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The scattering and absorption of low-energy neutrons (kR<1) by complex square well potentials of
spheroidal shape »=R(1+4aP;) is calculated by expanding the neutron wave function in terms of appro-
priate spherical Bessel and Neumann functions times spherical harmonics. The convergence of the results

obtained is demonstrated.
The “strength function”

T',9/D, the average value of neutron width to spacing, is of particular interest

in nuclear physics. It can be calculated from the scattering amplitude.
This strength function is plotted as a function of atomic number in the region 4 >90. The results are seen
to deviate considerably from the corresponding results for spherical nuclei. Comparison is made with

experiment.

INTRODUCTION

OMPLEX potentials have been used extensively

in the past few years'? in interpreting neutron
reaction cross-section measurements. At low energies
(<3 Mev) the experimental data are best fitted with a
potential in which the imaginary part is only a few
percent of the real part.

If one goes low enough in energy experimentally, one
sees the high, narrow Breit-Wigner resonances corre-
sponding to discrete compound states. The complex
potential leads to cross sections which should be inter-
preted only as averages over these fine structure res-
onances. Plotting these average cross sections against
energy and atomic number, one still finds resonant
structure, the so-called “shape resonances.” Of partic-
ular interest in this low-energy region is the strength
function, the average value of neutron width divided
by the average level spacing for a given nucleus, nor-
malized to some energy (1 ev here) and plotted against
atomic number. This relates to the average absorption
cross section through formula (9b).

Experimental data obtained by two different methods
have been plotted in Figs. 5 and 6. One method? in-
volves measurement of discrete resonances. The othert
involves the measurement of cross sections in the kev
region where the experimental resolution is much worse
than the level spacing. Here, then, measurements of
cross section should give results that agree with the
cross sections calculated using a complex potential.
The strength function is then determined through for-
mula (9b).

The resonant structure of the strength function has
been discussed by Bohr and Mottelson,® Feshbach,
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Porter, and Weisskopf,? Weisskopf,® and Lane, Thomas,
and Wigner.” Feshbach, Porter, and Weisskopf? have
calculated the strength function using a complex square
well of spherical shape.

Nuclear shapes are known to be deformed from the
spherical away from closed shells.® This suggests it
might be more realistic to use a complex potential of
nonspherical shape in discussing neutron scattering from
these nuclei. In particular, in this paper we have con-
sidered deviations from spherical shape of a quadrupole
character. These shapes are called spheroidal here. We
consider particularly the heavier nuclei, 4>90. A
nucleus with a quadrupole moment has nonzero angular
momentum and the symmetry axis if the nucleus (as-
suming that there is one) precesses about the fixed
angular momentum vector. This precession, however,
is slow compared to the period of motion of the neutrons
in a well of depth of the order of 40 Mev as long as the
quadrupole moment is not too small; i.e., away from
closed shells.® It is realistic then to consider scattering
by a static potential of spheroidal shape.

The purpose of this paper is to demonstrate the modi-
fications in low-energy neutron scattering that occur
when the potential has a spheroidal rather than a

. spherical shape. Deformations of shape other than the

quadrupole can be treated by methods similar to those
used below. The methods used here are applicable to
other problems of scattering from spheroids where the
wavelength is much larger than the dimensions of the
scatterer.

SCATTERING BY SPHERICAL COMPLEX POTENTIAL

The wave function for s-wave neutrons scattered by
complex potential

V=—Vo(1+4i), r<R

¢y
- =0, r<R
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in the region >R is given by

1
y=— (= ue™), @
2kr
where
[ X cotX+ix
L
X cotX—ix

In the above equation, x=kR, where k is the wave
number of the incident neutrons and X?*=x>4- (2M /7%?)
X Vo(14i¢)R*= K2R2.

At low enough energies where the Breit-Wigner-type
resonances are well spaced, %, can be considered as an
average over the neutron resonance scattering ampli-
tudes given by?

iL,°
170=e””’°R'(1— )+7lo*y 4)
E—E;+1T%/2

where T',,%, T'* are the neutron and total widths of the
compound nucleus level of energy E,, R’ is a length of
the order of nuclear dimensions, E is the incident
neutron energy, and no* is the contribution of levels
other than that at energy E, as well as interference of
the sth level with the other levels. Feshbach, Porter,
and Weisskopf? show that 7o* contributes a negligible
amount to the average of 5 if the spacing of the levels
is much larger than the level widths. Averaging 5, over
resonances yields

fo=e 2% (1—aT,/D), ©)

where D is the average spacing of the levels and T, is the
average value of the neutron widths. It follows that, for
kR'K1,

T,./D=(1/7) Re(1—1), (6)
kR'=3% Im(1—7). (7
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Fic. 1. Effective radius R’ and the ratio T',,9/D of average neu-
tron width to the average level spacing as a function of A. The
strength function I',%/D is normalized to 1 ev, and R’ is plotted in
units of R. The curves correspond to a spherical nucleus, and to
spheroidal nuclei with eccentricity e=0.045.
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The strength function and R’ can be evaluated using the
form (3) for 7. Equation (3) can be written for <1 in
the form

1
1—7 =ix(1—- . 8)
’ X cotX

The average scattering and absorption cross sections
using average scattering amplitudes are given by the

usual expressions:
™

Fge= E ' 1—7o [ 4 R?, (9a)
oo 1 w2 T,
0a="k;(1“ 70 )—‘I;; IS (9b)

The equalities on the right-hand side are valid in the
low-energy region of well-spaced levels. Here s refers
to potential elastic scattering and &, to compound
nucleus formation. For low energies, if the (#,v) process
is negligible, only elastic scattering contributes to ..

SCATTERING BY SPHEROIDAL POTENTIAL

If the complex potential has a spheroidal boundary,
a solution of the following Schrédinger equation is
desired.?
VA4 (B2—TV)y=0,
U=0, r>R[1+4aP;(cost)]=— 2M/5)V,(1+iP),
r<R[14aPy(cosf)]. (10)

The form r=R(1+4-aP») for the boundary of the square
well puts the axis of symmetry of the spheroid along the
z axis. Since very low-energy scattering is considered
here, only ingoing waves of angular momentum zero are
important. It will be seen that asymptotically there will
be only s-state outgoing waves too. We are free then to
choose the axis of symmetry as we please. The low-
energy scattering will be independent of the spheroid
orientation. In terms of the spheroid axes lengths & and
¢, ¢ being the length of the symmetry axis.

facze=(8—0)/ (1Y), (11)

where e is defined as the eccentricity of the spheroid.
The approximation a¢=%e is a good one for ¢X0.1.

Solutions of (10) for the outside and inside regions
can be written in the form

Yo=2_(2+1)i%5[1® (kr)+nia® (kr) 1Py (cost)
=22+ 1) fu(kr)+5 (ne— D (kr) 1P (cosb),
r>R(1+4+aP;) (12a)

l//1=ZA ljz(KT)Pz(COSG), 7’<R(1+(LP2) (12b)

where the outside wave function has been normalized
so the incident plane wave is given by 2. j, are spher-

9 It is to be noted that the wave equation (10) does not separate
in any system of coordinates.
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ical Bessel functions and #; spherical Hankel functions
of the first and second kind.

It remains to join the inside and outside region wave
functions and their derivatives at the surface of the well.
In the case of a spherical well, angular momentum is a
good quantum number and one merely equates coeffi-
cients of P;. This determines the %; and 4;. In the case
of a spheroidal scatterer, angular momentum is not a
good quantum number and we must write

> Aii(V)Pi=Y (2+1)it
1=0,2 1=0,2

X)) +3m—1)- kD (y)]P;, (13a)

where V=X[1+aPy(cosb)] and y=x[1+aPs(cosd)].
The sums are taken only over even / values since parity
is a good quantum number. Since for ¥<<1 only /=0
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Fic. 2. Effective radius R’ and the ratio T',?/D of average neu-
tron width to the average level spacing as a function of A. The

strength function T',9/D is normalized to 1 ev, and R’ is plotted in
units of R. The curves correspond to a spherical nucleus, and to
spheroidal nuclei with eccentricities e==-0.075.

ingoing waves are important it follows that all odd !
waves are unscattered. Another equation can be written
for the radial derivatives of the inside and outside wave
functions at R(14+aP,):

a i)
—yr=—vo. (13b)
ar aor

Equations (13) must then be made to hold for all values
of 6. Since the series (12) for y are formed from complete
sets it should be possible to solve for the 4; and #;. It is
instructive to multiply both sides of Egs. (13) by
P;(cosb) and integrate from =0 to 27 for 1=0, 2,4, - - -.
One then finds readily for even ! (see Appendix I) the
approximate proportionalities:

A;<d?[140(a)] as (14

x—0
and
m—1«at?[14-0(a) ]

as x—0. (15)
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F1c. 3. Effective radius R’ and strength function T',%/D as a
function of 4 for a spheroidal nucleus of eccentricity e=0.1. The
curves represent the calculations in approximations of successive
order. The L=2 approximation yields the results for spherical
nuclei and the successive order approximations give information
on the convergence of the calculations. L=8 for example repre-
sents the calculation in which inside and outside wave functions
and their derivatives were joined at angular positions given by the
roots of Pg(u)=0.

It is important to note that for a spherical square well
one has approximately

n—1 g2 (15a)

Relations (14) and (15) show that for x and a<<1 only a
few values of / will contribute appreciably to the ex-
pressions (13). A comparison of relations (15) and
(15a) shows why even for low energies it is important
to include terms for />0 in the scattered wave in the
case of a spheroidal potential whereas for a spherical
potential they are negligible. For />0, r=R, the Ith
partial wave of Eq. (12a) has the approximate form

wy a2y, (kR) < gt (16)

whereas for the case of a spherical potential it has the
approximate form

as x—0.

vy 22y, (RR) o x40, (16a)
However, as r— o as in the spherical case,
e—ikr_.,”oeikr
Y, aan
—2ikr

Equations (13) can be made to yield 5o as follows.
Neglect values higher than /=L, say. Put cosf=p;,
1=1,2,3, .-+, L/2, where u; are the roots of P (u)=0.
One then has L linear equations in the L unknowns 4,
and (1/x%1)(9,—1),1=0, 2,4, ---, L—2. These can be
solved for no, which then yields the strength function
and R’ through Eqgs. (6) and (7) which carry over to the
case of spheroidal nuclei.

RESULTS AND CONCLUSIONS

In practice, solving Egs. (13) is a tedious, difficult
business since several ! values are required to obtain
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Fic. 4. Effective radius R’ and strength function I',%/D as a
function of 4 for a spheroidal nucleus of eccentricity ¢=0.15, and
for a spherical nucleus. Calculations in approximations of the two
highest orders considered are plotted.

convergence for eccentricities such as occur in nuclear
shapes. It was found profitable to program the cal-
culation for a computing machine. Figures 1 to 4 show
T.'/D and R’/R for spheroidal nuclei plotted against
atomic number in the range of atomic numbers 4 =90
to 210 for eccentricities e=0.045, 0.075, 0.1, 0.15, and
—0.075. The corresponding curves for spherical nuclei
are also plotted. In all cases V(=42 Mev, {=0.03 and
R=1.45XA4%X 108 cm. T,? refers to T',, normalized to
an energy E=1 ev.

For eccentricites e==-0.075 and ¢=0.045, the curves
of the strength function and R’ when one takes L=6
almost coincide at all points with those when L=8.
The curves plotted in Figs. 1 and 2 were obtained by
taking L=8 and represent convergent results.

Figure 3 shows results for e=0.1 taking L=2,4, 6, 8
(L=2 corresponds to the spherical result). The neces-
sity of taking higher / values into account for larger
eccentricities is clearly demonstrated. It was decided to
stop at L=38 because of the amount of calculation in-
volved. The third maximum, which starts to show up
for e=0.1, appears more definitely in Fig. 4 (e=0.15).
The maxima can be understood in terms of spherical
potential results as follows. For scattering by spherical
square well potentials, the scattering amplitude for
angular momentum / is given by?

2iS;
: ) (19)
(4-X5/(X)/7(X) ]— A4S,

ArtiS= 142k, W (x) /1 ® (x),
§i=tan [ —7i(x)/ni(x)].

One then has resonances in the cross section when the
real part of the denominator on the right side of (18)
vanishes. For low energies, i.e., as ¥—0, this condition
becomes

m=6_2i‘”(1 -

where

Xzj! (Xp)+ (+1)j:(Xr)=0. (19)
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For />0, this is equivalent to j;_1 (X ) =0. In the above
equation, Xg is the real part of X. The small changes
due to the small imaginary part of X are neglected.

The nonspherical part of the potential in (10) acts to
mix these resonances since for such a potential angular
momentum is not a good quantum number. At low
energies for spherical scattering centers only the /=0
resonarnces are excited. Because of the mixing of angular
momenta for nonspherical scatterers, this is not the case
for the latter. One has solutions of (19) for /=0 at
Xr=11 (4=151) for I=2 at Xr=10.9 (4=147) and
l=4at Xp=10.4 (4=128). The /=0 and 2 resonances,
because of their small separation, mix strongly and this
accounts for the two peaks in T',/D in Fig. 2.

Increasing the nonspherical part of the potential by
increasing the eccentricity e increases the splitting in
the resonance positions. This is much as one finds in the
splitting of degenerate or near degenerate states by a
perturbing potential in bound state problems. For
higher eccentricities, the coupling to other / resonances
becomes significant as is seen in Figs. 3 and 4.

The experimental strength functions®* (Fig. 5) in the
region A =155 to 188, where nuclear deformations are
comparatively large, agree much better on the whole
with the spheroidal well values than with the spherical.
It is indeed possible to fit the experimental strength
functions in this region by using eccentricities of magni-
tude ¢£0.2.

On the other hand, the strength functions for nuclei
with neutron number near the closed shell V=82 (see
Fig. 6) have strength functions which agree very well
with the spherical well calculated curve. Data are
lacking near Z=82, 4 =126 to make a similar compari-
son.

For 4~230 to 240, the measured strength functions
are considerably higher than those calculated using a
spherical well. In this region, for reasonable eccentri-
cities, the spheriodal well results do not deviate from
the spherical. These high strength functions could be
explained by mixing with odd-! spherical potential
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F1c. 5. Experimental values®* of the strength function T,0/D.
The1 curve is the theoretical strength function for a spherical
nucleus.
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Fic. 6. Experimental values of the strength function I',;%/D for
nuclei near closed shells. The number of nucleons approaching a
magic number has been written beside each experimental point.
The curve is the theoretical strength function for a spherical
potential.

resonances. Solutions of (19) with angular momentum
!=1,3 exist in this region of atomic number for a well
of 42-Mev depth. To excite odd-/ resonances requires a
well with a shape depending on odd harmonics. Evi-
dence for shapes of this type comes from the fact that
there are low-lying 1— states for even-even nuclei in
this region of 4.1 The character of these states suggests
that they may be rotational states. This would make for
nuclear deformations of odd spherical harmonic shape.
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APPENDIX I

Equations (13) for fitting the inside and outside wave
functions at the boundary r=R[14+aP,(cosf)] are
identities with respect to 6, and have to be solved for
the A/s and 7,’s. If one takes successive moments of
these equations by multiplying by P; and integrating
over 0, one obtains as many independent equations as
needed.!

For the sake of simplicity, let us cut off Egs. (13)
at /=2 and take the first two moments. Keeping terms

10 Stephens, Asaro, and Perlman, Phys. Rev. 100, 1543 (1955).

1t This is not the procedure that was used to solve for 7o in the
machine calculation. That procedure was described earlier.
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up to the order of a?, we get for 21

(aX)® : //]
10"

aX[ aX
Ao‘l“s“[j'z,'l'—}—ﬁ"]flz

o

+i(1+i) 1) | Y —1, (Ala)

5 243 2x3

P2 aX] ax
[ty Jaot = o+ iy o

—¢(1

~ aX. . 2 . 3 '
ale°,+7Jo"]A°+[‘72+;(GX)]2'+§(GX)2]2"]A2

2a*\ (no—1 (n2—1)
il W P —0, (Alb)
5 / 2x 23

....1 —_

P A )=, (A2a)
2 243

aX
GX[(on')'+“‘8“(Xj0')"]Ao
2 3
+[Xj2'+;<aX> <ij'>'+§aX2<Xj2'>"]A2

—1 -1

Y —0, (A2b)
2x x

where Egs. (A1) and (A2) correspond to the zeroth and
second moments respectively, and Egs. (a) and (b)
come from (13a) and (13b) respectively. The primes
denote derivatives with respect to X, the argument of
the Bessel functions.

Inspecting Egs. (A2), one sees that to the lowest
order in a:

Agﬂia,

Ne— 1 aad.
More generally, taking into account higher / values,

one has

Axal?; pg—1caliZgth,



