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Magnetoconductivity in p-Type Geisrranium
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Measurements of the Hall coefhcient and resistivity of p-type germanium have been made as a function
of magnetic 6eld, temperature, and carrier concentration between 77'K and 300'K. An attempt is made to
interpret the data quantitatively using a two-carrier model but no completely satisfactory quantitative
interpretation is possible.

l. INTRODUCTION a rather extensive set of experiments seemed necessary.
A set of samples with carrier concentrations ranging
from 10" to 4&(10' was prepared.

Two kinds of experiments were done on this series of
samples. One kind involved determining the dependence
of the Hall constant and mobility on temperature in the
temperature interval 77'K to 300'K. In these experi-
ments we wanted to get the limiting value of Hall
constant and mobility in vanishing magnetic field.

The second kind of experiment involved determining
the dependence of Hall constant and resistivity on
magnetic field at 6xed temperature. In these experi-
ments we wanted to get the shape of the strong Geld
magnetoconductivity functions, so we needed to have
high mobility values and to work at a well-defined,
temperature. Accordingly, these experiments were
carried out in a liquid nitrogen bath over a magnetic
field range of 0—25 000 gauss.

Generally speaking, the choice of the experiments was
governed by the reasoning that from the two series we
could separate that part of the temperature dependence
of mobility which originates in the direct temperature
dependence of the scattering process from that part
which comes about because the average energy of the
carriers changes with temperature. However, to make
that separation in a satisfactory way we would need
to be able to get a quantitative understanding of the
shapes of the conductivity functions as function of both
temperature and magnetic field.

Thus in addition to the experiments reported in the
first part of this paper, we needed to make a careful
theoretical analysis. In particular we needed to be able
to make a fairly accurate treatment of the magneto-
conductivity for the warped energy surfaces which
occur in p-Ge. Our analysis and its results make up the
second part of the paper.

~

M YCLOTRON resonan. ce measurements at the~ temperature of liquid helium show that the
valence band structure of germanium is complex,
consisting of two valence bands having carriers of
effective mass approximately 0.3 mo and 0.04 mo,
respectively. ' ' Galvanomagnetic measurements made
at higher temperatures confirm the general picture of a
double valance band in a semiquantitive way. ' How-
ever, because of various complications having to do
with the detailed nature of the two valence bands, no
very quantitive analysis of the magnetoconductivity
has been made.

The studies described below were undertaken in the
hope of achieving a more quantitative treatment of
the galvanomagnetic properties. It was our objective
to find a model of p-Ge that would permit a consistent
understanding of the following characteristics:

(a) Temperature dependence of lattice mobility
Experimentally the mobility follows roughly a T "
law. '

(b) Temperature dependence of the Hag constant in
relatively pure materials. This tempera—ture dependence
was apparently different for samples of different re-
sistivity, ' even though the samples appeared suSciently
pure that impurity scattering ought to be negligible.

(c) Dependence of the Hall constant and magneto
resistance on magnetic field s' The fi.eld—dependence at
room temperature had been 6tted' semiquantitatively
with a simple two-carrier model. However, this two-
carrier model required that the ratio of the number of
light holes to the number of heavy holes be quite
difrerent than would be expected from low-temperature
cyclotron resonance measurements, and the model was
based on a treatment of scattering which was apparently
not consistent with the observed temperature depend-
ence of mobility.

In order to tr to clarif the ex erimental situation
2. SAMPLE PREPARATION

p
Single-crystal germanium was pulled in the [001j

Present address: Materials Engineering Department, West- direction from a meI. t of zone-refined material. Indium
inghouse Electric Corporation, Pittsburgh 8, Pennsylvania.

phys Rev 92 827 (1953). C was added to the melt to make the crystals P-type. The
Kittel, Physics 20, 829 (1954). amount of compensation in these crystals is unknown

but is believed to be small One sing]e crystal(1954); Lax, Zeiger, and Dexter, Physics 20, 818 (1954).
~Willardson, Harman, and Beer, Phys. Rev. 96, 1512 (1954). by a double-pull technique with no added impurities.
4 M. B. Prince, Phys. Rev. 92, 681 (1953). Samples cut from a slice of this ingot proved to be' C. Goldberg and R. E. Davis, Phys. Rev. 98, 1192 (1955).
'Adams, Davis, and Goldberg, Phys. Rev. 99, 625 (1955). P-tyPe with a carrier concentration of aPProximately
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TABLE I. Carrier concentrations determined from the saturation values of the Hal] conj cjent at 77 I are given in
value of the Hall coefficient. Limni~ Ra = 1/pe= 1/(pal+ps)e. Table I.

Sample Carrier concentration {cm 3) 3. MEASUREMENTS
A
8
C
D
E
F
G

8.1X10"
9.8X 10'~
1.6X10"
2.4X10"
4.4X10"
1.5X10'4
3.4X 10'4

8)& 10"cm '. The compensation in this ingot is unknown
but is probably higher than in the less pure ingots.

The samples were cut so that the magnetic field
would be in a t 001] direction during Hall measure-
ments. The current direction in these samples were
chosen to be either [100jor L110j.The sample surfaces
were lapped with 600-mesh alundum to avoid some of
the e8ects which may exist at temperatures where an
appreciable number of minority carriers are present.
Leads were attached by using indium solder.

Most of the samples were cut with the usual rec-
tangular geometry. Some samples were cut in a bridge
shape' from the high-purity ingot. There was no sig-
nificant difference in any of the measured quantities
between measurements on rectangular samples and
measurements on bridge-shaped samples.

Although it may be incorrect to do so because of the
lack of information about compensation, the terms
"carrier concentration" and "impurity concentration"
will be used interchangeably in this paper. The carrier
concentrations as determined from the saturation

A. Temperature Dependence of Lattice Mobility
and Ha11 Coefficient
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The measured mobilities of two of the samples as a
function of temperature are shown in Fig. 1. These
values were obtained from measurements of resistivity
by assuming that the mobility at 300'K is 1820 cm'/
volt sec. (This is the value found by Prince' for the
drift mobility at this temperature. ) These data are
well represented by a T "power law at the higher
temperature. At the lower temperatures the mobility
is affected by impurity scattering. As the sample purity
increases, the 1 " region is extended to lower
temperatures.

The zero-6eld Hall coeKcients of two of our samples
are given as a function of temperature in Fig. 2
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FIG. 2. Temperature dependence of the zero-6eld Hall coefFicient
for samples D and G. For ease of comparison the data are divided
by the zero-field Hall coeKcient at 77'K.
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Fxo. 1. Temperature dependence of mobility for samples D an

7 R. Landauer and J. Swanson, Phys. Rev. 91, 555 (1953).
P P. P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).

(Rp ——limII pRii). In order to compare the temperature
dependence of the two curves, Rp(T)/Rp(77) is plotted.
In each case the value of Rp(T)/Rp(77) at the higher
temperatures decreases because of the presence of
intrinsic electrons. The horizontal portion of the curve
for sample G at low temperature, which is perhaps a
minimum, is apparently due to impurity scattering
since it gradually disappears as the sample purity
increases. For sample D, Fig. 2 gives only a very slight
indication that such a region is being approached.

Figure 2 shows that the Hall constant has a marked
temperature dependence. No such temperature de-
pendence is to be expected on the ordinary lattice
scattering theory. Because of the temperature depend-
ence of Rp, the zero-field Hall mobility (fJyt=Rpop)'
varies more nearly as T "than as T ".

A derived quantity of theoretical interest is the
mobility ratio (filr/fi). The most accurate way to deter-
mine this quantity is to evaluate the ratio Rp/R„,
where 8„ is the strong field saturation value of the
Hall coeKcient. This ratio is equal to the mobility
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ratio yrr/p since R„=1/pe, where p is the carrier
concentration, and Re=(birr/p)(1/pe). The field de-
pendence of the Hall coefficient discussed later in this
section indicates that at 77'K saturation has been
reached at a field of 3700 gauss so that err/ii at a tem-
perature T should be equal to Re(T)/Rarw(77). The
temperature dependence of this quantity is shown in
Fig. 3. The shapes of the curves in Fig. 3 are, of course,
the same as in Fig. 2.

B. Field Dependence of Resistivity and
Hall Coefficient at 77'K
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The field dependences of the Hall coefficient and of
the resistivity at 77'K are shown in Fig. 4 for two
samples that diGer in carrier concentration by a factor
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FIG. 3. Temperature dependence of the mobility ratio err/p, for
samples D and G. This ratio has been determined by dividing the
zero-field value of the Hall coefBcient by the strong-field saturation
value.

of approximately 440. In both cases the magnetic field
was in the L001j direction.

It can be seen that at low magnetic helds the Hall
coefficient for the pure sample varies more strongly
with magnetic field, but reaches the strong-field satu-
ration'value at a lower value of field than does that of
the less pure sample. The held dependence of the
resistivity is larger for the pure sample. In contra-
diction to all theories based upon scattering mechan-
isms independent of magnetic field, there is no indication
of a strong-field saturation value for the resistivity, the
resistivity being approximately linear with fieM. above
7000 gauss.

The curves for the other samples shown in Table I
have been measured also. The data for these samples
are consistent with the idea that the difference in shape
of the curves is an eGect of increased impurity
concentration.

FIG. 4. Magnetic field dependence of the Hall coeKcient and
transverse magnetoresistance of samples A and G at 77'K.

C. Magnetic Field Dependence of the Hall
CoeRcient as a Function of Temperature

Figure 5 shows the magnetic field dependence of the
Hall coefficient at several temperatures in the interval
between 77'K and room temperature. At 77'K the
Hall coefhcient is strongly held-dependent at low fields
but quickly reaches a saturation value. As the tern-
perature increases, the low-held values of the Hall
coeS.cient appear to increase while the held dependence
at low fields decreases. The data are consistent with the
idea that the saturation value of the Hall constant
should at each temperature be the same as it is at
77'K: Interpretation of the field dependence of the
Hall coefFicient will be deferred to a later section.
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FIG. 5. Magnetic field dependence of the Hall
coefficient for sample P.

9 Peterson, Swanson, and Tucker, Bull. Am. Phys. Soc. Ser. II,
1, 117 (1956l.

Peterson, Swanson, and Tucker' have reported a
minimum in the curve of the Hall coefficient as a func-
tion of magnetic field. In their experiment the Hall
constant at minimum was about 0.94 times the satu-
ration value. Our data do not show any such minimum
in excess of the experimental uncertainty. However,
it should be pointed out that the samples for which
minima have been found' were cut with a different
crystallographic orientation than those used here.
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FIG. 6. Magnetic Geld dependence of the magnetoresistance for
sample A at 77'K. The subscripts and superscripts indicate the
crystallographic directions of the electric current and magnetic
6eld, respectively.

4. THEORETICAL

Lattice scattering in p-Ge can take place as a result
of the interaction of the holes with either the acoustical
modes of lattice vibration or the optical modes. For
the states of interest to us, the modes must be of very
long wavelength in either case.

'P F. Seitz, Phys. Rev. 79, 372 (1930).

D. Anisotroyy of Magoetoresistance at 77'K

For sufficiently small values of magnetic 6eld, the
electric current takes the form"

i=opE+nE)&H+pEH'+yH(E H)+SEE. (3.1)

Here M is a diagonal tensor with elements H~', H~',
H3' in the 11, 22, and 33 positions, respectively.

The anisotropy of magnetoresistance can be expressed
by giving the values of the two quantities a = (2P+b)/2P
and b= (2P+2y+b)/2P. For an isotropic material these
quantities have the values 1 and 0 respectively.

Figure 6 shows the observed field dependence of
resistivity at 77'K for a current in the t 110]direction
and three directions of the magnetic field, ~is. , the
L001], L110], and L110] directions. The anisotropy is
substantial. Extrapolating these curves to zero field,
we obtain the following values for the anisotropy
parameters: a=0.90 and b=0.17.

The dependence of resistance on 6eld is shown in
Fig. 7 for the case where both the current and magnetic
field are in the L100] direction. The eBect of the field
is much smaller than that shown in Fig. 6. In Fig. 7,
as in Fig. 6, there is no indication that the resistivity
is saturating at high fields.
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Fro. 7. Magnetic 6eld dependence of longitudinal magneto-
resistance of sample 8 at 77'K. The electric current and the
magnetic Geld are in the L100) direction.

"H. Ehrenreich, Bull. Am. Phys. Soc. Ser. II, I, 48 (1936).

The observed temperature dependence of mobility
is T "in the temperature interval 77'K to 300'K.
Acoustical scattering alone would lead to a temperature
dependence T ".Therefore, it seems likely that optical-
mode scattering plays an important, perhaps even a
dominant, role in the lattice scattering. "

If it is assumed that only optical mode scattering is
important, we can estimate the effective Debye tem-
perature for the optical mode from the temperature
dependence of the mobility. We have made such an
analysis and found a value of about 300'K for the
optical frequency. This method of estimate gives a
lower bound on the optical frequency, of course, since
any acoustical scattering present will tend to lower the
mean power law towards a value of —1.5.

While 300'K is somewhat lower than is expected for
the optical frequency in germanium, it is not so low as
to be ruled out. It is more probable, however, that the
scattering receives appreciable contributions from both
optical and acoustical branches, and that the Debye
temperature is somewhat higher.

On the above assumptions about the relaxation
process, we are led to expect that the relaxation time
at 77'K will depend only weakly on energy. The exact
energy dependence of the relaxation time will depend
on the ratio between acoustical and optical mode
scattering rates. It should be intermediate between
the e ' expected on the former and the (h&vn+e)

'*

expected on the latter mechanism of scattering.
The above reasoning indicates that no great error

will be made by assuming v at 77'K to be proportional
to e '. In the first place, neither energy dependence is
very strong. In the second place, the relative importance
of the acoustical mode scattering should be very great
at 77'K since the optical mode scattering is proportional
to a factor e '~sr as compared with a factor T/0 for the
acoustical mode scattering. Accordingly, for analyzing
the magnetic field dependence of magnetoconductivity
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at 77'K, we have assumed that ~ is exactly proportional
toe ~.

Clearly the two kinds of holes could have different
temperature and energy dependence of relaxation time.
We can justify the assumption that the two relaxation
times have the same energy dependence at 77'K,
however.

We remark that there are two kinds of scattering
process for each kind of hole, one that we call "intra-
band" scattering, in which there is a simple scattering
to another energy state on the same energy surface,
the other which we call "conversion scattering" in
which a fast hole converts to a slow one or vice versa.
The energy dependence for the relaxation time asso-
ciated with each of these processes is the reciprocal of
the energy dependence of the density of final states,
the matrix elements being approximately energy
independent.

Since at 77'K we expect acoustical mode scattering
to predominate, the density of final states is propor-
tional to e', even for a combination process of an
arbitrary sort. Thus we expect each 7- at 77'K to be
proportional to e:.

Actually, from the observed value of the mobility
ratio of the two kinds of hole, we can get an idea as to
which of the four processes are important. From simple

theory the ratio of scattering times for ietrabaed
scattering is proportional to the inverse 5/2 power of
the masses. Thus

(ri /ri, ) (tnt/mi) =150. (4.1)

On the other hand, from detailed balancing, the extrc-

bartd (conversion) scattering times are in the ratios of
the concentrations, so

( i'/ ")-Pi/P~= 1/20 (4.2)

The experimental mobility ratio is (pi/pg) = (tati/mi),
hence 7~= r~.

From the approximate equality of the relaxation
times, it seems most likely that the two important
processes are conversion scattering of light holes and
intraband scattering of heavy holes. Such an outcome
will result provided only that the matrix elements for
all four processes are of the same order of magnitude,
since the density of states in the heavy hole band is
about twenty times as great as the density in the light
hole band.

The density of states is the origin of the energy
dependence of each relaxation time ~,. If the same

density of states, viz. , the density of heavy holes state,
is involved for both v-~ and ~~, then it might be expected
that rg and v~ should have the same dependences on

energy, and perhaps on temperature. In particular it
might be thought that the mobility ratio should be
temperature-independent. However, this need not be the
case. Although at any temperature the energy depend-

ence of ~~ should be almost the same as that of r~, it is

i= K. (5.1)

If the magnetic 6eld is in the [001j direction, the
isotropy of the energy surfaces results in the following
symmetry relations among the elements of S:

~11 +22) ~12 52] ) 523—513—0. (5 2)

The relations (5.2) together imply that the components
of the conductivity tensor are invariant against an
arbitrary rotation of the coordinate system about the
magnetic field (3 axis).

The conductivity of the material is the sum of the
individual conductivities of the two kinds of holes.
Thus it is necessary in the analysis to attempt to
decompose the observed conductivity into its two parts
before any simple interpretation can be made. Further-
more, the usual experiments do not determine the
conductivity directly, but instead determine certain
derived quantities, uzi. , the longitudinal resistivity p~,
the transverse resistivity p~, and the Hall constant E~
and the experimental conductivities must be deduced
from the measured values of these.

In virtue of the third of Eqs. (5.2), the longitudinal
resistivity is the reciprocal of the conductivity com-
ponent 533. The other two independent elements of 5
are determined from somewhat more complicated
relations. We have

S»=pa/(pa'+H'&sP),

Si2 HE~/(pg+H'Eri')——

S33= 1/pr, .

(5.3a)

(5.3b)

(5.3c)

possible with a different ratio of matrix elements for
optical and acoustical mode scattering to have a con-
siderable variation of the ratio (pi,/pi) with temperature
in the temperature interval of changeover from
acoustical- to optical-mode scattering. Such a variation
probably accounts in part for the temperature de-
pendence of the zero-field Hall coeScient.

We have not discussed the detailed nature of the
scattering process and could not do so quantitatively
without an elaborate theory of the scattering mechan-
ism. We shall assume in our subsequent analysis that
7. is a function of energy only, although this assumption
may well be invalid.

S. SIMPLE TWO-CARRIER MODEL

In this section, the magnetoconductivity data for
sample 2 will be analyzed on the basis of a simple
two-carrier model. Our calculation assumes that each
of the two energy surfaces is spherical, and that the
relaxation time is proportional to the inverse square
root of the energy (acoustical lattice scattering). As
the parameters of fit we can take the light hole mobility
p&, the heavy hole mobility p&, and the ratio r of the
number of light holes to the number of heavy holes.

The conductivity tensor S(H) is defined by the
relation between the current i and the electric field E:
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On the simple two-carrier model, we can at once
write down a theoretical expression for the magneto-
conductivity. We write

Sii(H) =pseps(Ks+Krrs), (5.4a)

Sis(H)//H= (3m/8) pseud~'(Ls+LIrs'), (5.4b)

Sss= preps(1+rs); (5.4c)

the subscripts h and / refer to the light and heavy holes,
respectively; K;=K(9apPH'/16) and L,=I.(9m', sHs/

16) are the field-dependent functions defined by

0 l 2
H (kilogauss)

FIG. 8. Magnetic Geld dependence of 5» for samples A and G
at 77'K. The dashed line represents a curve calculated by the
method outlined in Sec. 6. (8b) gives the weak-6eld data of (8a)
on an expanded scale.

Willardson, Harrnan, and Beer,' r is the ratio (pI/ps)
of the hole concentrations, and s is the ratio (pI/ps) of
the mobilities at zero magnetic 6eld. Each of the
functions E and L is unity at H=0 and is a monotoni-
cally decreasing function of p,'EP.

In our problem s&1, so E~ and L~ decrease more
rapidly than Ey, and LI, as the field increases. If s))i
the light hole can make important contributions to the
low-field values of Sii and S i/sH, even though the
concentration ratio r is only a few percent. The frac-
tional contribution of the light hole to Si2/H will, of
course, be s times greater than the contribution to S~~
at zero magnetic field.

Figures 8 and 9 show the field dependence of Sii/pe
and Sis/peH for samples A and G at 77'K calculated
from Hall and resistivity data by means of Eqs. (5.3).
The quantity 1/pe=1/(pI„+pI)e was calculated from
strong-field measurements of the Hall coeKcient.

The curves for sample A are easily understood
qualitatively on the basis of the simple two-carrier
model with a very few light holes of very high mobility. '
At low fields there is a large contribution to Sis/Hpe
from light hole conduction because of the large value of
rs' due to the high mobility of the light hole. However,
L decreases rapidly with increasing 6eld, again because
of the high light-hole mobility, and the fractional
contribution of the light hole to Sis/Hpe becomes small
at about 1000 gauss.

The fractional contribution of the light hole to S»/pe
is always fairly small, of the order of 20%. Further,
the light hole contribution to S~~ decreases with in™
creasing field just as rapidly as its contribution to
Sis/H.

The functions Sii and Sis/H as function of H for
samples A and 6 have different shape, so have to be
fitted by somewhat different parameters of the two-
carrier models. Qualitatively the difference indicates
that the increased impurity concentration of sample G,
the sample with the larger number of carriers, has
caused a large decrease in the light-hole mobility and
a smaller decrease in the heavy-hole mobility. The Geld
dependence of Sit/pe and Sis/pHe has been measured
for all seven of the samples listed in Table I. The
results indicate that, in each case, as the impurity
concentration is increased both Iis and s= tui/ps decrease.

For a purely qualitative purpose, then, the simple
two-carrier model permits us to understand the gross
trends of the Hall coe%cient and resistivity curves in
Fig. 4. The value of RII/Rs7IIII is higher for the purer
sample because the mobility ratio is higher for this
sample and the resistivity and Hall coefficient have a
stronger 6eld dependence at low 6elds because of the
higher mobilities of the two holes. The temperature
dependence of Re/R37pQ may also result to a large extent
from the changing importance of impurity scattering
of fast holes. The nonsaturation of resistivity at high
magnetic 6elds is, however, not explained by the simple
model.
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Ke shall now attempt to make a more quantitative
treatment of the data. From the values of Sir(0)/pe
and (S»/Hpe)II ——limIi p(Sit(H)/Hpej, we can deter-
mine two of the three parameters r, s, and pI, . Since we
are interested in lattice scattering primarily, we do this
for sample A, the purest sample.

The values of s and p, for sample A for several different
assumed values of the concentration ratio r are shown
in Table II.The concentration ratio of 0.02 is that found
by Willardson et a/. ' from Hall coeKcient and resistivity
measurements at 205'K and room temperature. The
concentration ratio 0.042 is that found from the
parameters of the energy surfaces determined by
cyclotron resonance experiments" at 4.2'K. It is to be
noted that, assuming the number ratio 0.02 as found

by Willardson et al. , we find a mobility ratio s or 4.1
which is appreciably smaller than that found by
Willardson, Harman, and Beer (7.5 at 205'K and 8.0
at room temperature).

A calculation of the field dependence of Sit/pe and
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Fxo. 9. Magnetic Geld dependence of S~./IJ for samples A and
6 at 77'K. The dashed line represents a curve calculated by the
method outlined in Sec. 6. (9b) gives the weak-fIeld data of (9a)
on an expanded scale.

js B.Lax and J. G. Mavroides, Phys. Rev. 100, 1650 (1955).

TAsr.E II. Mobilities of the two holes determined from the
zero-Geld values of S11/pe and S12/Hpe for sample A, with the
concentration ratio as a variable parameter.

pf (cm2/volt sec)

0.01
0.02
0.042
0.06

5.1
4.1
3.5
2.9

4.3X104
4.2X 104
4.1X104
4.0X 104

S»/&pe using Eqs. (5.4) and the parameters in Table
II gives curves which have too weak a field dependence
at low fields. The dashed lines in Figs. 8 and 9 show the
curves calculated using r=0.02. It is to be noted that
the field dependence of the calculated curves is much
weaker than that of the observed curves. The situation
is about the same if the curves are calculated from the
mobility parameters obtained using other values of r.

From the above it is clear that the simple two-carrier
model is inadequate to give a quantitative 6t of the 6eld
dependence data obtained at 77 K. The difhculty seems
to be that the light-hole mobility obtained from the
zero-held data is always too low. To account for the
observed field dependence of Sis/HPe at low fields, the
light-hole mobility would need to be about twice as
great.

The calculated values of Sir/pe at very strong fields
are always considerably lower than the measured values.
The difference is related to the nonsaturation of the
resistivity at strong fields. The simple Boltzmann
model could not possibly account for nonsaturation,
so we must regard the nonsaturation as a separate
phenomenon. Thus the failure of our theory to yield a
good fit at very high fields is probably not due to over-
simplifications in the treatmerit of, for example, the
shape of the energy surfaces.

In summary, the simple two-carrier model permits a
qualitative understanding of the dependence of S&~ and
S» upon magnetic Geld and impurity concentration.
When used to get a quantitative treatment of the 77'K
data it does not permit a consistent description of any
two of the following: zero-6eld resistivity and Hall
constant, strong-6eld (0&@8&1) magnetoconduc-
tivity, very-strong-field magnetoconductivity (1&iiH).

6. WARPED ENERGY SURFACES

The preceding discussion was conducted on the basis
of a spherical energy surface model for each of the two
kinds of holes. Such a model is incapable of giving any
anisotropy of magnetoresistance such as is observed.
Actually, we know that the energy surfaces are not
perfect spheres but are warped. For the heavy holes
these warped surfaces are really quite diferent from
spheres.

In the following paragraphs we will examine the way
in which the results obtained on our simple two-carrier
model must be modified to take account of the warping
of the energy surfaces. For this discussion we will use
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A = 13, 8=8.7, C= 11.4. (6.2)

The plus sign in (6.1) is to be associated with the holes

of small effective mass and the minus sign with the
heavier holes.

Mavroides and Lax" have calculated the coefficients
occurring in Eq. (3.3) for the case of the energy surfaces
represented by (6.1) where the relaxation times are
functions of the energy only. We have combined the
results of their calculations and the energy surface
parameters given by (6.2) with our zero-field experi-
mental values of Sir/Pe and S»/Hpe. In this way we

6nd the set of values r=0.042, s=4.34, and pJ, =3.92
X104 crn'/volt sec, for sample A at 77'K on the
assumption that both v.

~ and 7.~ are proportional to the
inverse square root of the energy. This gives a light-hole

mobility higher than that found in Sec. 5 where spherical

energy surfaces were assumed. This light-hole mobility
is still too low, however, to account for the rapid
decrease of S»/Hpe with increasing field.

If the heavy-hole energy surface were more aniso-

tropic than is indicated by (6.2), then the mobility
ratio calculated from the experimental zero-field values
of Sir/pe and S»/HPe would be higher. It is hard to
judge how probable is a large change in A, 8, C between
4.2'K and 77'K. Further, the calculations of Mavroides
and Lax do not indicate the nature of the field depend-
ence of S»/Hpe. Thus in any case the strong-field data
cannot be used in conjunction with their calculations to
indicate uniquely what the correct parameters are for
Eq. (6.1) without the use of additional theory. A

tentative theory of the field dependence of S~~ and

S»/H for warped surfaces will be discussed below.
The calculations of Mavroides and Lax" can also

be used to determine the ratios a= (2P+5)/2P and
b= (2P+2y+8)/P if assumptions are made concerning
the exact energy dependence of ri(e) and rs(e). Without
making these assumptions about the form of 7i(e) and

ra(e) it can be shown that for the parameters given by
(6.2), b=1.03 (1—a). As indicated in Sec. 3, a=0.90
so that the calculated value of b is 0.10, considerably
smaller than the experimental value of 0.17. This

» J. G. Mavroides and B.Lax (private communication).

the energy surface parameters obtained from cyclotron
resonance measurements at 4.2'K, although it is pos-
sible that diGerent parameters would be appropriate
at 77'K..

The energy surfaces for holes in germanium can be
expressed as a function of the wave vector k by the
equation'

e= (i''/2tms) {Ak'+ [8'k'yc'(k 'k '

+k„'k,'+k.sk, ')i&), (6.1)

where the k coordinate system is coincident with the
cubic axes, mo is the mass of a free electron, and the
values of the constants obtained from cyclotron reso-
nance measurements" are

finding may be interpreted as indicating that the
energy surfaces are more anisotropic at 77'K than at
4.2'K.

In summary, the zero-field anisotropy calculated
from the energy surfaces obtained from cyclotron
resonance on simple assumptions about the scattering
does not agree well with our observed values. This
disagreement is substantial. However, we are reluctant
to draw any far-reaching conclusions from this fact,
since (a) our extrapolated zero-field values have a
considerable experimental uncertainty, and (b) the
theoretical value, which is based on a simplified treat-
ment of scattering, could be changed a good deal if it
turned out that the scattering mechanism were appro-
priately pathological.

V. TRANSVERSE MAGNETOCONDUCTIVITY
IN STRONG FIELDS

We shall now discuss more fully the field dependence
of 5i~ and Si2 for the heavy holes. McClure" has given
a straightforward method of getting the 6eld depend-
ence of magnetoconductivity in the case of an arbitrary
energy surface. This method is general, with the
important exception that the relaxation time must be
taken to be a function of energy alone.

We could use McClure's method for the analysis of
the p-Ge data, but it would be very tedious to do so for
the actual warped surfaces. Instead, we have studied a
simpler model of the energy surface and have made a
treatment which is, as a consequence, only semi-
quantitative.

We have used a model according to which the light-
hole surface is taken to be sphere and the heavy-hole
surface a cube. This model actually gives a pretty fair
representation of the actual warped surface, as has
been remarked by Kittel. " The special advantage of
the model is that it permits an exact calculation of the
field dependence of the magnetoconductivity for all
values of the field"

In McClure's formula the magnetoconductivity
functions Si~ and Si2 are expressed in terms of the
Fourier components of the velocity. The Fourier series
represents the magnetoconductivity as an expansion in
harmonics of the periodic time of the carrier on the
hodograph which the carrier momentum executes under
the action of the magnetic forces.

The hodograph of the motion of a particle in a
magnetic field is the curve of intersection in momentum
space of a plane of constant P, (the momentum along
the magnetic field) with an energy surface. For a
spherical energy surface the hodograph is a circle and
the particle moves around this circle uniformly with
the cyclotron frequency. Any transverse velocity com-
ponent is exactly sinusoidal, so has only a single Fourier
coefficient diferent from zero. For a carrier with a

'4 J. W. McClure, Phys. Rev. 101, 1642 (1956).
i~ G. Kittel (private communication)."J.A. Swanson (private communication).
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spherical energy surface, the magnetoconductivity has
the familiar forms

s-=(p"/-)( /(1+*)), (7.1)

S = (Pe'/m)(x~/(1+x')) (7.2)

dP/dr= evH/c.

From (7.3) we obtain for the angular frequency the
relation

(7.3)

CO = 27I /T =1l 8H/405 io pC. (7.4)

Assuming that the relaxation time is a function of
energy alone, McClure has shown that the magneto-
conductivity functions for this case take the form

Here the angular brackets denote a Boltzmann average
over the energy and x the quantity co7., where or is the
angular frequency of the motion along the hodograph.

We now want to discuss the forms which replace
(7.1) and (7.2) when the energy surface is cubical
instead of spherical. In our problem, the magnetic field
was in a (100j direction, so the hodograph is a square.
Further, in the exactly cubical approximation all
hodographs associated with a given energy surface are
exactly alike.

The velocity of the particle on the square hodograph
is always perpendicular to the hodograph. It is of
constant magnitude v at all points along the hodograph
but its direction changes as the momentum point passes
each corner of the square.

For a hodograph of edge 2I' the magnitude of ~, the
velocity on the hodograph, is E/szypo with mioo the
effective mass on the L100$ axis in P-space. The x
component of velocity as a function of time along the
hodograph is shown in Fig. 10. The rate of precession
along the hodograph is obtained from the equation

t'64pep (epp ~ 1

L 3 ') Lkt) & N'(1+N'x'))-
(7.8)

(64pe) /ep p xs=I I I IZ(—)M (7.9)
0 3m' ) EAT] ia'=0 X(1+Ã'x')

IJ,„=ere/4m. (7.10)

Here p„ is dehned so that in all cases co~=p„H=x.
For illustrative purposes we will now work out the

conductivity for the case ~ independent of energy.
Then the Boltzmann average over energy can be per-
formed at once and we find

For the particular motion shown in Fig. j.0, the
Fourier analysis yields

w~, ——2v sin(1Vn. /4)/IVY. (cV= 2M+ 1). (7.7)

The formula (7.7) for these Fourier coefficients permit
us to calculate the strong-6eld magnetoconductivity
functions on our model, provided we know the energy
dependence of v.

The formula (7.7) gives the Fourier coefficients for
those hodographs which pass all around the sides of the
cube. However, —', of the carriers are in states which are
in the end surfaces of the cube. For these states the
velocity is along the magnetic field, so there is no mag-
netic force and no precession around the hodograph
for such states. Since these states also carry no current
transverse to the magnetic field, they contribute
nothing to the conductivity components S11 and S12.
Accordingly, we must omit them when we use the
Fourier components (7.7) in Eqs. (7.5) and (7.6),
which we do by multiplying p by a factor 3.

We find for the heavy-hole conductivity the following

S11= 2 e'7. &T v~ ' 1 S'x' '

M=O
(7.5) (32p8p&gi ~ 1

s»=
I

sa ) ia=oÃ2(1+N'x')
(7.11)

S12 2 e'v- kT v~ ' —~Ãx 1 S'x' 7 6
M=O

in which 7V is 2M+1 and v~ is the amplitude of the
Eth harmonic. The formulas (7.5) and (7.6) have been
specialized to the case of fourfold symmetry of the
hodograph.

(32pep p ~ x
si2=I I Z (—) (7.12)

m' ) ~=o 1V(1+xV'x')

From the zero-field value of S11 we get

@=4'„/s.. (7.13)

Thus the conduction mobility is about 30 jz larger than
the mobility as determined from the field dependence
of S11. Similarly the Hall constant at zero field is

Ep=1/2pec (7.14)

0

FIG. TO. x-component of velocity as a function of time along
the square hodograph. T is the period of cyclotron resonance.
Pore added in proof—The horizontal axis of Fig. 10 should be
labeled v, =0 instead of v, = —v.

so the ratio of Hall mobility to drift mobility is p~/p
12'
A value of p~/ii for the warped surfaces in p-Ge can

be obtained from the formulas of Mavroides and Lax, 12

and is given by ii~/p =0.77. Thus we see that the cubical
energy surface model does not permit a quantitative
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have studied several models in attempting to find out
how the Fourier coefficients will behave in a more
realistic case. While we shall not discuss the work in
detail, we wish to indicate the direction in which the
Fourier coeKcientsfor the warped surface case must differ
from those found when the cubical model is used. Prima-
rily the difference is that for more rounded hodographs
fewer harmonics are important and all of the higher
harmonics are weaker. Our rough calculations suggest
that for a value (pH/p) 0.77 it may well require only
third and 6fth harmonics to represent the velocity
variation rather well.

Ke have made a semiempirical theory of magneto-
conductivity using only third and fifth harmonics.
The strengths of these are determined by requiring that
the zero-field values of the two functions Srr and S /rsH

be the same as those given by the formulas of Mavroides
and I,ax. The functions obtained in this way are given
by

Stt= pep„L1.02/(1+x')+0.06/(1+9x')
+0.02/(1+ 25x')],

Fxo. 11. Dependence of t'SII and cSI2/x upon x=cov. =p„H for
the case of cubical energy surfaces and an energy independent
relaxation time where c=s'/(32Pep„). For spherical energy
surfaces these quantities both vary as 1/(1+x). This latter
quantity is shown for comparison.

S»——Pep„xL1.02/(1+x') —0.18/(1+ 9x')

+0.10/(1+25x')].

(7.16)

treatment of magnetoconductivity by carriers on the
warped surface. The failure of the model undoubtedly
has to do with the fact that the high harmonics of the
velocity are much stronger than they would be if the
velocity fell to zero more smoothly near the corners of
the hodograph.

Even though the conductivities (7.11) and (7.12)
cannot be used to make a quantitative treatment of
the conductivity at high magnetic 6eld, they serve to
indicate what qualitative effect the warping of the
energy surface has on the transverse magnetoconduc-
tivity. In Fig. 11 we show as a function of p„EI=co7.=x
a comparison of the cubical surface functions S~~ and
$~2 and the spherical surface functions as given by
(7.1) and (7.2) for an energy-independent relaxation
time. It is to be noted that for the case of the cubical
surface S~~ is higher at low 6elds and S~2 lower than
would be the case if the surface were spherical.

From the plots of Srt and Sts/~r as functions of ~r,
it can be seen that the quantity p,„de6ned above could
be obtained rather well by 6tting the magnetocon-
ductivity data in the field interval for which ore&1.
In this interval the two functions Stt and Srs/&o should
be nearly equal, so we can get p„ from the experimental
quantity

ir,„=S»/HS„(H~ ~ ). (7.15)

Since this method works in the cubical case, it should
be valid for the actual warped surface in Ge which is
less warped than a cube.

For the actual warped surfaces the strength of the
harmonics of the velocity is less than for a cube. We

We have tried using the functions (7.16) as a basis
for an empirical 6t of our data on the field dependence
of the conductivity functions. In order to make such a
6t, we found the values of fast- and slow-hole mobilities
such that our zero-field conductivity and extrapolated
zero-field Hall constant were correctly given; we used
for the ratio of the concentrations the value 0.042 as
found by Mavroides and Lax. These empirical mobility
values were than used to compute a "theoretical" 6eld
dependence of the conductivity functions.

The "theoretical" field dependence function as ob-
tained in this way agreed very poorly with the measured
conductivity functions. Indeed the observed functions
are much more like what we would compute for a
cubical energy surface model and a relaxation time 7.

varying approximately as e '. It seems that a fairly
good fit of the data could be made by means of such a
model, but we have not undertaken to do so since no
particular significance could be attributed to the
mobility parameters so determined. In any case, the
6t would fail for fields above a few thousand gauss
since the nonsaturation behavior of the magneto-
resistance cannot be accounted for on any such model
as we are using.

In summary, we are unable to account for the shape
of the magnetoconductivity functions as a function of
magnetic 6eld using simple assumptions about the
relaxation time and assuming the warped energy sur-
faces obtained from cyclotron resonance. No matter
what re6nements we have introduced we cannot get
the observed shape in the interval 0&V&1000 gauss
and also get the right shape in the interval 1000 gauss
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In (8.1), s, is the carrier velocity along the magnetic
fiel and ( )A„ indicates average over the hodograph.

The estimate (8.1) suggests that the longitudinal
magnetoresistance should be very small for a L100)
direction in p-Ge. The reason for this is that in the case
of the heavy holes, the carriers which carry most of
the current in the s direction are those near the (nearly
flat) $100) end surface of the (nearly cubical) energy
surface, and for most of these carriers the variation
around the hodograph of v, is nearly zero. A few
percent would seem to be about all of the magneto-
resistance which could originate in this way.

For the case of the fast holes, which carry 20% of
the current, the longitudinal magnetoresistance should
be even smaller than for the heavy hole, since the energy
surfaces are nearly spherical. Thus we would expect the
conductivity to be constant to within a few percent at
all fields.

McClure's theory of the field dependence gives for
the conductivity in a L100) direction the form

Cv
tT =0'e+

sr-i 1+(4%x)'
(82)

Equation (8.2) shows that the field dependence of the
magnetoconductivity must manifest itself at fields
smaller than that for which ~~ 1. Thus on the basis
of the classical Boltzmann theory we would expect that
whatever change of conductivity occurs with increasing
II, the conductivity would approach a limiting value
as H approached the value for which ~7

Our experiments on p-Ge show a qualitatively
diGerent behavior than that described above. To be
sure, there is a small longitudinal magnetoresistance at
fields of a few thousand gauss just as we might expect.
However, for fields of 5000 gauss or more the resistivity

&EI(4000 gauss. The experimental curves depart
from what we expected in such a way as to permit the
interpretation that the anisotropy of the energy sur-
faces at 77'K is appreciably greater than at 4.2'K.

8. LONGITUDINAL MAGNETOCONDUCTIVITY
IN STRONG FIELDS

From our data it is seen that in the (100) direction
p-Ge exhibits a very considerable longitudinal magneto-
resistance, of the order of 12% at 25000 gauss. This
magnetoresistance is different from what McClure's
theory predicts in two significant ways: (a) the mag-
nitude of the magnetoresistance is greater than is to be
expected for p-Ge and (b) the field dependence is
anomalous. We wish to discuss these points in some
detail.

The longitudinal magnetoresistance for a simple
energy surface arises from the variation of v, around
the hodograph. It is possible to show that a useful
estimate of Apr/pr, (pr, ps—)—/pr, i—s given by

increases again and is not yet saturated in the presence
of a field of 25 000 gauss.

We have been able to conceive of several sources of
the high magnetic field anomaly, all consisting of eGects
not included in McClure's theory. Such quantum
eGects arise because in high magnetic fields quanti-
zation of the carrier orbits becomes important.

The simplest of these effects comes about because of
the zero-point energy of the motion in the magnetic
field. The zero-point energy is proportional to the
reciprocal mass, and so is much larger for the light hole
than for the heavy hole. Thus, as the field is increased,
the degeneracy of the two bands is eGectively removed
and there is a transfer of carriers from the light-hole
band to the heavy-hole band. The relative number of
light holes will satisfy

(pi/pa) = (pie/pM) (~et/hei, )Lsinh (ha) s/2k T)/
sinh(hs&i/2kT)). (8.3)

Taking the cyclotron resonance values of 0.04 mo
and 0.3 mo for the light- and heavy-hole masses, respec-
tively, we can estimate the co values, and hence the
value of pi/ps as a function of field. Our estimate sug-
gests that at our highest field of 25000 gauss the
number of fast holes is only about 80% of what it is
at zero field. Taking account of the small fraction of the
current carried by the fast holes, we estimate a longi-
tudinal magnetoresistance of 3 or 4% originating in
the transfer eGect.

Another quantum eGect is that discussed by Titeica"
and more recently by Argyres and Adams. "This is a
reduction in the carrier mobility because of the direct
eGect of the orbital quantization on the scattering of
carriers. While no exact formula applicable to our
experiment is available, it was possible to estimate that
this kind of quantum eGect could give a longitudinal
magnetoresistance of as much as 5 or 6% at the highest
fields we used.

Still a third quantum eGect is a warping of the energy
surface in the presence of the strong-magnetic field.
While we have not tried to calculate the warping, we
can see qualitatively that it should be strongest for a
nearly degenerate band structure like that of p-Ge. It
is not at all inconceivable that a signihcant efFect on
the mobility of the fast hole could follow from such a
warping.

Under the circumstances we see no way to make a
quantitative interpretation of the longitudinal mag-
netoresistance. However, we are inclined to think that
these quantum eGects are responsible for the large
value of longitudinal magnetoresistance which we
observe.

9. SUMMARY AND COMMENTS

Our experiments con6rm in a qualitative way the
features of the two-carrier model of p-Ge found by

"V.S. Titeica, Ann. Physik (5) 22, 129 (1935)."P.N. Argyres and E. ¹ Adams, Phys. Rev. 104, 900 (1956).
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others. The ratio of rnobilities and the dependence of
the Hall constant and resistivity on magnetic field, on
temperature, and on impurity concentration all agree
well with the predictions of a model assuming a large
number of heavy carriers and a small number of light
carriers conducting simultaneously. Further, the devi-
ations from a simple two-carrier model are qualitatively
what would be expected to result from the warping of
the energy surfaces.

However, our experiments have not yielded an
entirely satisfactory theoretical model of lattice-
mobility-limited conduction in p-Ge. Some discrep-
ancies which remain quantitatively unaccounted for
are these:

(a) The low-Geld data give values for the mobilities
of the two kinds of carriers which are incompatible
with the observed field dependence of the magneto-
conductivity.

(b) The anisotropy of magnetoresistance is ap-
preciably diGerent from that expected on the warped-
surface theory of Mavroides and Lax.

(c) The variation of the magnetoconductivity
functions with magnetic 6eld in the region of inter-
mediate 6eld strength does not appear to conform very
well with what would be expected from the warped
surfaces inferred from cyclotron resonance experiments.

(d) The resistivity does not saturate at high Acids as
would be expected according to classical transport
theory.

Assuming no major systematic error in our data, one
would suspect from the first three discrepancies that
either (1) the energy surface parameters at 77'I are
signi6cantly different from what they are at 4.2'K, or
(2) the treatment of scattering which we have used is
seriously wrong. The second possibility would mean
that the scattering of carriers is quite anisotropic over
an energy surface, in which case the correct formulas
for the various magnetoconductivity functions would

need to be generalized and might be considerably
changed. Since in the case of large anisotropy ao
relaxation time would be expected to exist, it is very
difficult to know what kind of generalization would be
possible or to estimate the effects on the strong-field
magnetoconductivity functions.

The nonsaturation of resistivity at large values of

magnetic field is very probably due to a combination
of the three quantum eGects mentioned in the text.
It is unfortunate that no saturation of resistivity occurs,
since the saturation value of the resistivity would yield
a transport integral which is very useful for determining
the heavy-hole mobility and the energy dependence of
the relaxation time.

The failure of the high-magnetic-6eld data to conform
to a simple transport model prevents us from getting
independent evidence on the mechanism of lattice
scattering in p-Ge. As we stated in Sec. IV, the most
plausible assumption is that optical mode scattering
together with appreciable acoustical mode scattering
is responsible for the "compromise" power law 1 ".

The principal endings of our work are the suggestions
that the warping of the energy surface changes between
4.2'K and 77'K and the suggestion of quantum eGect
on the strong-field conductivity. Neither of these
eGects has been demonstrated unequivocally in the
present work, however, and a more clear-cut demon-
stration would be desirable.
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