corrections to the energy occurred as a
series of "linked clusters" which appeared first in
third order. These corrections take account of the
fluctuations in the average potential seen by a given
pair of particles due to their interaction while excited
with a third particle of the medium. The transitions of
particles in that case were with (i, j, k states in the
Fermi gas)

i+j~i'+j',
i' jk -+ i+k',

j'+k'-+ j+k.
(60)

This sequence is the interaction of unexcited particles i
and j with excitation to the states i' and j' above the
Fermi surface, the interaction of the excited ith particle
with the unexcited kth particle of the Fermi gas followed
by return to the ith particle to its initial state and
excitation of the kth particle, and anal interaction of
the excited jth and kth particles with transition back
to their initial states. These transitions cannot be easily
included in the definition of the propagation function
and hence were treated as a perturbation in the fermion
case. In the boson case such terms are very much
simpler and can in fact be easily included in the
propagator of an excited pair. To see this, we set
i= j=k=0 since all unexcited particles are in the same
state. The sequence of transitions then is

0+0—+ q+ (—q),

E(0,0)= o L1V(1V—1))too, oo

q+0

0+q
(61)

and the excited state energy is

E(q, —q) =-', (1V—2) (1V—3)top, oo+1V(to, , o +to, , ,o

+&~., ~.+&~; .p)+q'/ ( )—
In the interaction term we have included the exchange
contribution. The energy difference then is, if one sets
to~, o~ to—q, o—q& etc

&

E(0,0)—E(q, q) = ((q'—/m)—
+21V(/pp, pp+/pp, pp

—
fpp, pp)). (59)

In the low-momentum limit where all t elements are
equal, we see that this reduces to the simple-energy
denominator we previously obtained, except that n has
been replaced by too, oo. The corrections to this propa-
gator are, as before, the contributions of multiple
excitation of particles through the nondiagonal elements
of the t matrix.

It is interesting now to compare this result with the

q+( —
q) ~o+o,

which has already been included in the definition of
the propagator for the excited pair. This feature also
persists into the higher order cluster terms and allows
the most important class of corrections of the fermion
problem to be very simply incorporated in the boson
system into the general propagator for the excited pairs.

The first boson correction of double pair creation and
annihilation corresponds to a certain class of the fourth
order linked cluster terms in the fermion case. The
smallness of the 3-body cluster correction in the fermion
case arose from the statistics which entered in the high
zero-point energy and suppressed multiple excitation.
In the boson case, the terms are small for a diferent
reason which is simply the nearly-negligible statistical
weight of the diagrams associated with multiple exci-
tation.

Although these corrections to the ground state
energy are relatively small, it is still desirable- to be
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able to evaluate them precisely. The phonon energy
spectrum is also sensitive to the precise contributions of
the multiple excitations. Both of these problems are
considered in detail in the next section.

V. CORRECTIONS TO THE GROUND STATE
ENERGY AND PHONON ENERGIES

To determine the corrections to the ground state
energy computed from the t matrices de6ned in the
last section, we next determine the remaining processes
contributing to the energy which have not yet been
included. We again use a graphical representation of
the interactions. The most obvious omission is that
arising from multiple excitations as shown in Fig. 2.
These are the same as those considered in Sec. II except
that now the vertex operators are the nondiagonal
elements of the t matrix and the propagation lines
include infinitely repeated interactions with the unex-
cited particles of the medium. All of these diagrams are
generated by the interaction term

Zq(Qq gl ggtggtqtq -q, 00+60—'9 qg|0 gt0 t—00, g—g) &

FrG. 'tt'. Diagrams not summed in the t matrices. These repre-
sent excitation of more than one pair with the same momentum
transfer.

which also determines the phonon energies, as will be
shown in the following.

Another class of omitted diagrams is shown in Fig. 8.
These represent particle propagation with complicated
interactions among the excited particles brought about
by excitation of the medium. These alter the definition
of the propagation function somewhat but do not lead
to an appreciable quantitative change in the 3 matrices.
Their complete inclusion must be considered at the
same time the very complicated question of the exact
structure of the "oG-the-shell" propagators is discussed.
These problems also occur in the fermion system where
they have been discussed by Brueckner' and by Bethe. '
Such terms can have only a small quantitative eGect on
the system properties and will not be considered
further here.

Finally, the last type of interaction not included in
the t matrices is shown in Fig. 9(a). This gives the

simplest process involving successive multiple excitation
of pairs. It is important to note that the other diagrams
of Fig. 9(b) which might seem to contribute in a manner
similar to the diagrams of Fig. 9(a) have already been
included in the t matrices which include all successive

,gg. tg, , (63)

which, however, can never act on the ground state and
can only be allowed to act between successive multiple
excitations. This term leads to phonon-phonon inter-
actions and hence has a very small eGect at low phonon
densities.

One 6nal eGect, which has been mentioned above in
connection with the corrections represented by Fig. 8,
arises from the approximations which must be made in
computing the excited state propagators. We assume
that the propagator for an excited particle does not
depend on the energy states of other simultaneously
excited particles. More explicitly, in computing the
matrices such as which determine the excited state
propagators, we use the integral equation

tg'q", Oq &q'q", Oq+Q &q'g", mn(2+0 +m +e) tm~, Oq& (64)

(a)

(b)

Fro. 9.Interactions between multiple excitations are labeled (a).
The diagrams labeled (b) are already included in Fig. / since the
vertex operator already includes all repeated interactions.

Fzo. 8. Comphcated mterparticle couplings brought about by
interaction via the unexcited particles. The unexcited particles
are shown explicitly.

interactions at any vertex. The transition of Fig. 9(a)
are brought about by the interaction.
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with the propagator not a function of the state of other
particles which may be simultaneously excited. This
"decoupling" of the energy denominators is already
familiar in the fermion case where it forms the essential
part of the proof of the noncontribution of the so-called
"unlinked clusters" to the energy. The interconnections
of the energy denominators which appears in a con-
nected diagram, however, are much more complicated
and it has not yet been possible to prove the rigorous
independence of the propagation of two excited par-
ticles which form the part of a connected diagram.

The assumption of independence or a similar approxi-
mation must be made, however, to reduce the formal
equation for the reaction matrix to a soluble form. The
error introduced by this approximation is not at present
well known, but the quantitative effect on the energy
seems to be small. Also, as in the case of the contri-
butions of Fig. 8, the effect of this approximation can
only slightly alter the quantitative features of the
phonon spectrum and will almost certainly not acct
the qualitative features. This question is being further
investigated at present and will be separately discussed.

Retaining only the signi6cant terms, we 6nally obtain
the result for the eGective Hamiltonian acting through
the t matrices:

a,=P,{[(q'/2l)+X(t„„+t„„—t„„)]

+P, P,. t, ... ,.rt,*rt,*q,.rt, , (65)

where, as we have remarked already, the last term must
be allowed to act only on the multiply-excited pairs.
This effective Hamiltonian, it must be remembered,
does not have the simple interpretation of the initial
Hamiltonian of Eq. (1). It is the result instead of a
transformation carried out on the original Hamiltonian
which replaced the two-body interaction potentials by
the t-matrices. This transformation is not to be confused

with that which can be used to introduce the pseudo-

potentials of Fermi. As discussed in references 4—8, the
t matrix includes the most important many-body effects
of high order through the nonlinearity of the de6ning
equations [Eqs. (55), (56), (59), and (64)). Since the

propagator of the integral equation defining any t

matrix depends on an in6nite set of other t matrices
through a sum over their diagonal elements, the defining

equations actually form an exceedingly complicated set
of coupled nonlinear integral equations. In the nuclear

problem it has been possible only recently to obtain
accurate detailed solutions of a similar array of equa-

tions, using fast computing techniques and applying an
iteration procedure of self-consistency. " We shall not
attempt here to describe the mathematical procedures
which can be used to solve the equations, but shall

return to these in the case of hard-sphere interactions
in the following paper.
"K. A. Brneckner and J. Gammel, Phys. Rev. 105, 1679 (1957).

Q too q q)

P= (q'/2nz)+cV(top, op+ too, ,p
—

tpo, oo) . (66)

The ground state energy is only slightly shifted, with
the shift as in the earlier calculation amounting to a
few percent. The shift is most easily computed by using
a conventional perturbation theory in lowest order.
The transitions which give the first correction are, as
in the earlier simpli6ed calculation,

0+0—+ q+( —q),

0+0 —+ q+ (—q),

q+( —
q) ~0+0,

q+(—
q) ~0+0.

(67)

The simpler sequence of transitions,

0+0 ~ q+( —q),

q+ (—q)
—& 0+0, (68)

is not-to be included since it has already been included
in the de6nition of the t matrix. The result for the 6rst-
order energy shift is

Q2 g2
- —3

A&o=—P too, o—&' —+2&(top, op+too, po
—too, oo) . (69)

2 & pE

In the language of the many-body fermion theory, ~'
the Hamiltonian expressed in terms of the matrices is
a "model Hamiltonian" which acts on the states of the
transformed or "model" system (which are in this case
plane waves). The actual wave function, however, is
related to the simple model wave function by the
exceedingly complicated correlation function or "model

'operator. " This takes precise account of the strong
particle-position correlations which must occur since
the interactions are strong. Thus the motion of a
"model" particle under the influence of the t matrices as
interaction operators represents a very complicated
rearrangement of the "bare" particles of the original
problem.

The effective Hamiltonian of Eq. (65) is of the same
form as the simplified Hamiltonian of Eq. (17) except
for the coupling term between the q and the q' pairs.
This term cannot be eliminated by an orthogonal
transformation and remains, after elimination of the
principal coupling terms, as a phonon-phonon inter-
action. We shall not here consider further the eGects of
this interpretation except to note that it must be
taken into account at appreciable phonon densities
where it will lead to finite phon mean free paths.

We can now eliminate the remaining interaction
term by an orthogonal transformation of the same
form as used in the simplified problem of Sec. II. The
result is as given in Eq. (20) except that now the values
of n and P as defined in Eqs. (5) and (18) are
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The phonon energies are now given by

qo
-

qo

odg '~ +21V(/oq oq+/oo, oo $00, 00)
12m 2'

This spectrum is discussed in the following paper.
I

VI. ATTRACTIVE INTERACTIONS

In the previous sections we have considered repulsive
interactions only, at least in the sense that we tacitly
assumed that the quantity n of Eqs. (5) and (25) or

U(q) =+(~oo, oq+~oq, oo ~oo, 00) (&2)

of Eq. (59) was positive. If the two-body potential is
negative everywhere, then n and U(q) are almost
certainly negative and the methods we have used fail.
This is most clearly seen in the transformation of Eq.
(20), which becomes inapplicable if

P' n'N'= P(q'/2m)—+a)U]' a'.~V' (73)—

become negative. This can occur for appropriate values
of q if n is negative. This feature, however, is not neces-

If we assume that t depends only on the momentum
transfer (which is not actually true in general), this
takes on the simpler form

g2 g2

+2&&o,, ,o

l2m 2'

sarily surprising since if the interaction is everywhere
attractive, the system can 6nd states of much lower
energy by collapsing to a small volume in coordinate
space and hence to a large volume in momentum space.
In other words, the noninteracting Bose system in its
ground state is highly unstable against the perturbing
e6ects of an attraction.

The situation is much less clear if the potential is
nonmonotonic as, for example, is characteristi. c of He'
atoms. In this case, although the strong small-distance
repulsion in the interaction makes the diagonal elements
ot potential positive (in fact infinite), the scattering
length of the two-body interaction evaluated for free
particles is negative. This is due to the eGect of the
longer-ranged attraction which is more effective at low
relative velocities than is the very strong repulsion. Con-
sequently at very low density the Bose gas with an
interaction of this type will be unstable and will tend
to collapse into regions of higher density, at least if the
temperature is very low. At su%ciently high densities,
however, the effect of the relatively weak attraction
will be small compared to that of the strong repulsion
and the effective "scattering length" at high density
will be positive.

At equilibrium density neither of the two extremes
is possible, The density is far too high for the free
two-body scattering length to be a meaningful measure
of the interaction, but also the t matrices are apparently
negative since the system has positive binding. The
description of this state therefore seems to present
certain difhculties which cannot be clearly circumvented
by the methods of this paper. This problem will be
discussed in a separate paper.


