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The behavior of these diamonds is typical of carrier-
injection electroluminescence.® It is probable that elec-
trons are injected into the conduction band at the point
contact, the injection efficiency varying with position
and frequency. These electrons then combine with holes
in the valence band. The recombination must involve
energy levels near the middle of the forbidden gap

5 G. Destriau and H. F. Ivey, Proc. Inst. Radio Engrs. 43, 1911
(1955).
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because the wavelengths corresponding to direct transi-
tions would be shorter than 2500 A. The emission from
interior points in one diamond probably indicated the
presence of internal potential barriers.

It seems possible that the electroluminescence de-
scribed is another characteristic of Type IIb diamonds
in addition to the semiconducting properties, the
phosphorescence, and the extra infrared absorption
peaks.?
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The phase shifts and elastic scattering cross sections of atomic nitrogen and oxygen for low-energy elec-
trons have been calculated with central field potentials. Most emphasis has been placed on the Hartree-Fock
potentials. In the low-energy range, the WBK]J approximation gives an indefinitely increasing cross section,
whereas the integration of the differential equation yields finite cross sections in the limit of zero energy,
for both nitrogen and oxygen. The Hartree potential does not allow for the existence of a bound state (nega-
tive ion) in either case. The Thomas-Fermi potential, although not reliable for low atomic numbers, does
allow for the existence of a bound state (of approximately zero energy) in the case of oxygen.

I. INTRODUCTION

N understanding of the various processes occurring

in the upper atmosphere involves the scattering

of low-energy electrons by atomic nitrogen and atomic
oxygen. Experiments are difficult in the low-energy
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F16. 1. Previously reported cross section for low-energy
electrons and atomic oxygen.

range because of the recombination of the atoms to
form molecules. Two calculations of the low-energy
elastic scattering cross section of atomic oxygen re-
ported in the literature differ markedly.! They are
shown in Fig. 1. The cross section given by Mitra, Ray,
and Ghosh seems to increase without limit as the elec-
tron energy goes to zero (cross sections are given up to
1000 atomic units) whereas the largest value given by
Yamanouchi for the limiting case of zero (incident
electron) energy is only about 85 atomic units. One of
the purposes of this article is to give some insight regard-
ing the cause of this discrepancy.

It is well known that the method of Faxen and Holtz-
mark can give satisfactory results for elastic scattering
from central field potentials. However, one does not
know just how to modify the unperturbed afomic poten-
tials in order to take into account exchange and polar-
ization effects resulting from incoming electrons. More
experimental information is needed to provide a basis
for the selection of one out of several alternate methods
of accounting for these perturbations. Maintaining a
central field approximation has obvious advantages.
Holtzmark? was able to obtain agreement between
theory and experiment for argon and krypton by using
a Hartree field modified by another simple central field
to account for exchange and polarization effects. Ex-
periments with rare gas atoms can be carried out more

! Mitra, Ray, and Ghosh, Nature 145, 1017 (1940); T. Yama-
nouchi, Progr. Theoret. Phys 5Japa,n 2, 23 (1947).
2 J. Holtzmark, Z. Physik 55, 437 (1929) ; 66, 49 (1930).
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easily than with nitrogen and oxygen atoms because
the rare gas atoms do not combine to form molecules.

The calculations reported in this article were made
first with the unmodified Hartree-Fock fields. The sen-
sitivity of the zero-energy cross sections to the form of
the potential was demonstrated by the use of the
Thomas-Fermi potential. Even though this potential is
not reliable for atoms of low atomic number (Z), a
significant phenomenon results from its use. These
calculations were made by the Computer Systems
Division (Ramo-Wooldridge) with the ERA Model
1103 Univac Scientific Digital Computer. Apart from
these results, an additional program is under way to give
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more insight into the quantitative effect of various
parts of the potential on scattering in general.

Some of the mathematical aspects will be discussed
in detail so that the reader will be able to evaluate the
range of validity and extent of applicability of the
results. Mitra, Ray, and Ghosh do not indicate how
their calculations were made. Yamanouchi integrated
(numerically) the scattering differential equation.

II. MATHEMATICAL FORMULATION

Transport properties of electrons involve the momen-
tum transfer (also called diffusion) cross section?:

27!' 2T ®
QM=;Z2—f |2 (20+1)e? sindiPi(cosh) | 2(1— cosh) sinbdd
0 =0

dr ©
=Qo—Q'=—[X (214-1) sin%;—3_ (2142) cos(6141—8;) sindyzyy sind;]. (1)
k2 =0 =0

One may write Qo=2_1-¢®o; where
a1= 44r(2l+ 1) sin261/k2.

The phase shifts, §;, are obtained from the solution of
the differential equation which governs the radial part
of the Schrodinger wave function,

Py, 2m 1(+1)
L { (- VO

¥:=0. (2)
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The principal potential used in these calculations may
be written as

V(x)=—f—[z— f g2 (f)dt
o ’ - dt
- n P'n.12 t -
xj; Zq 1 () t]

(x=r/aq). 3)

In Eq. (3), the ¢’s refer to the number of electrons
having a given wave function and the P’s are the Py,

=—Z(x)é/apx.
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F1G. 2. Hartree electron densities.

Py, and P,, Hartree-Fock one-electron wave functions
for the 1s, 25, and 2p electrons in nitrogen* and oxygen®
atoms. The electron densities are shown in Fig. 2. The
functions corresponding only to the ground states, 4S
and ®P, respectively, are considered at this time.

Approximate phase shifts can be obtained by the
WBK] solutions of Eq. (2). The phase shifts are given,
in this approximation, by?®

6’=f: [(kaoy_z’”"(:“)“oz (Hj)z J%dx
_j: [(kao)z_a—:f)zrdx. 4)

This approximation is assumed valid for the cases in
which the potential does not change much over one
wavelength of the incoming electron.

More exact phase shifts are obtained by the numerical
integration of Eq. (2). An abbreviated version of the
manner in which the Computer System Division car-
ried through the numerical integrations in order to
obtain the phase shifts follows.

Equation (2) may be written more compactly as

(141
y"+[(x+AV<x>>— ( )]y=o, )

%2

3H. S. W. Massey and E. H. S. Burhop, Elecironic and Ionic
Impact Phenomena (Oxford University Press, New York, 1952),
p. 15. Dr. H. Einbinder suggested the final form of Eq. (1).

4D. R. Hartree and W. H. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948).

5 Hartree, Hartree, and Swirles, Trans. Roy. Soc. A238, 229
1939).
( 6 E.g., P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York, 1953),
Part II, pp. 1101-1103.
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TABLE I. WKB]J phase shifts and cross sections (in units of a¢?)
for electron-nitrogen scattering.

LAWRENCE BAYLOR ROBINSON

TasLE II. WKB] phase shifts and cross sections (in units of a¢?)
for electron-oxygen scattering.

a1 Qo a1 [)
kao 3 &1 (ao?) (ao?) kao I 81 (ao?) (ao?)
0.25 0 5.01 185 185 0.25 0 5.14 167 167
0 4.73 50.2 0 4.89 58.6
0.50 1 0.025 . 50.2 0.50 1 0.014 S 48.6
0 4.46 21.0 0 4.64 22.3
0.75 1 148 66.5 87.5 0.75 1 145 66.0 88.3
0 4.23 9.75 0 442 11.6
1.00 1 1.67 37.2 1.00 1 1.72 36.8
2 0.036 0.078 47.0 2 0.022 e 48.4
0 3.?4 2.34 0 4.05 3.48
1 1.72 16.4 1 1.82 15.8
1.50 2 0.188 0.974 1.50 2 0.130 0.47
3 0.033 (K 19.7 3 0.021 . 19.8
where A= (kao)? and A =2mad®/H2. A solution [y(0)=0] and the following form is taken for the solution:
is obtained within the region where V(x)20. This
solution is connected with the asymptotic solution s ar G
which is obtained beginning with the point where y=exp[i(\ia) ] 1+;+';+ ) (12)

V(x)=0. A comparison of this solution with the one
obtained for V(x)=0 everywhere, provides the phase
shifts from which the cross sections are calculated.

The potential has the following approximate form,
near the origin:

V(%)= (bo/) +bit-bas. ©)
Equation (5) then becomes
229"+ [N+ A (box+b1x®+box®) —1(14-1) Jy=0.  (7)
A form of solution by the method of Frobenius,
y=x%Y Cx" Co=1 8)
n=0

when substituted in (8) yields the following indicial
equation:

ala—1)Co—1(1+1)Co=0, a=I+1, a=—1. (9)
Since y(0)=0, only a=1I4-1 is acceptable. The recursion

formula for the coefficients is

—[A4beCrt N+Ab1)CratAb:Crs]
Cn= . (10)
(a+n)[a+ (n—1)]—1(+1)

Both the function y and the derivative y’ were deter-
mined at x=0.1 and then a modified Runge-Kutte
technique was used to continue the solution out to the
point where the potential vanishes.

If the point at which the potential vanishes is called
Z, then for x> %, Eq. (5) becomes

y"+[)\-l—(l;—1)]y=0, (11)

When this is substituted in Eq. (11), the recursion

formula
ana[n(n—1)—10+1)]
2miNt

Qn

) (13)

is obtained. The general solution of the equation is

y1=D1 Re(y)+D: Im(y), (14)

where

Re(y) =cos[()\%x):|[1ir

1+1)@—r—1)

1
2

(7
—I—sin[()\*x)][— ( +1)+ . '],

(15)

0+ @—P=D) | ]

Im(y)=sin[( )\%x)][1+ "

RGONS J

—l—cos[(}\%x)][ P

The coefficients Dy and D, in Eq. (14) will determine the
phase shifts in the fashion shown immediately below.
If one writes the numerical solutions up to the point &
as ¥i(x), then at &
Yi(Z)=D1 Re[y(@)]+D: Im[y(z)],
Y/ (%)=D1 Re'[y(@) ]+D: Im'Ty(2)].
These two equations in two unknowns provide D; and
D,. The asymptotic solution (i.e., for large %) is
yi1=D; cos(A\¥x)-+ D sin[ (\¥x) ]
= (Dr’+D7)} sin[ (\)+4],

(16)

an
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where
tan¢ = DI/DQ,
0= ¢+%7l’z.

The phase shifts were determined by both Egs. (4)
and (18).

The limiting cross section for zero electron energy is
obtained as given below.” As the energy approaches
zero, only the /=0 phase shift is different from zero.
From Eq. (1),

(18)

Q= (47/k?) sin%,. (19)
Equation (5) becomes
y'+AV (x)y=0. (20)

Outside Z, the solution starts out like a straight line
y=Cx+8, (21)

where C is the slope and 8 is the intercept on the y axis.

8<0,
820,
8>0,

C>0, x%>0:
C20, 0>x0>—o:
C<0, x:>0:

III. RESULTS

The phase shifts and cross sections as calculated in
the WBJK approximation are given in Tables I and II,

Tasie III. Differential equation phase shifts and cross sections
for electron-nitrogen scattering.

ot Qo oM
kao 4 &1 (wao?) (ao?) (ao?)
00032 0 6.27 46.1 145 145
00710 0 6.04 44.6 140 140
0100 0 5.95 43.1 136 136
0141 0 5.81 404 127 127
0 5.64 35.8
0200 1 0.0151 0.1 113 113
0 5.41 200
0.284 1 0.044 0.3 92.0 92,0
0 5.05 17.8
0.448 1 0.197 2.3 63.1 63.1
0 4.62 7.9
0710 0.878 142 69.5 371
0 428 3.3
1.00 1 1.51 12.0 48.0 26.3
0 3.92 1.0
141 1 1.68 5.9
2 6.46 0.3 2.7 16.8
0 3.39 e
1 1.61 24
224 2 6.73 08
3 6.41 o 9.9 9.6

7E.g., Fermi, Orear, Rosenfeld, and Schluter, Nuclear Physics
(University of Chicago Press, Chicago, 1950), revised edition,
p- 119; J. Schwinger, Nuclear Physics (Reproduced at Boston
University, Boston, 1955), Part II, pp. 54-56.
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The asymptotic form, Eq. (17), can be approximated by
Eq. (21) if one writes y~B(Ax3do). Hence &y, the
v intercept, is given by do=—Aixo. When this is sub-
stituted in Eq. (19) with the approximation that
sin®dp~d¢?, then

: 0’0=47er2, (22)

where xo=—4/C [from Eq. (21)]. The Thomas-Fermi
potential was also used in Eq. (22).

The signs of the slope, x intercept and y intercept
give information regarding the possibility of the exist-
ence of a bound state (i.e., negative ion) with about
zero binding energy. The extrapolated wave function
must have a negative slope and must cross the x axis
at some positive xo for such a state to exist. On the
other hand, a positive slope and positive x intercept
mean that such a bound state cannot exist. The other
possibilities imply that a bound state can “almost”
exist. The situation is summarized in the following
equation.

no bound state can exist;
a bound state “almost” exists (especially if C~0);
a bound state can exist with about zero binding energy.

(23)

respectively, for nitrogen and oxygen. For lower energies
(kap=0.13) multiple zeros appear, and even though
procedures for selecting the proper zero have been dis-
cussed, interpretations are not unambiguous.® The cross

TasLe IV. Differential equation phase shifts and cross sections
for electron-oxygen scattering.

al Qo [(0)74
kao i &1 (7rae?) (ao?) (ao?)
00032 0 6.27 27.0 84.8 84.8
00710 0 6.10 26.5 83.3 83.3
0100 0 6.02 26.0 81.6 81.6
0.141 0 5.92 25.0 78.5 78.5
0 578 23.3
0.200 1 0.0124 o 73.3 73.3
0 5.59 204
0.284 1 0.0364 0.2 64.7 64.7
0 5.26 14.6
0443 1 0.164 1.6 50.8 50.8
0 475 7.8
0710 0.813 127 64.0 41.0
0 450 3.8
1.00 1 1.57 12.0 49.6 25.4
0 414 14
141 1 179 5.7
2 6.41 0.2 23.0 159
0 361 0.2
1 1.72 23
224 2 6.37 0.6
3 6.30 . 9.7 7.7

8N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1949), second edi-
tion, pp. 127-128.
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Fic. 3. Elastic scattering cross sections for electrons and
atomic oxygen and atomic nitrogen.

sections seem to increase indefinitely. The shape of the
curve reported by Mitra, Ray, and Ghosh for atomic
oxygen is reproduced in the WBK] approximation.
Evidently this is the manner in which they calculated
the oxygen cross section. In the present calculation,
only the unmodified Hartree potential was used.
Tables IIT and IV show the phase shifts and cross
sections which were obtained from the integration of
the differential equations with the Hartree potential.
These cross sections go to a finite number in the limit
" of zero energy. The limit for oxygen is the same as that
given by Yamanouchi, and the calculation reproduces
his curve. The S-phase shifts approach the number 27
as the electron energy goes to zero. In the energy range
less than about 0.5 ev, the scattering and momentum

-
A

THEORETICAL ——7 /

/
~ 1/

3

o0

EFFECTIVE CROSS SECTION (cm2)i0-'6
®

AN
~
~——— \
2 EXPERIMENTAL
o] 1000 2000 3000 4000 5000 6000 7000

TEMPERATURE (DEGREES KELVIN)

F16. 4. Experimental and theoretical cross sections for
scattering of electrons with air.
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transfer cross sections are identical. For higher energies,
it can be a poor approximation to assume that the cross
sections are identical because of the strong angular
dependence.

Figure 3 shows the information contained in Tables
III and IV in graphical form. Beyond 9 ev the cross
sections are practically indistinguishable and only one
line has been drawn to represent both oxygen and
nitrogen. These electrons have sufficient energy to
penetrate to such a depth that scattering occurs essen-
tially by the 1s? electrons. As can be seen from Fig. 2,
the density distributions are not too different. The
outer electronic distribution extends farther for nitrogen
and is somewhat larger than for oxygen. The low-
energy electrons are scattered essentially by these
electrons; evidently this accounts for a larger nitrogen
cross section than for oxygen.

Table V gives the parameters (Eqs. 21 and 22) for
the limiting case of zero energy. A reference to Eq. (23)
will show that the Hartree potential does not allow for
a bound state of either nitrogen or oxygen.

Evidence from mass spectrograph studies® shows the
existence of a stable negative ion of oxygen (O~) and
the nonexistence of N—. Bates!® studied the following
two configurations for O~ 152252245 and 15?25?2p*3s and
concluded that the 2p*3s should be about 2 ev higher
than the 2p° Since the electron affinity of oxygen is
about 1.5-2 ev, the excited state (3s) of O~ should be
able to exist with about zero binding energy. The
scattering potential which the electron sees should
reflect this. Since the Hartree potential does not allow
for the bound state, the Thomas-Fermi potential was
examined. The results (Table V) show that this poten-
tial is able almost to induce a bound state in the nitrogen
atom and is able to bind an electron with about zero
energy in the oxygen atom. This potential also gives a
larger cross section for oxygen then for nitrogen.
Evidently a more reasonable scattering potential lies
somewhere between the Hartree and Thomas-Fermi
potentials. Accurate experimental information is needed
to decide how to modify the potentials with the proper
polarization correction.

TABLE V. Parameters for cross section at zero energy
[Egs. (21) and (22)].

x0 Q
Atom C 8 (ao) (ao?)
Hartree-Fock field
Nitrogen 0.0604 —0.205 3.40 145
Oxygen 0.0710 —0.185 2.60 84.9
Thomas-Fermi field

Nitrogen 0.0165 0.824 —23.2 6700
Oxygen —0.00533 0.987 80.9 82 000

9 R. H. Sloane and H. M. Love, Nature 159, 302 (1947).

10 D, R. Bates, Proc. Roy. Irish Acad. A51, 151 (1947).
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The cross sections given in Fig. 3 were used in con-
junction with cross sections calculated for the molecular
species (by Fisk!) as a basis for some comparison with
experiment. Maecker!? examined some experiments on
free-burning arcs and, assuming equilibrium prevailing
at atmospheric pressure, obtained the ‘effective”
(wirkungs) cross section of air for electron collisions as
a function of temperature. Figure 4 shows this mean
(gemilttelte) curve compared with results obtained as ex-
plained immediately above. The shape of the Maecker’s
curve is partially reproduced. One of his curves fits
this calculation better, but there was no basis for select-
ing anything other than his mean curve. Beyond 6000°K,
the calculated cross section does not decrease as the
experimental curve indicates. The cross sections for the
atomic species cannot be compared with the experiment
in this case in the very low-energy range. This is be-
cause of the small amounts of dissociation at low tem-
peratures. Perhaps the theoretical wave should be
averaged over some velocity distribution of neutral
particles.

The composition of air was obtained from a Lock-
heed Aircraft Corporation report.® Table VI gives the
values taken from Fisk’s graphs; Table VII gives the
composition of air as a function of temperature at

TasLE VI. Fisk’s cross sections for (molecular)
nitrogen and oxygen.

VYV Cross section (ao?)

kas T(1000°K)  (electron volts)? Nitrogen Oxygen
0.098 1.0 0.36 16 12
0.14 2.0 0.51 16 12
0.17 3.0 0.62 18 11
0.20 4.0 0.72 20 12
0.22 5.0 0.80 21 12
0.24 6.0 0.87 23 13
0.26 7.0 0.95 24 13

1 7, B. Fisk, Phys. Rev. 49, 167 (1936).

12 . Maecker, Z. Physik 128, 289 (1950).

13T, W. Bond and J. N. Dyer, Lockheed Aircraft Corporation
Report No. MSD 1487, December 30, 1955 (unpublished).
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TasLE VII. Composition of air as a function of temperature at
atmospheric pressure, and the contribution of each species to the
cross section.

T (1000°K) 1 2 3 4 5 6
N/po) —0.562 —0.865 —1.039 —1.170 —1.260 —1.340
Oon-
stituent
Mole fractions of various constituents
N, 0.780 0.777 0.743  0.663 0.621 0.509
0, 0.209 0.205 0.162 0.0417 0.00338 ---
N e e s 0.00150 0.0279  0.163
(6] o <.+ 0.0427 0.249 0.318 0.308
Cross section Qo (in units of ae?)
N, 13 12 13 13 13 12
03 2 2 2 0.5 0.04 e
N ... .. ... .. 3 18
(0] e < 3 18 21 19
Total Qo (as?) 15 14 18 32 47 49
Total Qo 4.2 3.9 5.0 9.0 13 14
(10716 cm?)

atmospheric pressure, as well as the contribution of
each species to the cross section.

Evidently the cause of the discrepancy in the work
of Yamanouchi and that of Mitra ef al. has been found.
Yamanouchi’s calculations for atomic oxygen are in
good agreement with those reported here.

The next part of this study will involve the effects of
polarization potentials on the cross section. In addition,
for oxygen, a potential will be used in which the electron
density is determined from Slater wave functions which
give a more realistic value of the electron affinity than
that given by the Hartree-Fock functions.

The writer has profited from stimulating discussions
with Dr. S. Altshuler, Dr. H. Einbinder, and Dr. H. E.
Wohlwill during the preparation of this article. Ap-
preciation is expressed to the Ramo-Wooldridge Com-
puter Systems Division ; personal contact has been made
with Dr. David Young, Jr., Mr. Werner Frank, Mr.
Horace Flatt, Mr. T. L. Emrick, and especially Mr.
Frank Meek.



