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Low-Energy Neutron Scattering by a Spheroidal Complex Potential~
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Physics Department, Columbia University, Xem York, Sew York

(Received December 21, 1956)

The scattering and absorption of low-energy neutrons (kR«1l by complex square well potentials of
spheroidal shape r=R(1+eP2) is calculated by expanding the neutron wave function in terms of appro-
priate spherical Bessel and Neumann functions times spherical harmonics. The convergence of the results
obtained is demonstrated.

The "strength function" I'„'/D, the average value of neutron width to spacing, is of particular interest
in nuclear physics. It can be calculated from the scattering amplitude.

This strength function is plotted as a function of atomic number in the region A )90. The results are seen
to deviate considerably from the corresponding results for spherical nuclei. Comparison is made with
experiment.

INTRODUCTION

INCOMPLEX
potentials have been used extensively~ in the past few years'' in interpreting neutron

reaction cross-section measurements. At low energies
(&3 Mev) the experimental data are best 6tted with a
potential in which the imaginary part is only a few

percent of the real part.
If one goes low enough in energy experimentally, one

sees the high, narrow Breit-Wigner resonances corre-
sponding to discrete compound states. The complex
potential leads to cross sections which should be inter-
preted only as averages over these fine structure res-
onances. Plotting these average cross sections against
energy and atomic number, one still Ands resonant
structure, the so-called "shape resonances. " Of partic-
ular interest in this low-energy region is the strength
function, the average value of neutron width divided

by the average level spacing for a given nucleus, nor-
malized to some energy (1 ev here) and plotted against
atomic number. This relates to the average absorption
cross section through formula (9b).

Experimental data obtained by two di6erent methods
have been plotted in Figs. 5 and 6. One method' in-
volves measurement of discrete resonances. The other4
involves the measurement of cross sections in the kev
region where the experimental resolution is much worse
than the level spacing. Here, then, measurements of
cross section should give results that agree with the
cross sections calculated using a complex potential.
The strength function is then determined through for-
mula (9b).

The resonant structure of the strength function has
been discussed by Bohr and Mottelson, ' Feshbach,
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Soc. Ser II, 1, 347 (1956).
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Porter, and Weisskopf, ' Weisskopf, ' and Lane, Thomas,
and signer. ' Feshbach, Porter, and Weisskopf' have
calculated the strength function using a complex square
well of spherical shape.

Nuclear shapes are known to be deformed from the
spherical away from closed shells. ' This suggests it
might be more realistic to use a complex potential of
nonspherical shape in discussing neutron scattering from
these nuclei. In particular, in this paper we have con-
sidered deviations from spherical shape of a quadrupole
character. These shapes are called spheroidal here. %e
consider particularly the heavier nuclei, A&90. A
nucleus with a quadrupole moment has nonzero angular
momentum and the symmetry axis if the nucleus (as-
suming that there is one) precesses about the fixed
angular momentum vector. This precession, however,
is slow compared to the period of motion of the neutrons
in a well of depth of the order of 40 Mev as long as the
quadrupole moment is not too small; i.e., away from
closed shells. ' It is realistic then to consider scattering
by a static potential of spheroidal shape.

The purpose of this paper is to demonstrate the modi-
fications in low-energy neutron scattering that occur
when the potential has a spheroidal rather than a

, spherical shape. Deformations of shape other than the
quadrupole can be treated by methods similar to those
used below. The methods used here are applicable to
other problems of scattering from spheroids where the
wavelength is much larger than the dimensions of the
scatterer.

SCATTERING BY SPHERICAL COMPLEX POTENTIAL

The wave function for s-wave neutrons scattered by
complex potential

V= —Vp(1+if'), r &E

=0
7

' V. F. Weisskopf in Proceedings of International Conference on
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in the region r)R is given by

where

y (c—ill
~ cipr)

2kr

rX cotX+ix)
(XcotX—is~

(3)

In the above equation, x=kR, where k is the wave
number of the incident neutrons and X'=x'+ (2M/h')
XVp(1+if)R'—=E'R'

At low enough energies where the Breit-Wigner-type
resonances are well spaced, go can be considered as an
average over the neutron resonance scattering ampli-
tudes given by'

—c—PikB
l

1 l+rlp
E—E,+pI' /2)

(4)

where F„', F' are the neutron and total widths of the
compound nucleus level of energy E„R' is a length of
the order of nuclear dimensions, E is the incident
neutron energy, and go* is the contribution of levels
other than that at energy E, as well as interference of
the sth level with the other levels. Feshbach, Porter,
and Weisskopf' show that go* contributes a negligible
amount to the average of go if the spacing of the levels
is much larger than the level widths. Averaging go over
resonances yields

c PiPR'(—1 ~P /D)

1.2

8
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D 4

where D is the average spacing of the levels and I'„is the
average value of the neutron widths. It follows that, for
kR'«1,

I' /D= (I/pr) Re(1—Flp), (6)

kR'= —,
' Im(1 —gp).

The average scattering and absorption cross sections
using average scattering amplitudes are given by the
usual expressions:

7r-„=—l1 —&, l
p=4~R,

k2
(9a)

2~' r.
a.=—(1—I~pl')=

k' k' D
(9b)

The equalities on the right-hand side are valid in the
low-energy region of well-spaced levels. Here 0-„refers
to potential elastic scattering and cr, to compound
nucleus formation. For low energies, if the (ip,y) process
is negligible, only elastic scattering contributes to 0 .

SCATTERING BY SPHEROIDAL POTENTIAL

If the complex potential has a spheroidal boundary,
a solution of the following Schrodinger equation is
desired. '

V'i/+ (k' —V)f=0,
U=O, r)R[1+aPp(cos8)j= —(2M/il')Vp(1+it),

r(R[1+aPp(cos8) j (10).
The form r=R(1+aP&) for the boundary of the square
well puts the axis of symmetry of the spheroid along the
z axis. Since very low-energy scattering is considered
here, only irsgoieg waves of angular momentum zero are
important. It will be seen that asymptotically there will
be only s-state outgoing waves too. We are free then to
choose the axis of symmetry as we please. The low-
energy scattering will be independent of the spheroid
orientation. In terms of the spheroid axes lengths b and
c, c being the length of the symmetry axis.

—,'a~p =—(c'—h')/(c'+b'),

where e is de6ned as the eccentricity of the spheroid.
The approximation a=-', e is a good one for a&0.1.

Solutions of (10) for the outside and inside regions
can be written in the form

The strength function and R' can be evaluated using the
form (3) for imp. Equation (3) can be written for x((1 in
the form

1
!1—qp=ixl 1—

X cotX)
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Po= P (21+1)i'-,'[hi&'& (kr)+il, hi"'(kr) jPi(cos8)
=Q (2l+1)i'[j i (kr)+-,' (pi —1)h, ~'& (kr) )Pi (cos8),

r) R(1+aPp) (12a)

P,=+Aj, (Kr)P&(cos8), r(R(1+aP,) (12b)

FIG. 1. ER'ective radius E.' and the ratio I'„0/D of average neu-
tron width to the average level spacing as a function of A. The
strength function F„/D is normalized to 1 ev, and 8' is plotted in
units of E. The curves correspond to a spherical nucleus, and to
spheroidal nuclei with eccentricity e=0.045.

where the outside wave function has been normalized
so the incident plane wave is given by e' '. j& are spher-

' It is to be noted that the wave equation (TO) does not separate
in any system of coordinates.
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Frc. 4. Effective radius E' and strength function F„o/D as a
function of A for a spheroidal nucleus of eccentricity e=0.15, and
for a spherical nucleus. Calculations in approximations of the thoro

highest orders considered are plotted.

convergence for eccentricities such as occur in nuclear
shapes. It was found profitable to program the cal-
culation for a computing machine. Figures 1 to 4 show
I' s/D and I/. '/E for spheroidal nuclei plotted against
atomic number in the range of atomic numbers A =90
to 210 for eccentricities &=0.045, 0.075, 0.1, 0.15, and
—0.075. The corresponding curves for spherical nuclei
are also plotted. In all cases Vs=42 Mev, /=0 03 and.
R=1.45XA&&10 "cm. I" ' refers to F normalized to
an energy E=1 ev.

For eccentricites e= &0.075 and &=0.045, the curves
of the strength function and R' when one takes I=6
almost coincide at all points with those when 1.=8.
The curves plotted in Figs. 1 and 2 were obtained by
taking 1.=8 and represent convergent results.

Figure 3 shows results for t.=0.1 taking I.=2, 4, 6, 8
(I.=2 corresponds to the spherical result). The neces-
sity of taking higher l values into account for larger
eccentricities is clearly demonstrated. It was decided to
stop at L,=8 because of the amount of calculation in-
volved. The third maximum, which starts to show up
for e=0.1, appears more de6nitely in Fig. 4 (e=0.15).
The maxima can be understood in terms of spherical
potential results as follows. For scattering by spherical
square well potentials, the scattering amplitude for
angular momentum / is given by~

2sS)

For /) 0, this is equivalent to j& &(X~)=0. In the above
equation, Xg is the real part of X. The small changes
due to the small imaginary part of X are neglected.

The nonspherical part of the potential in (10) acts to
mix these resonances since for such a potential angular
momentum is not a good quantum number. At low
energies for spherical scattering centers only the 1=0
resonances are excited. Because of the mixing of angular
momenta for nonspherical scatterers, this is not the case
for the latter. One has solutions of (19) for /=0 at
Xa = 11 (A = 151) for /= 2 at Xg = 10.9 (A = 14'/) and
/= 4 at Xjt = 10.4 (A = 128). The /= 0 and 2 resonances,
because of their small separation, mix strongly and this
accounts for the two peaks in I'„s/D in Fig. 2.

Increasing the nonspherical part of the potential by
increasing the eccentricity t. increases the splitting in
the resonance positions. This is much as one finds in the
splitting of degenerate or near degenerate states by a
perturbing potential in bound state problems. For
higher eccentricities, the coupling to other / resonances
becomes significant as is seen in Figs. 3 and 4.

The experimental strength functions" (Fig. 5) in the
region A =155 to 188, where nuclear deformations are
comparatively large, agree much better on the whole
with the spheroidal well values than with the spherical.
It is indeed possible to 6t the experimental strength
functions in this region by using eccentricities of magni-
tude m&0.2.

On the other hand, the strength functions for nuclei
with neutron number near the closed shell )V=82 (see
Fig. 6) have strength functions which agree very well
with the spherical well calculated curve. Data are
lacking near Z=82, A = 126 to make a similar compari-
son.

For A~230 to 240, the measured strength functions
are considerably higher than those calculated using a
spherical well. In this region, for reasonable eccentri-
cities, the spheriodal well results do not deviate from
the spherical. These high strength functions could be
explained by mixing with odd-l spherical potential
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q, =s—"s&~ 1+ (18)
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d,g+iSg= 1+xh) "&'(x)/hg&'&(x),
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One then has resonances in the cross section when the
real part of the denominator on the right side of (18)
vanishes. For low energies, i.e., as x—+0, this condi i
becomes

I I. I

I50 200
ATOMIC WEIGHT

250

Xaj/(Xa)+ (/+1)ji(Xz) =o.

ton
FIG. 5. Experimental values' ' of the strength function r /D.

The curve is the theoretical strength function for a spherical
nucleus.
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Fro. 6. Experimental values of the strength function F„0/D for
nuclei near closed shells. The number of nucleons approaching a
magic number has been written beside each experimental point.
The curve is the theoretical strength function for a spherical
potential.

resonances. Solutions of (19) with angular momentum
l= 1,3 exist in this region of atomic number for a well
of 42-Mev depth. To excite odd-l resonances requires a
well with a shape depending on odd harmonics. Evi-
dence for shapes of this type comes from the fact that
there are low-lying 1—states for even-even nuclei in
this region of A."The character of these states suggests
that they may be rotational states. This would make for
nuclear deformations of odd spherical harmonic shape.
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APPENDIX I

Equations (13) for fitting the inside and outside wave
functions at the boundary r=E$1+aPs(cos8)j are
identities with respect to 8, and have to be solved for
the A~'s and q~'s. If one takes successive moments of
these equations by multiplying by I'& and integrating
over 8, one obtains as many independent equations as
needed. "

For the sake of simplicity, let us cut off Eqs. (13)
at l= 2 and take the first two moments. Keeping terms

"Stephens, Asaro, and Perlman, Phys. Rev. 100, 1543 (1955).
"This is not the procedure that was used to solve for q0 in the

machine calculation. That procedure was described earlier.

2asq (sip
—1) (qs —1)

i
(
—1+ )

27—ai =0, (A1b)5] 2x8

aX 2 3
aX jo'+ jo" Ao+ js+-(aX)js'+ (aX)'j—s" As

7 7 14

. (np-1) (~s-1)
ia — —15i =0, (A2a)

aX
aX (Xjp')'+ (Xjp')" Ap

8

2 3
+ Xjs'+ (aX) (Xjs')'+——aX'(Xjs')" A,

7 14

(sl o
—1) (gs —1)

+ai +45i — =0, (A2b)
2x

where Eqs. (A1) and (A2) correspond to the zeroth and
second moments respectively, and Eqs. (a) and (b)
come from (13a) and (13b) respectively. The primes
denote derivatives with respect to X, the argument of
the Bessel functions.

Inspecting Eqs. (A2), one sees that to the lowest
order in a:

A2~a,

g2 —1~ax.
More generally, taking into account higher l values,

one has
a'I'x'+'.


