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tensors appear here only for operators neglected in the
six-particle calculations.
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Because of the large tensor force contribution’ to the nuclear
binding energy, which results in a situation of near degeneracy for
the low-lying states, the tensor force may produce a large mixing
of the low states even in the absence of tensor matrix elements
between them. The type of coupling among the low states result-
ing from this near degeneracy is investigated by perturbation
theory; the high-lying states, which are considered largely re-
sponsible for the effects of the tensor force, are eliminated by
applying closure. An intermediate-coupling model for the low
states emerges which is very similar to the customary one based

on a vector force in that the effective nuclear potential for the

low states is shown to consist of a central two-body force (with a

INTRODUCTION

HE success of the shell model! shows conclusively

that there exists an effective vector-type spin-
orbit term in the nuclear Hamiltonian. The notion of
intermediate coupling which follows from the existence
of a vector force has been especially successful in ex-
plaining the properties of light nuclei.??® It has been
suggested by a number of authors* that the apparent
vector force so basic to the shell model might be a
reflection of higher order effects of the tensor force.
Inglis? has expressed the hope that the intermediate-

* Supported in part by the joint program of the Office of Naval
Research and the U. S. Atomic Energy Commission.
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spin-dependence different from that of the elementary two-body
central force), plus a strong vector force, plus a tensor force which
is probably weaker than the elementary two-body tensor force.
The effective vector force is principally a three-body force, and
hence may be expected to show a quite different “hole”-particle
relationship than the one- or two-body vector forces usually
assumed in the shell model. Because of the neglect in the wave
function of the high-lying states which are mixed in directly by
the tensor force, the model is expected to be valid for light nuclei
only. The 8 decay of B2 is discussed briefly, and is shown to be
compatible with the tensor force as the sole spin-orbit force in the
elementary two-body interaction.

coupling model with a vector force but no tensor force
might well yield a good simulation of the tensor force
effects. In the present paper we investigate the relia-
bility of this simulation by studying the type and degree
of mixing of the low-lying nuclear states produced by
the tensor force. The main result is that the inter-
mediate-coupling model is actually a fairly faithful
portrait of the tensor force effects, at least for light
nuclei.

Recent calculations®® of the level structure of Li¢
and Li", using a mixture of central and tensor forces
alone, gave level positions in qualitative agreement with
both experiment and intermediate-coupling calculations
based on the vector shell model. The tensor calculations
were based on the use of a variational wave function of
the form yo+Mapo, where t=3;;t,; is the tensor force,
considered as a perturbation on the central-force wave
function ¢, A being the variational parameter.” Such a

5 A. M. Feingold, Phys. Rev. 101, 258 (1956).

§D. H. Lyons, Phys. Rev. 105, 936 (1957).

7 The calculations of references 5 and 6 were actually based on
a variational function of the form yo-+#¥,, where ¢ is ¢ with a
changed radial dependence. This modification was necessary in
the variational method in order to obtain a reasonable estimate
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wave function can be considered as roughly equivalent
to the first-order wave function given by perturbation
theory,

lfpo M/O

Yot2" Yo=Yt —, (1)
v4 Eo—‘Ep

with the variational calculation giving an estimate for
E, the “average” energy of the states admixed into yo
by the tensor force. The calculations yielded a value of
E of the order of 100-150 Mev, showing that the tensor
force mixes in many states of very high excitation,
states arising from core excitation in particular. The
second-order energy,

AE=3"" Lopts0 = (t2)00_,
» Ev—E, Ey—E

2

was found to be of the order of —12 Mev.? Because of
the large value of E, the percentage admixture of ex-
cited states was quite small, 5-159, in intensity,
indicating only a small departure from LS coupling.

It is clear that the deviation from LS coupling in
the first-order wave function (1) is quite different from
that given by intermediate coupling in the vector shell
model, since different states are admixed by the tensor
and vector forces in first order. In particular, the first-
order tensor wave function permits no mixing of doublet
states or of singlet with triplet states, both types of
mixing occurring with a vector force. Talmi and Wigner?
have used this as an argument for the existence of a
true vector force, since the small ft value of the B®2
B decay indicates a large admixture of the (110) super-
multiplet into the predominantly (000) supermultiplet
ground state wave function of C?, an admixture not
permitted by the first-order tensor wave function but
allowed by the vector force in first order.

However, because of the large contribution of the
tensor forces to the binding energy of nuclei, ~12 Mev
for Li® and Li’, which is large compared to the level
spacing of the low levels, one has a situation of near
degeneracy, and the tensor force can lead to a large
mixing of the low states even though there may be no
direct tensor matrix elements between them.® The
first-order wave function may thus be a poor approxi-
mation to the effects of the tensor force.

The effect of degeneracy can be seen most easily in
the following simple example.! Let ¢, and ¢ be two
low-lying states separated by an energy e in first order,

for E [see Eq. (2)]. Since in the present paper we shall use the
variational results only as a guide to the magnitude of the quan-
tities entering into our perturbation formulas, we shall disregard
the distinction between #' and &.

8 The energy formulas in references 5 and 6 are actually some-
what different in form from Eq. (2) because of the use of #' instead
of ¢ (see footnote 7).

9 I. Talmi and E. P. Wigner, Phys. Rev. 91, 443(A) (1953).

10 That the tensor force could lead to large mixing of low states
because of near degeneracy, was first pointed out by E. P. Wigner
in an unpublished manuscript with the author on 8 decay (1949).

1t This example is due to E. P. Wigner (see reference 10).
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with zero tensor matrix element between them, but
both states being connected to a high-lying state, ys3,
of energy E,, by the tensor matrix elements V; and
V2, respectively. The tensor-force contribution to the
energy, AE, and the amplitudes ci, ¢z, c3 of the wave
functions ¥, ¥, and 3 in the ground-state wave func-
tion, are determined by the secular equation,

—AE 0 Vi
0 e-AE V, |=0. 3)
Vi V. E~AE

The ratio co/ci=V.AE/Vi(AE—¢) will be of order
unity if ¥V, and V, are comparable to each other and
if —AE is comparable to or smaller than e; while the
amplitude ¢ will be small provided V, and V, are large
compared to AE, this latter condition being equivalent
to the condition ES>—AE [see Eq. (4) below ]. If the
state ¥ is considered as representing the average effect
of the many high-lying states connected to the low
states by the tensor force, then we have seen that E,
is of the order of 100 Mev, while AE, for Li¢ and Li’,
was of the order of —12 Mev. Thus both conditions are
well satisfied and we can expect that the tensor force
will in general produce a large mixing of low-lying
states with a much smaller admixture of the highly
excited states that are directly coupled to the low
states. The value of AE given by Eq. (3) is, assuming
V1 and V, to be small compared to E,,

AE~— V12/Eq'— ng/(l - E/AE)EQ, (4-)

the second term resulting from the near degeneracy of
¥ with 1.

The above shows that the low f¢ value for the B2
B decay may be quite compatible with the tensor force
as the sole spin-orbit force. The (110) and (000) super-
multiplets in C' are separated by ~15 Mev, which is
roughly equal to the expected tensor-force contribution
to the binding energy. Thus a 10-209, admixture of
states of the (110) supermultiplet in the ground state
of C¥, which would be sufficient to explain the B f¢
value, is not unreasonable.

DERIVATION OF VECTOR-COUPLING MODEL

To determine the type of coupling between the low
states when many highly excited states must be con-
sidered, we shall use perturbation theory and apply
closure,’? as has been indicated in Eq. (2). The main
effect of the tensor force is assumed to come from highly
excited states whose average energy, E, is much larger
than both AE and the energy spread of the low states.
By low states we mean those states whose energy
separations are small or comparable in magnitude to
AE, the tensor-force binding-energy contribution. The
energy, 8., of the perturbed state, ¥,, where » desig-

12 An elegant method for treating the near-degeneracy effect,
without making the simplifying but imprecise closure approxima-

tion used here, has been given by Feenberg [M. Bolsterli and
E. Feenberg, Phys. Rev. 101, 1349 (1956)].
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nates one of the low states, is given by®
Sam Bt Vb 2 2 5 VooloiVen
? ‘gn"‘Ep Pe (gn_Ep)(gn"'Eq)
, Vanququrn

par (8n—Ep)(é’,.—Eq) (gn_ET)

©®

...
L)

where E, is the energy of the unperturbed state, ¥,
with respect to the unperturbed Hamiltonian, H,. It
is customary to take Ho=K-+U, where K is the kinetic
energy operator and U is an effective harmonic oscillator
potential. The perturbation potential, V, in Eq. (5) is

then given by
V=Ve¢—U+i=V,+1, (6)

where V=<V s and t=3_:<itsj, Veij and 4 being
the elementary two-body central and tensor potentials,
respectively. We assume that the low states ¢, are
chosen to be diagonal among themselves with respect
to V.

For odd 4 and even-even nuclei the low states are
expected to be predominantly doublet and singlet spin
states, respectively, according to the supermultiplet
theory,'* and thus for these nuclei the low states will
have matrix elements only with high-lying states. The
degeneracy effect thus first shows up in the fourth-
order energy term in Eq. (5), where ¢ can be a low-
state label, giving a small energy denominator. For
odd-odd nuclei, the states of the lowest supermultiplet
will be either singlet or triplet spin states and thus there
will exist tensor matrix elements between several of the
low states of these nuclei.

To obtain the vector coupling model, the second-
order energy expression in Eq. (5) can be written as

Z,Vanpn=Z Van/—pn VnnI/—nn
» 87;"‘Ep ? gn_Enn 8n—Enn
Vanpn Vanzm
+3 =1
» gn_Ep é’n—'Enn

The last sum in (7) is then separated into >_,/=>_;
=+, where j indicates a sum over the low states alone,
and s the sum over the high states. Applying closure
to the first sum in (7) and defining E,, such that

V‘ILRVSTL i

VasVen
e
¢ gn_ Es gn_ Enn
the second-order energy becomes
(Vz) nn (Vnn)z Vm'VJ'n anan
- + '[ —t (9
En—Ean i | Ep—E; &n—Enn

13 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1001 ff.

1 E. P. Wigner, Phys. Rev. 51, 106 (1937); E. P. Wigner and
E. Feenberg, Repts. Progr. Phys. 8, 274 (1941).
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The second term in the sum in (9) is negligible com-
pared to the first term because of the large value of B
compared to E;; also (V.,)? is negligible compared to
(V®) un. With these approximations, the second-order
energy reduces to

JosVon  (Pan
> 8u—E, 8n—Fnn

gl Vin
H 5,.—Ej

(10)

where the sum on the right-hand side is over the low
states alone. The definition of E,, in terms of the sum
over high states alone, Eq. (8), has been done in order
to treat all the low states on an equal basis, since only
some of these, in the case of odd-odd nuclei as men-
tioned previously, will have matrix elements with other
low states.

An approximate formula for E,, can be obtained
from Eq. (8) by rewriting it as

VnsVsn(Es"E_nn)
s (é’,.—Es) B

b

and assuming that the energy spread of the states s
giving the major contribution to the numerator is small
compared to 8,— E,n. E.,, then becomes!®

«E-nn"':" (VHOV)nn/(Vz)nnu (11)

With similar approximations, the third-order energy
term in Eq. (5) becomes

, Vanquqn ey (Vz) nJ'VJ'n
Pq ((gn'—Ep)(gn—Eq) i (gn—“,E—nj)(gn—Ej)
Vai(V®)in VaiVikVin

!

7 (84— E)(8a—Es)  # (84— E)(6n—Es)

(12)

7 and & representing sums over the low states alone, and
where Ej;, is defined by

VjsVsk Vj.sV.sIc
{ =0, (13)

8—E. &—Ej -

J and & being any two low-state labels, the sum being
carried only over the high states s. With the same crude
approximation as used in obtaining Eq. (11), a rough
formula for E;;, is
Ej~ Ew~ (VHV )1/ (V). (14)
Proceeding in a similar fashion with the higher-order
energy terms, Eq. (5) finally becomes

18 The formula for E,, given by Eq. (11) is identical with that
given by the variational method of reference 5 for the special
case of #'=¢ (see footnote 7). As discussed in reference 5, Eq. (11)
can be expected to be a fair approximation to E,, only if the
potential is reasonably smooth. For the singular Yukawa potential,
E,n as given by Eq. (11) actually diverges.
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V) nn VasV pn
gn=En+Vnn+ ( )_ + 22
En—Enn » 8,—E,
I
O P o
2 (8,—Ep)(8,—E,) » (8,—E.p)(8.—E,)
VD) ap(V?) 3n
P X S

? (gn_Enp)(é’n_Ep)(gﬂ_EP")—[

where the summation is now understood to extend
over the low states alone. Replacing (8,—E;z) by
(80— Ej1), where &, is the average energy of the low
states—the spread in energy among the low states
being assumed to be negligible compared to (80— Ejx),
Eq. (15) can be written in the form

VnpVpn
é’n=En+Unn+Z, +-- ) (16)
b4 n
where _p
V=V+V?/(6—E), (17)

the matrix elements of U being understood to be given
by _
V= Vit (VHi/ (60— Ejn). (18)
The terms neglected in Eq. (16) are of the order
(AE)Y/ (80— Enn).
Similarly, the perturbed wave function,

Vol
\I,n:’\bn_{"zl T
» §,—E,

qu Vq"‘/’?

’ L.

¢ (‘gﬂ“Ep)(gn_Eq)T

) (19)

becomes, subject to the same approximations made in
the energy expression,

Upn
‘I,n=¢n+2, » ll/p

» E,—E,

+"'7 (20)

where again the summation extends over the Jow states
alone. The most significant term neglected in Eq. (20) is
> oV oln/ (82— E,), where the sum is now over the
high states. This term, which is just the first-order term
of Eq. (1), is of intensity ~AE/(8— E), and amounts
to 5-159%, in Li® and Li".%¢

Equations (16) and (20) will be recognized as just
the perturbation solution of the secular equation formed
from the low states alone, subject to the effective
perturbation potential U of Eq. (17).16 The second term
in the formula for O represents the additional potential
due to the interaction with the many high states. We
shall call this model, consisting of the low states alone,

16 This result could have been derived more rigorously by using
the Feenberg perturbation formula (see P. M. Morse and H.

Feshbach, reference 13, p. 1010 ff), which is related directly to the
expansion of the secular determinant.
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subject to the perturbation potential U, the “reduced
tensor coupling” model. It can be expected to give
reasonably good results provided AE/(8,— E) is small.

DISCUSSION

The type of coupling between the low states implied
by the model can be seen by an examination of the
form of V. The dependence of Ej on j and k affects
substantially the quantitative predictions of the model,
but not the main qualitative features. Therefore, for
simplicity, we shall at first ignore this dependence and
shall thus consider £ in Eq. (17) to be a constant rather
than an operator. The effect of the dependence of K
on j and % will be discussed at the end of this section.
We rewrite U as

V=Vott+ V4 Vi+tV+12)/(8—E), (21)

and then decompose U into parts which transform under
separate space or spin-space rotations as scalars, vectors,
tensors, etc.:

V=0V+0,+Vet - -, (22a)
where :
Vo=Vt V82/<80“‘E’)+ (tz)S/(gO_ E),
Vo= (8),/ (6~ E), (22b)

Ve=t+{Vi+tVi+ ).}/ (80— E),

where the subscripts s, v, ¢ refer to the scalar, vector,
and tensor parts, respectively, of the various operators.
The terms in O that transform as irreducible tensors of
the third or higher rank may be neglected since they
will not contribute to the matrix elements between the
states of the lowest supermultiplets.

The scalar part of U, U, affects only the diagonal
elements of the energy matrix if the zeroth order states
are chosen properly. The first term, V,, represents the
first-order effect of the two-body central forces in
removing the independent-particle degeneracy and its
effect is known for a variety of light nuclei.l” The
second term in U, represents the second-order effect of
the central forces and is known to contribute signifi-
cantly to the binding energy and relative positions of
the low levels.!® The third term in U, represents the
main effect of the tensor force on the diagonal matrix
elements. While U, will not separate the states be-
longing to a given LS multiplet, it will through its spin-
exchange nature separate singlet and triplet states.
The two-particle part of (#?);, which is expected to
dominate over the three- and four-particle parts of
(#*)s in light nuclei, is®

()s=2"i<if (r3)*(B+0: o) x.%,

17 E. Feenberg and E. P. Wigner, Phys. Rev. 51, 95 (1937);
E. Feenberg and M. Phillips, Phys. Rev. 51, 597 (1937).

18 D. R. Inglis, Phys. Rev. 51, 531 (1937); H. Margenau and
K. G. Carroll, Phys. Rev. 54, 705 (1938); K. G. Carroll, Phys.
Rev. 57, 791 (1940).

(23)
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where f(r;;) is the radial dependence of the tensor force,
viz.,

tij=f(ri){3(rij-0:) (ri-05) /1 — (03 0) }xsj,  (24)

xi; representing the exchange nature of #; ie., xij
=[g+(1—g)Pi;j], P;; being the Majorana space ex-
change operators. Thus (23) vanishes in the singlet
state of the two nucleons as does the tensor force.
Even if the original two-body central force is assumed
to be spin-independent, the spin dependence of (%),
will split singlet and triplet states,®® as it may be
considered to do in the deuteron, for example. The
effective scalar (central) potential may thus be quite
different in spin dependence from the elementary two-
body central potential.

The departure from LS coupling in this “reduced
tensor coupling” model is due principally to U,. The
effective vector force, U,, is, however, quite different
in form from the one- or two-particle vector forces
customarily used in the shell model. U, contains no
one- or two-particle terms, but consists solely of three-
and four-particle terms.® (This statement must be
modified when the state dependence of Ej; is considered
—see below.) The three-particle terms of U,, which are
expected to dominate for light nuclei, are of the form!%2°:

Vo (1,23)=(9/2)x12f (r12) f (713)
X[ (112 113) (r12X 113) /71927157 - { (02X @3)
+1i[401(02- 03) —02(01-03) —03(02-01) [} x13.  (25)

For a nonexchange tensor operator, the terms with ¢ as
a factor may be omitted since they drop out in the sum,
0,(1,23)4+70,(1,32) ; otherwise they must be retained.
For the highly symmetric states of the lowest super-
multiplets, the exchange and nonexchange forms can
be expected to yield essentially equivalent results.

The three-particle nature of U, implies that the
“hole”-particle relationship will be of a more com-
plicated nature than for a one-particle or a two-particle
vector force. In particular, the core wave-function must
be included in the analysis since, at least in Li® and
Li?, most of the effect comes from interaction with the
core. Of course, for the case of a few particles outside a
large closed core, integration over the core will result
in a large effective one-body vector force which will
dominate over the effective two-body force connecting
the outer particles with the core and the three-body
vector forces among the extra-core particles. In this
case there will be only a slight difference between the
results predicted by one-, two-, or three-body vector
forces. However, for the case of many particles outside
a small closed core, as occurs near the end of the p
shell, the predicted level structure and wave functions
may depend strongly upon the assumed nature of the
vector force.

The tensor term U, of Eq. (22), which can be ex-

1 S, M. Dancoff, Phys. Rev. 58, 326 (1940).
20 A. M. Feingold, Ph.D. thesis, Princeton, 1952 (unpublished).
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pected to play a significant role only in odd-odd nuclei,
is seen to consist of the original two-body tensor force,
¢, plus an additional tensor term. This second term will
tend to cancel . This can be seen by rearranging the
second term to read

{(Kt+tK)+ (Vet+tVe)— (Ent En)t+ 1))/
(50" E);

where we have eliminated the harmonic potential U,
and where # and m are the labels of the states involved
in the matrix element. If the wave functions, ¥,, were
solutions of the original central-force potential, then V,
would vanish and U, would reduce to ¢+ (12)/ (8— E).
In practice, however, the ¥’s are taken as solutions of
the harmonic potential, and then V, is by no means
negligible. Lyons® has shown that for the 3D states of
Li® the first term in (26), (Ki+tK)/ (80— E), is then by
far the dominant term, as might be expected from the
very large kinetic energy of the excited states, which is
comparable to E. Hence one may expect this term to be
comparable to ¢ itself, but with an opposite sign since
K is positive while (8,— E) is negative. Because of the
approximate cancellation of the tensor parts of two
terms of Eq. (17), which may be called the first- and
second-order potentials, respectively, it is necessary to
examine the importance of higher order terms which
have been neglected in obtaining Eq. (17). These terms
are roughly of the form V3/(8y—E)*+V*/(8—E)
+---. The main tensor term in the third-order poten-
tial is (K¥+KtK+tK?)/(&— E), which has the same
sign as ¢. The contribution of this term to the diagonal
matrix elements of the 3D states of Li® may be readily
computed for the Gaussian and Yukawa potentials of
references 5 and 6, and is (0.3-0.5) times the contribu-
tion of ¢ itself. The fourth-order tensor potential term
will tend to cancel this somewhat. Thus the convergence
of the tensor terms is slow and it is therefore difficult
to estimate the strength, or even to be sure of the sign,
of the total effective tensor potential as compared to
that of the nucleon-nucleon tensor potential; though
it seems plausible that the strength of the former would
be less (and perhaps much less) than the strength of the
latter potential.

The decomposition of U into scalar, vector, and
tensor parts as given in Eq. (22b) is not quite correct
because of the dependence of Ej;, on the states 7 and k.
The effect of this dependence can easily be discussed
if we assume the approximation of Eq. (14) for Ej.
The operator VH,V can be decomposed into scalar,
vector, and tensor parts, as we have done for the
operator V? in Eq. (22b). Let us denote by Sy, V1, Ty
the matrix elements between the states 7 and % of the
scalar, vector, and tensor parts, respectively, of the
operator V2 and by Sy, Vs, Ts the matrix elements of
the corresponding parts of VH,V.

For off-diagonal matrix elements between singlet
and triplet states, or between doublet states having

(26)
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different L values, only the vector parts of the operators
V2 and VH,V can give nonvanishing contributions. In
this case, Un» reduces to

Vam= Vl/(go_ V2/V1) (27)

For the diagonal matrix elements the scalar terms
will in general be much larger than the vector and
tensor terms,>® and thus we can expand the denomina-
tor of Eq. (18) as a power series, and, retaining only
the leading terms, we obtain

"'Onnz V,m—Slz/S— V](ZSl/S— 80512/52)‘*‘ I/ZSIZ/S2
—T1(251/5— 80S7/S")+T2S1/S%  (28)

where S=.5— &,51. The splitting of the members of a
given LS multiplet is thus due in “first” order to the
vector and tensor terms in Eq. (28), which in this
approximation are all seen to act independently. The
term containing V; is essentially identical with the
matrix element of U, defined in Eq. (22b), but is now
multiplied by an additional factor of 2. Of particular
interest now is the additional vector term V,S,%/S% The
vector part of the operator VHoV, which gives the
matrix element V,, has a 2-particle part®® (which pre-
sumably is more important than its 3- or more-particle
terms), arising from the term ¢Kf, and is of the form

92/ M)[f(r12)*/r12* ] (o1 02) - 112X (V21— V2)x12®.  (29)

This is of the same form as the 2-body vector spin-
orbit force commonly taken as the basis of the shell
model. However the 2-particle vector force of Eq.
(29) has, for any choice of x, a sign opposite to that
demanded by the shell model, i.e., by itself it would
predict that for a given multiplet the state of lowest j
should lie lowest, in contradiction with experiment.
Fortunately, according to the calculations of references
5 and 6, the term in Eq. (28) containing V is, for a
reasonable choice of potential and nuclear radius, con-
siderably larger than the term containing V3, and in
addition has the proper sign demanded by the shell
model. Thus if the tensor force is mainly responsible

2t T, Hughes and K. T. LeCouteur, Proc. Phys. Soc. (London)
A63, 1219 (1950); J. P. Elliott and A. M. Lane, Phys. Rev. 96,
1160 (1954).
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for the vector shell model, the effective vector force
must be principally of the 3-body type of Eq. (25).
As mentioned earlier, integration over a large core will
result in a strong effective one-body vector force, with
consequent jj coupling.

CONCLUDING REMARKS

The “reduced tensor coupling” model as derived in
this paper is valid only if the contribution to the first-
order wave function of the high-lying states is small.
This will be true only if AE, the tensor force contribu-
tion to the binding energy, is small compared to
(8—E). AE almost certainly increases steadily with
4, so that if AE/(8—E) also increases with 4, as
seems likely, then a point will be reached in the periodic
table beyond which the model is invalid. Even before
this occurs we can expect large supermultiplet and con-
figurational mixing when AE becomes large compared
to supermultiplet and configuration spacings. It seems
unlikely, therefore, that the model could be useful
much beyond, say, 4=>50.

The neglect of the high-lying states in the wave
function implies that the model cannot give accurate
magnetic or quadrupole moments. Thus, for example, the
deuteron quadrupole moment, which comes from high-
lying D states, would be ignored by the model, and also
the deviation of the magnetic moment of the deuteron
from the sum of the intrinsic nucleon moments.

Recently, Jancovici and Talmi?? Visscher and Fer-
rell,? and Elliott* have explained the 3 decay of C1
on the basis of a mixture of vector and tensor forces.
In the “reduced tensor coupling” model, the 2- and
3-particle vector forces of Egs. (28) and (29) should be
used, together with a presumably weakened tensor
force. Calculations on the C* 3 decay using the “reduced
tensor coupling” model are in progress.
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