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Level Density of a System of FersrIi Particles*
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Formulas for the density of the energy levels of a system of independent Fermi particles are derived
which are valid for all values of the excitation energy, and thus a criterion for the validity for the usual
(high-degeneracy) formulas is obtained. It is shown that as the energy of the system increases, the degree
to which the usual (high-degeneracy) formulas are modified, depends strongly on the distribution of the
individual-particle levels. If the levels are spaced uniformly, the corrections are especially small. App1ica-
tions to nuclei are discussed brieQy.

C. INTRODUCTION

S OME years ago Bethe' derived the level density of
an excited nucleus by regarding it as an almost

completely degenerate Fermi-Dirac gas of Z protons
and N neutrons. Thereby he explained the rapid con-
vergence of the experimentally observed level spacing
with increasing excitation energy, and he obtained
quantitative results which are of the correct order of
magnitude.

In an attempt to improve the agreement with ex-
periment, Van Lier and Uhlenbeck' generalized Bethe's
problem in two respects. First, they based their deriva-
tion of the level density formula on a general form p(e)
for the energy level density of the individual particles;
however, they found that for a highly degenerate system
the result depends on only one parameter, namely the
value of p(es) at the Fermi level. Secondly, they in-
vestigated what the inhuence on the level density is
when the degeneracy is not almost complete. Since a
calculation for arbitrary values of the degeneration
parameter is rather complicated for a general p(e), they
confined their study to the case in which the individual-
particle levels are equidistant. On that basis they con-
firmed Bethe s original idea that, insofar as the deriva-
tion of the level density formulas is concerned, a
nucleus excited to about 10 Mev may be treated as an
almost completely degenerate Fermi system.

We have extended the work of van Lier and Uhlen-
beck by investigating the second question for a p(e)
which follows a general positive power law. We find
that as the energy of the system increases the rise in
the level density is less rapid than for a highly de-
generate system. However, the result depends rather
sensitively on the distribution of the individual-particle
levels p(s). Furthermore, the case of equidistant spac-
ing is an exceptional one in which the sects of lack of
almost complete degeneracy are atypically small com-
pared to other distributions.

The special character of uniform spacing is exhibited
in Sec. 2 for one kind of particle and in Sec. 3 for a mix-

*%ork performed under the auspices of the U. S. Atomic
Energy Commission.' H. Bethe, Phys. Rev. 50, 332 (1936).

2 C. van Lier and G. E. Uhlenbeck, Physica 4, 531 (1937};
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ture of two kinds. We shall obtain the formulas which
are valid for all values of the degeneration parameter
and base some illustrative numerical computations on
those. However, we shall also derive some simple
analytical expressions for the level density which
contain the first order corrections to the formulas of
Bethe, and. of van Lier and Uhlenbeck. Thereby a
degeneracy criterion for the validity of the zeroth order
formulas is established. The physical assumptions and
the general approach to the combinatorial problem is
the same as that of van Lier and Uhlenbeck.

The implications of the foregoing for nuclear level
densities are discussed briefly in Sec. 4. The main
conclusions are these: For excitations of about 10 Mev
(thermal neutron resonance experiments) Bethe's origi-
nal idea is now confirmed to within a few percent rather
than the small fraction of one percent obtained by van
Lier and Uhlenbeck for a uniform spacing of the in-
dividual-particle levels. At 100 Mev, corresponding, for
example, to the excitation of a fission fragment, the
zeroth order results are affected by only a few percent
for uniform spacing, whereas other distributions may
give rise to reductions of as much as an order of
magnitude.

2. ONE KIND OF PARTICLE

The combinatorial problem which we shall treat in
this section is the one -considered in Sec. 2 of the paper
by van Lier and Uhlenbeck. There are Ã identical,
noninteracting Fermi particles. Let the alIowed energies
of an individual particle be E1 62 ~ ~ ~ .Let these energies
be expressed in terms of a unit 8 which is suKciently
small so that the c's are integers. Let the levels be non-
degenerate, so that each level is occupied by either no
particles or one particle.

Let the resulting levels of the compound system be
denoted, by E&, E2, Ea, ~ . We assume with van Lier
and Uhlenbeck that the level structure of the com-
pound system has the following two properties: The
leveIs are separated by the same small unit 8, and the
number of realizations D(E) of the total energy E is a
slowly and smoothly varying function of energy. In
that case the product of the level density E(N,E) and
8 is equal to D(E), and is therefore given by the Darwin-
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Fowler integral: 1,1 xy's dxdy
R(N, E)b=

(2prs)' ZN+ly E+I

the system is given by

exp f prL-', Qp„(ep) j g„(Q/Ep) }
R(1V,E)=—

(48) Qd. (Q/E.)
(10)

Evaluating the above by the saddle point method, one where g„and d„are functions of the ratio /Ep. is
obtains the excitation energy, i.e.,

R(N, E)b =
2pr(detA)&

(2) Q= E Ep. —
with

f(n, /f) =Ej9 Nn+—Q; log(1+e e"), (3)

(f- f-e i
& fe- fee &

(4)

and A is the symmetric matrix formed from the second
derivatives,

We shall see that g„and d„—+1 as Q/Ep+0 (high de-
generacy), thus giving the zeroth-order formulas ob-
tained in references 1 and 2 [our formula (44)] in the
appropriate limit. The rate at which g„—+1 will depend
very strongly on n; in particular, if n= 1 (equidistant
spacing) g1—+1 especially fast.

If we introduce (6) and (9) into (3) and integrate
by parts, f becomes

n and P correspond to the location of the saddle point
on the real axes of the integrand of (1) and are deter-
mined by the two equations

rff/rfn = rff/BP =0.

vrhere
f=E13 N+-(k/3) "~.( ),

i f x"ds
&-(n)=- '

n p1+e~'

(12)

(13)

We make the usual "continuous approximation" in
which the sum over discrete states is dealt with by
assuming that there exists an equivalent individual-
particle density function p(p) such that

P log(1+e e")= p(x) log(1+e e )dx. (6)
4O

Next, we introduce the Fermi level ~o—the top of the
distribution in the most compact occupation of the
individual-particle levels —and the energy Ep of the
ground state of the entire system according to:

N= (kin)"~',

kE= n(k/P) "+'y.

(14)

(15)

Equations (7) and (8) can now easily be integrated,
giving the relations

(kep)"= nN

(n+ 1)kEp (nN) '+"—"—

(16)

(1/)

Using (14) and (15), we can eliminate E and 1V from

(3), and this leads to

We shall frequently suppress the subscript e. The
saddle point equations (5) assume the form

1V=, p(x)dx
~o

f= (k/~) "L(.+1)~—~'j

In view of (9), (14), and (16), we have'

(18)

Ep xp(x)dx. ——
Jo

(8) p(n/P)
—kn& —1(k/P)~ 1=p(pp)n& 1(/nf, ) 1+1/~ (19)

From (14), (15), and (17), we obtain

p„(,) = k~, ~—1 (9)

We shall now restrict ourselves to a p which follows

a general positive power law: (k ) ++1

=kQ ~—
Ep)

(~&)1+1/ n "—1

n+1
(20)

The power law is suKciently general to give useful in-

formation about the dependence of the level density
(of the entire system of particles) on the distribution of
the energy levels of the individual particle, and at the
same time the power law is simple enough to permit an
exact treatment of the integral in Eq. (6). We shall

find it convenient to have the constant of propor-
tionality in the form k". Evidently, n= 1 corresponds
to a uniform spacing of the individual-particle levels.

We shall now show that subject only to the assump-
tions which we have already made, the level density of

Substitution of (19) and (20) in (18) yields

f=~hQp(«) j'g(n),
in which

(21)

1
g-(n) =-(p)'(1nf') '" ""'

(~&)1+1/n- —1

X W- L(n+1)y —ny'j. (22)
e 1

'Equation (19) is true only if o/P)0. If n/P (thOen p=k"
X (—a/p)" '. However, the final formulas remain the same.
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and we are also justified in writing

g(~) =Z(Q/Eo)

The denomina, tor of (2) is simila, rly eva, luated by calcu-
lating the second derivatives on the basis of (12) and
using the relation (20). The result is

2m (detA) '= (48)~Qd(rr), (23)

(26)

We shall now have to consider the functions P„and
their first and second derivatives more closely. ' If
tr (0, it is readily shown tha, t P„ is given exactly by the
exponential series

with

d„(cr) = fats(n+1)yy" (—ig')']l
(12): P„(rr) =I'(n)S. (cr), o/&0, /s&1, (27)(~~~)1+1/ n —1-

(24) wltllX n@—
~
—kfnf

~-(o)=2
I 1 Qn+1

(28)

If e is a positive integer, then one can show by the
method suggested in reference 2 that if n & 0,

0 -(~)=P-(~)+ (—)"(ti—1)!~-(~),
n & 0, n= positive integer (29)

where P„ is a polynomial of degree m+1. In particular,

P t(n) =n'/2+ m'/6,

Ps (cr) =cr'/6+ nn'/6, -

P ()= '/12+ ' /6+(7/5)( '/6)'
(30)

The leadieg three terms of the polynomials of higher
degree are given by

It should be noted, in view of (2) and (23), that the
quantity R(S,Q)fi is given by a dimensionless function
divided by Q. Q is a,n integer, the excitation energy ex-
pressed in terms of the unit 5, which was introduced at
the beginning in order to make the treatment in terms
of the Darwin-Fowler integral possible. If 6 is expressed,
for example, in Mev, then Q5 is equal to the excitation
energy in Mev. Therefore, formula (10) gives the level
density in terms of that unit of energy in which Q is
expressed. That is the justification for the practice of
setting the level density equal to the Darwin-Fowler
integral, an equality which holds only in the sense
described (references 2 and 6).

From (14), (17), and (20) it follows that for a given
et n is determined solely by the ratio Q/Es, t/is

Q e(n+1)p
10

(~~)i+i/n
(25)

For that reason o. is called the degeneration parameter,

P (~) ~n+1

n (m+1) 6n'

7 (H )+—(~—1)(~—2) I l (31)
10 &6a'I

-2
-6 -4 -2 -0 2 4 6 8 IO l2 l4

a

If n &1 but is not an integer and o. is positive, then p„
is asymptotically equal to the Sommerfeld series, the
first three terms of which are also given by (31).

Thus, regardless of whether e is an integer or not,
one obtains the following asymptotic formulas for Q/Es ..

Q/( +is1)Es~'/6ct' as rr~~
~P'(ng1)] '/~e ~'~ as n~ —~. (32)

The variation of Q/Es with n is monotonic between the
regions of asymptotic behavior, and to illustrate that
we have plotted logis(Q/(r/+1)Es] against o/ for n= 1,
2 and 3. (See Fig. 1.) The exact expressions (27) and
(29) were used in the numerical computations, regs. rd-
ing which we shall make some further remarks below.

We are now in a position to discuss the behavior of
g(a) and d(n) at high degeneracies (large positive n).
If we make the asymptotic approximation

rt. (n) n "+'//s(n+1) (33)

then g(rr) =0, and that approxima, tion is evidently in-
adequate. Approximating by two terms, viz. :

Fzo. 1.LogioLQ/(n+1)E0$ as a function of a for a=1, 2, and 3.
The plot illustrates that Q/E'0 is a monotonic function of n also in
the region in which the asymptotic formulas (32) do not apply.

4 Formula (2S) reduces to the result obtained in reference 2 if
one sets m=1.

(~)~~n+t
7r'

+
fs(ran+1) 6u'.

' See A. Sommerfeld, Z. Physik 47, 1 (1928).

(34)
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has the following consequences: If n=1 (equidistant
spacing), both g& and di reduce to unity for all n, and
furthermore P& contains no terms beyond (34). There-
fore, in order to obtain a first-order correction one
must include the first term of the exponential series
(28). As we shall see, the behavior is quite different if
the spacing is not uniform (is&1).

If n/1, a straightforward application of the two-
term approximation (34) would lead to an infinite
power series in 1/n' with the leading term equal to
unity. It can readily be verified, however, that because
of a cancellation in the factor e(m+1)p —(~')'+"",
which occurs in both g and d, the third term in the
asymptotic series

Xo/&.
N

50
50
50

0.01

1.000
0.988
0.986

0.1

0.973
0.671
0.646

100
100
100

200
200
200

1.000
0.976
0.972

1.000
0.952
0.945

0.945
0.446
0.414

0.892
0.197
0.171

TABLE II. Values of C(a,N', Q/Eo) to illustrate the modification of
the level density formula at intermediate degeneracy.

(~)~~m+1

.e(n+1) 6cr'

7 (~s )s
+—(e—1)(e—2) (

10
(35)

d, (o,) 1—e- (a'/2 —n+a'/6 —1)(3/vr'). (40)

Q/Es= (ted+1)s /6n', (41)

The above relations together with the asymptotic
formula

TABLE l. Pertinent values of g„and d„ for Q/E0 ——0.01 and
0.1. The values of 10' (g„—1} and d„are listed in odd and even
rows, respectively.

which holds also for e=i, clearly exhibit the excep-
tional character of uniform spacing (@=1).They also

provide a simple degeneracy criterion for the validity
of the zeroth-order level density formula which reads: If

%0i~o
ng

1

0.01

0.000
1.000

—0.837
0.999

0.1

—1.005
0.999

—8.718
0.991

and

then

Q/Eo«1,

I ~[aQp(«))'(I —g) I
&&I

exp(x[sQp(es)) t)
R(N, Q) Ro(N, Q) =

(48)'Q

(42)

(43)

(44)

—7.298
0.993

—0.749
0.999 We have also made some numerical computations to

illustrate the strong dependence of the level density on

the form of p as Q/Ee increases from zero. Calculations
were done for n= 1, 2, and 3 using the exact expressions

(29) for pig's. The first and second derivatives could

readily be evaluated from the identities:

also contributes to the coefficient of 1/n'. Incidentally,
that fact suggests strongly that in the derivation of the
zeroth-order formulas for a general p, as given in refer-
ence 2 and more recently also by Bloch, ' the additional
assumptions such as "~ e—ee~ sufficiently small" are
not really separate assumptions, but that they are
already implied by the two-term Sommerfeld approxi-
mation. However, n= 2 (also ted= 1) clearly forms an
exception to the rule since the entire asymptotic series
consists of only two terms, namely I'2.

Applying (35), we obtain the following results:

4i=4s =sA1

y, '=ps" ——log(1+e ),

4t"=1/(1+e )

g„(n)~1+(g 1)(2n —9) (7rs/1—20ns),

d (n) 1—(e—1) (~r'/12n').
and

(3&)

We have listed some pertinent values of g and d„ in
Table I. The effect on the zeroth-order formula Re(N, Q)

(36) can be expressed by a factor C which is defined through

R(N, Q) =Ro(N, Q)C(n, N, Q/Eo). (46)

However, if e= 1 we must set

p ~n'/2+ x'/6 —e-~

and that leads to

gi(n) 1—e
—(3/n-'),

6 C. Bloch, Phys. Rev. 93, 1094 (1954}.

(38)

(39)

For high degeneracies, C will be close to unity, and it
may then be regarded as a correction factor. However,

(46) is valid for all values of Q/Es (for which the
saddle point method and the continuous approximation
are good approximations). The exceptional character of
uniform spacing is clearly exhibited in the numerical

results for C which are listed in Table II. It should also

be noted that C is less than unity in all cases. Thus, as
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the energy of the system increases, the rise in the level in which
density is less rapid than for a highly degenerate system.

3. TWO KINDS OF PARTICLES

f Xdx
4(~)=

1+.e—a+a
(60')

In this section we shall show that the case of uniform
spacing of the levels of an individual particle forms an
exc~I. tion also when the system consists of two kinds
of particles. Let there be E Fermi particles of the first
kind (neutrons) with levels pq, pp, and P particles
of the second kind (protons) with levels rtq, rtp, E
again denotes the total energy of the combined system.
The level density of the system is again given by the
appropriate Darwin-Fowler integral, ' and the saddle
point integration yields

ef(~,P, 7&

Q=E Eo, — (61)

it is readily shown by means of algebraic manipulations
which are similar to those employed in Sec. 2 that

2Q-'Lk (2g —np') +l (2$—yP') $
f(~,P,v) =

k(2& —P«)+t(2$ —P«)
(62)

and P(y) is the same function of y as p is of n A. s in
Sec. 2, ave have suppressed the subscript 1 which
properly belongs to p&, P&, and their derivatives. Using
the relation

(47) (2~)~(detA)~R(iV,P,E)=
(2pr) l (detA) '

QP/4(jPg, «(2~" y'P)+. kPy«(2~«P«)]k
(63)

with

Lk(4 —l4")+t(4 —l4")j'"f (~,P,v) = &N+PE—vP+2—' »g(1+e +")
+Q; log(1+e—&+«~'), (48)

Q k(2~ —~")+t(2&—O")

Ep kg«+lg«
and (64)' f- f-e

fe fee fez
fee f~v i

i.e. ,
The values of n, tp, p are determined by the equations
for the saddle point:

Q/Ep«1. (65)

It should be noted that the condition (65) does not
necessarily imply that both o. and p are large and posi-
tive. That can ea, sily be seen by considering the example
in which n is a, large positive and y is a large negative
number. Then (64) is dominated by n and is given by

(50)

iaaf/i7n

= itf/i7P = Bf/ply =0.

Let us first discuss the case of uniform spacing. As in
Sec. 2, we make the continuous approximation a,nd
write for the neutrons

(49)
Next we wish to discuss the case of high degeneracy,

p~(p) =k, (51) Q/Ep ——m'/6n', (66)

Q log(1+e ~+~")~k log(1+e ~+a*)dh, (52)

and for the protons
pp(q) =f, (53)

P log(1+e ~+e"~) / log(1+e ~+e*)dx (54).
0

Denoting the Fermi levels of the two distributions by
eo and go, one obtains

(55)

N/k P/L, (67)

then n y in view of (58) and (60). In that case P and
1t may be represented by the same number of terms in
their series expansions (27), (29), or (31). From that it
follows that Q/Ep«1 requires large positive values for
both o. and y. Using the two-term approximation P~,
Eq. (30), for both p and P, one obtains

which can be made as small as one pleases. Thus, the
situa, tion is in general more complicated than for one
kind of particle. However, if we make the assumption,
which is a reasonable one for nuclei, tha, t roughly (say
within 20%)

and

P= leap,

2Ep= kpp'+lrtp'

(56)

(57)

pr'(k+l)

Ep 6(kn'+ly')
(68)

and

PN =kp'(n),

t3'E=k&f+lg,

pP = lp'(7),

(58)

(59)

(60)

The equations which determine the saddle point become

(69)f(~,P,v)=fp= ~L's(k+t)Ql',

(27r):(detA) ' (2pr)'(detA p)
'

= 4[216Q'k'tP/(k+ 1)']1, (70)

As in Sec. 2, the n and y dependence drops out of (62)
and (63) in the two-term approximation. This leads to
the zeroth order result for the level density, namely,
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and
efo

R(X,P,Q) Rp ——

(2a) '*(detA p)1

TABLE III. Values of h„(Q/E0) to illustrate the eGect on the
denominator of the level density formula for intermediate de-
generacy.

The above is in agreement with formula (10) of van
Lier and Uhlenbeck. The three-term approximation
(38) leads to the result that fp is to be multiplied by
gi(n, V),

0.01

1.000
0.998
0.996

0.)

0.990
0.977
0.962

3
g, (a,y) =1— t ke +-le &],

—

pro(k+1)
(72) though somewhat more complicated than those of Sec.

2. It helps to obtain the result first on the basis of the
two-term Sommerfeld approximation (34); this leads
to the zeroth order approximation for the denominator,
namely

and the denominator of (71) is to be multiplied by
hi(n, p),

3 ( pr 7r l )
ke

)
n' 3n—+ —3+—

27ro(k+l) ( 3 3 k)
h, (n,y) =1— (2~) l (detA o) = 2L432Q'p(eo) $'

or' k~
+«-~) &P—3m+—3+——

I
.3l) (83)(27r) '(detA)'= (2or)i(detA p)'h(a),

in which

in agreement with Eq. (10) of reference 2. For any
value of a, the result is

73

Thus, as in the case of one kind of particle, the first-
order corrections for uniform spacing lead to the ex-
ponential function and g& will approach unity especially
fast with decreasing Q/Ep in comparison with other
distributions which we shall discuss next.

Let us consider, for example, a mixture having the
same number of neutrons and protons and let the level
density of each kind of particle follow the same power
law; thus,

g( )o"( )
h(a) =ord(n) = h(Q/Eo) (84)

.3((n+1)y—ny']

g(n) and d(n) are given by (22) and (24) of Sec. 2, and

p is, of course, the integral defined by (13). h(n) be-
comes unity in the two-term approximation for @. The
result for the three-term approximation is readily ob-
tained if we make use of (31), (36), and (37):

and
S=P,

pro (x)=pi (x)= k "x"—'.

(74)

(75)
h„(n) = 1— (n —1)(6n+13).

240n'
(85)

and the saddle point equations become

&= (kll3) "0'(n),

PE= n(kll3)" (0+0),
I'= (kll)V'(v)

(77)

(78)

(79)

In view of (74), (77), and (79) it is clear tha, t at the
saddle point, n=y Therefore. , f assumes the much
simpler form

Then f assumes the form

f(nPv) = —&(a+&)+ (k/0) "L4 (n)+0 (v) ], (76)

Equation (85) does not give a first-order correction if
n=1 (uniform spacing), and the situation is quite
similar to that encountered in Sec. 2. For n=1, the
three-term approximation yields

3e ( 2a'
hi(a) =1—

I
a' —3a+

3 )
We have also made some computations for as= 1, 2,

and 3 to illustrate numerically the effect on the zeroth
order results for the level density. As in Sec. 2, we can
define a factor C'(n, 2E,Q/Ep) such that

f= 27' n+ (k/P) "—2y. (8o)

By manipulations which are almost identical with those
of Sec. 2, it is readily shown that

f=~L(4/3)Qp(eo) j'g(a) (81)

Ro is given by
R(E,X,Q) =RoC'

-p& t (4/3)Qp(")3')

2$432Q'p (ep) )l
(87')

where ~0 is the Fermi level of the E neutrons and also
of the E protons.

For a given n in the power law (75), the degeneration
parameter is again determined solely by the ratio
Q/Eo, the relationship being exactly the same as (25).
The denominator of (47) may be evaluated in terms of
n by means of algebraic operations which are similar,

It can easily be shown that C' is related to the factor
C of Sec. 2 through

C = (d/h)C(n, 2X,Q/Ep). (88)

We have calculated some values of h„based on the
exact expressions (27) and (29) for p„and the relations
(15). They are listed in Table III. For Q/Ep &0.1, d/h
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is equal to unity within 2%, and therefore the results
for C' are essentially the same as those listed for C in
Table II.

For the more general case in which N/I', and in
which p~ and p~ follow different power laws neither of
which corresponds to uniform spacing, the results are
qualitatively the same as above, although the detailed
discussion is considerably more involved. It is clear,
however, that since the three-term asymptotic approxi-
mation for the integrals will be of the form (35) rather
than (38), the corrections to the zeroth order formulas
will be qualitatively like (81) and (84) rather than (72)
and (73).

4. APPLICATION TO NUCLEI

In this section we shall briefly discuss the implication
of the foregoing for nuclei. Our treatment of the de-
generacy question as given in the preceding two sec-
tions is entirely satisfactory for the class of Fermi
systems which have the two characteristics that (1)
the system consists of independent particles a.nd (2) the
level structure of each particle can be adequately
represented by a continuous function p(e). It is well

known, however, that actual nuclei can be described in
those terms only to a limited extent. ' One expects,
therefore, that our simple physical model will predict
some general trends but no fine details. In this respect
the situation is the same as for the excitation energies
corresponding to the almost completely degenerate
nuclear systems which were considered by Bethe and
also by van Lier and Uhlenbeck.

Let us indicate, for example, the application of our
results for the system which is characterized by rela-
tions (74) and (75). In addition to the total number of
particles A=2X, there are only two independent pa-
rameters which may be taken to be any two of k, n, eo,

p(t'0), ol Ep. These must be determined from experiment
and/or from further assumptions about the nuclear
model ~

The most abundant experimental data which give
information about the level density of nuclei are ob-
tained from low-energy neutron experiments which
correspond to excitation energies of about 6—10 3'Iev.
It is well known' that those data have been represented,
in a, rough way, by zeroth order formulas of type (87').
Thus, the low-energy data determine only one of the
parameters of our theory, namely p(eo). Two ways sug-
gest themselves for determining a second parameter
which is needed to make predictions for intermediate
degeneracies. One approach would be to analyze, in
terms of our formulas, such data as exist' for higher

~ H. Margenau, Phys. Rev. 59, 627 (1941).See also reference 6.
J. M. Blatt and V. F. Weisskopf, Theoretical nuclear Physics

(J. Wiley and Sons, Inc. , New York, 1952), pp. 371 ff. See also P.
Fong, Phys. Rev. 102, 434 (1956).

See, e.g. , J. M. B. Lang and K. J. LeCouteur, Proc. Phys.
Soc. (London) A61, 586 (1954).

excitation. The second method is to continue the dis-
cussion of the physical model itself. Thus, the individual-
particle levels e.; (see Sec. 3) must presumably be re-
garded as the eigenvalues of a suitable potential well
of depth U. If the binding energy of the last nucleon
(the one which occupies the Fermi level e,) is denoted
by e' ( 8 Mev) then it can easily be shown from the
definitions that

Ep [n/(n——+1)j(V—e')A,

and in any case

2p(eo) = n'A'/(n+1)E0.

Thus the low-energy data determine the quantity

(89)

(90)

0.3
R exp {0.5 (A Q) *'P1 —0.0026Q/A j). (92)

Q"4A'

The correction resulting from h(n) is negligibly small
in the region in which (92) is va, lid, and has been
omitted. The absolute value of (92) is probably in-
accurate; however, we may expect that the following
rough criterion will be valid: As 0.001QlA l approaches
unity, the high-degenera, cy formula (87') for the level
density is modified in accordance with the expressions
(81) and (84).
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2p(eo) = nA/(V —e'). (91)

If one combines that with a value of V—e', ' we shall
have the necessary information.

As a numerical illustration, we may choose p(eo) to
approximate very roughly the results given on page 372
of reference 8; then for medium heavy nuclei, p(eo)
=0.02A per Mev. If we take V—e'~40 )Iev corre-
sponding to a depth which was recently used by
Sokoloff and Hamermesh" in the analysis of neutron
scattering data, we obtain n 1.6 and E0~25A 3lev.
These values can be used in formulas (25), (81), and
(83) for any va, lue of Q. The first-order formula can
readily be obtained from (36) and (41):


